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Abstract

Understanding the functions of proteins requires information about their protein-protein interactions (PPI). The collective
effort of the scientific community generates far more data on any given protein than individual experimental approaches.
The latter are often too limited to reveal an interactome comprehensively. We developed a workflow for parallel mining of
all major PPI databases, containing data from several model organisms, and to integrate data from the literature for a
protein of interest. We applied this novel approach to build the PPI network of the human Hsp90 molecular chaperone
machine (Hsp90Int) for which previous efforts have yielded limited and poorly overlapping sets of interactors. We
demonstrate the power of the Hsp90Int database as a discovery tool by validating the prediction that the Hsp90 co-
chaperone Aha1 is involved in nucleocytoplasmic transport. Thus, we both describe how to build a custom database and
introduce a powerful new resource for the scientific community.
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Introduction

The comprehensive determination of the interactome of a protein

of interest (POI) is technically challenging and in many cases

impossible, even though it is ultimately indispensable to understand

its functions. While there may often not be one ‘‘correct’’ way of

screening for interactors of a POI, there is already a huge amount of

data on protein-protein interactions in general from large-scale screens

performed with different techniques and species. Thus, mining public

databases in addition to extracting relevant information from the

literature may be a more efficient approach to building a POI

interactome that is reasonably reliable to serve as a discovery tool.

There is clearly a need to develop a workflow to extract the data that

are available for a POI but scattered across multiple databases and the

scientific literature into a single virtual interactome.

Hsp90 is a highly abundant and conserved molecular chaperone

that exists both in prokaryotes and in eukaryotes. The cytosolic

isoforms, known for example as Hsp90a and Hsp90b in humans,

are essential and have been most extensively studied [1–3].

Although Hsp90 has an intrinsic ATPase activity that drives its

conformational changes, it really functions as a multicomponent

molecular machine. A large cohort of cofactors, referred to as co-

chaperones in this context, modulate many aspects of this machine

including ATPase activity, recognition and selectivity, binding and

release of substrates [4]. It has been speculated that the Hsp90

chaperone machine may assist up to 10% of all cytosolic proteins

at some stage of their life cycle [5], but how it recognizes its

substrates and, in most cases, what it does to them remain very

poorly understood. Most likely because of the central role of

Hsp90 in many cellular processes, cancer cells, pathogens, and

viruses may be particularly dependent on it. This has led to a great

interest in developing specific Hsp90 inhibitors, of which several

are now in clinical trials for the treatment of cancer [6,7].

Identifying the proteins that interact with Hsp90, either as

regulators or co-chaperones or substrates (clients) is essential to

understand the global functions of this essential molecular

machine. A variety of biochemical and genetic efforts have been

undertaken to define molecular chaperone networks more

generally (for example, refs. [8,9–11]) and the Hsp90 interactome

specifically [12–22]. However, for Hsp90, the overlap between

their respective hits and the number of known false negatives have

been rather frustrating, most likely owing to the transient nature of

many of these interactions. Further discussions of these issues and

of the available approaches can be found in a very recent review

[23]. Since standard proteomic or genomic approaches for this

molecular chaperone machine are unable to capture the

interactome comprehensively, the application of our new workflow

to it appeared particularly appropriate. The specific result is a

powerful discovery tool that will serve any scientific community

whose paths may cross Hsp90.

Methods

Construction of Hsp90Int
A step-by-step protocol and scripts for building a PPI network

for one’s own POI(s) are provided in File S1. As indicated in the
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text, PPI data was retrieved and edited from public databases and

the literature. For each of the seven model organisms, the data

were stored in tab-delimited text files. For each pair of interacting

proteins, these files contain the information about the source

database, the experimental system employed to determine the

interaction, and the corresponding PubMed reference(s) where

available. All the PPI information contained in our text files was

subjected to further processing and dynamic manipulation by

conversion into visualizable PPI networks using Cytoscape 2.6.3

with a spring-embedded layout [24]. Proteins in the query list were

identified and selected in each network. To detect and to extract

the first level of interactors of the query list as well as interactions

between these neighbors, we used Cytoscape tools ‘‘Select first

neighbors of selected nodes’’ and ‘‘New network.from selected

nodes, all edges’’.

Each species-specific network was filtered in order to eliminate

PPIs already described in humans by intersecting it with the

human network using the Cytoscape intersection feature from the

‘‘Merge networks’’ tool. After converting the species-specific PPI

networks into human interolog networks, we used the Cytoscape

tool ‘‘Advanced network merge’’ to merge them into a unique

network (Hsp90Int).

Note that whenever the available data did not specify which of

the two cytosolic Hsp90 isoforms, Hsp90a or b, was meant, we

arbitrarily assumed it was both. In general, the current datasets are

too incomplete to allow a meaningful inference of isoform-specific

interactomes.

Graph measures and data evaluation
A PPI can be represented as a graph where proteins represent

nodes (or vertices) and interactions represent edges. Therefore, we

describe the base network of the seven model organisms as

GB = (VB,EB) and the network from Hsp90Int as GH = (EH,VH).

For GH we calculated the graph measures mean degree, diameter,

index of aggregation, connectivity, clustering coefficient, and

assortative mixing coefficient. The graph measures were calculated

with previously reported formulas [25] with partial incorporation

into the JUNG graph framework (http://jung.sourceforge.net/).

As a control, we generated 300 networks from GB with random

sets of an equal number of query vertices (nodes) from VB with

|VB| = |VH| and subsequent extraction of edges from GB in a

similar next-neighbor approach as done for the extraction of GH.

Construction of functional maps
We integrated the gene ontology (GO) terms into the networks

in Cytoscape by two approaches: (i) by directly associating GO

annotation attributes to the members of the network using the tool

import ‘‘Ontology and annotation’’ or (ii) by mining for over-

represented GO terms in the members of the networks using the

Cytoscape plugin ClueGO [26]. This plugin allows the decoding

and visualization of functionally grouped GO terms in the form of

networks.

Establishment of Aha1-null fibroblasts
The generation and more detailed phenotyping of genetically

Aha1-null mice will be described elsewhere. Fibroblasts from wild-

type and mutant mice were established as follows. A small piece of

ear was collected from an adult animal and washed in RPMI-1640

medium complemented with 30% fetal calf serum (FCS) and

antibiotics. After being cut into small pieces, it was placed in 2 ml

of the same medium containing 1 mg/ml collagenase and

incubated overnight at 37uC. The remaining pieces were

disaggregated by pipetting, and cells were collected by centrifu-

gation. After removal of the supernatant, the cells were plated in

Dulbecco’s modified Eagle’s medium (DMEM) with 10% FCS and

antibiotics. Pools of spontaneously immortalized fibroblasts were

obtained by continuous culturing.

Antibodies
We produced a recombinant His-tagged version of mouse Aha1

in bacteria for production of a rabbit polyclonal antiserum by

Stressmarq (Victoria, BC, Canada). The rabbit polyclonal serum

against Hsp90a (PA3-013) was from Affinity BioReagents (Golden,

CO, USA); mouse monoclonal H90-10 against Hsp90b was kindly

provided by Prof. David O. Toft (Mayo Clinic, Rochester, USA);

rabbit polyclonal sera against KPNA5 and IPO4 were from

ProteinTech Group (Chicago, USA); the mouse monoclonal M2

against the Flag epitope was from Sigma Chemical Co. (St. Louis,

MO, USA).

Immunoprecipitations
Aha1, exportin-1 and the negative control protein GPR30 were

expressed with a triple Flag tag epitope by transient transfection

into HEK 293T cells. Cells were lysed for 15 min on ice in lysis

buffer (20 mM Tris-HCl pH 7.4, 150 mM KCl, 0.2 mM MgCl2,

1 mM dithiothreitol, 2% Triton X-100). Extracts were sonicated

and cleared by centrifugation at 12’000 rpm for 30 min at 4uC.

1 mg of proteins of the supernatant (in 1 ml) were incubated with

anti-FLAG (M2) magnetic beads from Sigma Chemical Co. (St.

Louis, MO) overnight at 4uC. After washing the immunoprecip-

itates with Tris-buffered saline, proteins were eluted in SDS-PAGE

sample buffer without DTT by boiling. 50 mM DTT was added

to the supernatants and proteins separated by SDS-PAGE and

processed for immunoblotting. For reprobing the blots with a

different antibody, they were stripped for 2 hours at 65uC with

Tris-buffered saline containing 0.2% Tween-20.

Nuclear localization assays
To facilitate the analysis of the nuclear localization of the

glucocorticoid receptor (GR), we constructed plasmid pTom.GR

for expression of a fusion protein between the red fluorescent

protein Tomato [27] and the rat GR. This plasmid was transiently

transfected into adult wild-type or Aha1-null fibroblasts, which

were maintained in medium with charcoal-treated FCS during the

experiment. Nuclear localization of this fusion protein was

triggered by adding 10 nM dexamethasone. Cells were fixed in

3.7% paraformaldehyde in phosphate-buffered saline at different

time points for 30 minutes. Images were taken with a Zeiss

AxioCam microscope and quantitated with an image analysis

software. The means of the nuclear and cytoplasmic fluorescence

intensities were determined and used to calculate the nuclear/total

pixel ratio.

Results

Building the PPI network for the human Hsp90 molecular
chaperone machine

One major difficulty in building a particular interactome from

databases is that the publicly available data are deposited in

several separate databases [28]. Probably owing to how the data

were originally acquired, the human PPI networks coming from

six different primary databases were shown to have barely any

overlap. Indeed, only 3 PPIs were found in all 6 databases [29]. It

is clear that the use of one or just a few databases is not enough to

retrieve all known interactions of a protein, of protein complexes

or entire systems. To construct the interactome of the human

Hsp90 molecular chaperone machine from available data, we

therefore decided to use all the major public PPI databases [29],

The Hsp90 Interactome
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even when the data came from different model organisms. Briefly,

we built a set of species-centered PPI databases, queried them

separately with a list of proteins of interest, and then merged the

resulting PPI networks into a hypothetical human PPI network

using the interolog concept (Figure 1). The latter proposes that, if

two proteins interact in one species, identifiable human orthologs

are likely to interact as well [30]. While this concept has been used

in the past to build hypothetical interactomes [9,31–33], to the

best of our knowledge, none of these past efforts has integrated

data from all major model organisms as well as from the literature,

and queried the virtual interactome for a particular POI or

molecular machine of interest.

We began by retrieving the full set of interactions from the main

primary databases BioGrid [34], IntAct [35], HPRD [36], DIP

[37], MINT [38], and BIND [39]. These included data for the

budding and fission yeasts Saccharomyces cerevisiae and Schizosacchar-

omyces pombe, respectively, Caenorhabditis elegans, Drosophila melanoga-

ster, Arabidopsis thaliana, mouse and human. To merge the data from

multiple databases, they first had to be subjected to normalization

and editing. This involved the following steps (Figure 1): (i) All

interactions that were solely genetic as opposed to physical were

discarded. (ii) We further eliminated interactions between proteins

from different species. (iii) The data from each database was

subdivided, where necessary, into species-centered interaction sets.

(iv) Since not all databases use the official Uniprot identification

number (ID) [40] or a name relating to the standard HUGO gene

symbol, we had to unify the IDs with conversion tools [41]. At this

point, the data could be loaded into the open source platform

Cytoscape, a standalone visualization system for molecular

interaction networks [24]. Thus, for each model organism, these

manipulations yielded a visualizable network of all PPIs

(Figure 1B). Such networks retain all of the source information

including links to the original literature reports allowing one to

assess the experimental evidence for a given PPI. Considering that

the PPI databases only partially cover the known interactions

involving the Hsp90 chaperone machine, we enriched the

networks with manually curated data from the literature that we

have been making available to the community for many years (see

http://www.picard.ch/downloads). The mining of several hun-

dred publications had yielded over 250 Hsp90-interacting

proteins, which were not present in the public PPI databases

(indicated in Table S1). The datasets were now ready for querying.

The Hsp90 chaperone machine does not consist of only one

protein complex, but of a multitude of complexes that interconvert

Figure 1. Workflow for the construction of the interactome of the human Hsp90 molecular chaperone machine (Hsp90Int). (A) PPIs
from online databases were compiled and edited in order to obtain consistent and uniform data. These data were enriched with manually curated
information from the literature. (B) Physical interactomes were constructed and visualized with Cytoscape for the indicated species. (C) Components
of the Hsp90 molecular chaperone machine were used as query proteins (colored nodes) to retrieve the corresponding PPI network for each
organism. (D) HomoloGene IDs were assigned to the interactors in each network to identify human orthologs and new interolog interactions. (E) The
complete sets of interologs were merged with the human network into the complete human Hsp90Int. The red and blue colors represent human and
interolog interactions, respectively.
doi:10.1371/journal.pone.0026044.g001

The Hsp90 Interactome
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and that may differ in a cell type-specific and species-specific

manner. In addition, some co-chaperones may have their own and

even partially Hsp90-independent PPI networks. To capture this

complexity, we wanted to query our database with all known

components of the Hsp90 chaperone machine. This list was the

result of our continuous literature mining effort mentioned above.

This query list, complemented with a few additional related

molecular chaperones, contained 39 proteins (Table S2) and was

used to mine the seven species-centered interactomes. Both first

level interactions between all query proteins and other proteins in

the database and second level interactions between these primary

hits were extracted to generate seven species-centered ‘‘queried

networks’’ (Figure 1C). The networks of the non-human species

were then transformed into separate human interolog networks

(Figure 1D). This could be achieved using the NCBI HomoloGene

database in which each protein shares the same HomoloGene ID

with all its orthologs. This step also eliminated PPIs identified in

non-human species where one or the other interacting protein has

no human ortholog. The non-human chaperone networks were

further filtered to remove duplications, and for PPIs already

known in humans to discard duplicates between inferred interologs

and experimentally discovered human PPIs. Finally, the seven

chaperone networks could easily be merged in Cytoscape to

generate the full interactome/network of the human Hsp90

molecular chaperone machine (Figure 1E), hereafter referred to as

Hsp90Int (or Hsp90Int.db for the corresponding database, which

will also be made publicly available at http://www.picard.ch/

Hsp90Int). Thus, editing, filtering, curation, and querying led

from seven species-centered interactomes with a total of 38’073

nodes and 210’361 edges (connections) to seven query networks

with 1’990 nodes and 18’193 edges, and finally to a human

interactome with 1’150 nodes and 8’892 edges (Figures 1 and 2). It

should be emphasized that, despite all of these manipulations,

Hsp90Int rests entirely on experimental data, albeit from many

different sources, and that all of the relevant original information

can be traced in the source files (Table S1 and File S2).

Once assembled, Hsp90Int can be explored from many angles.

For example, GO terms [42] can be integrated into it to

investigate functional associations (see below), or the individual

interactomes for the main Hsp90 co-chaperones Cdc37, Aha1 (see

below), p23, Hop, FKBP51, FKBP52 and Cyp40 can be extracted

and analyzed separately. Moreover, the network can be combined

with a variety of expression data. We have used the Genevestigator

platform [43] to retrieve gene expression profiles along human

Figure 2. Visualization of Hsp90Int. The full interactome containing 1’150 nodes and 8’892 edges is presented here as a zoomable PPI network
with query proteins but not their interactors being colored (see inset). The sizes of the nodes reflect their level of association with partners inside the
network (degree). The origins of the interactions are indicated by the color of the edge line: interologs and human interactions are represented with
blue dashed and red full lines, respectively. Chaperone, core molecular chaperones such as Hsp90a and Hsp90b; TPR, tetratricopeptide repeats; CS,
‘‘CHORD and Sgt1 domain’’.
doi:10.1371/journal.pone.0026044.g002
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developmental stages. After integrating them into our network, we

could generate an animation to visualize the changes in

abundance of interacting proteins (Video S1).

Topological characterization of Hsp90Int
Biological networks should be and are significantly different

from random networks [44,45]. We therefore compared Hsp90Int

with 300 networks generated with different random sets of the

same number of query proteins. We found that the topological

properties of Hsp90Int, which are a measure of the quality and the

importance of a network [46,47], are highly significantly different

from those of the control networks. The topological characteristics

of Hsp90Int are depicted in Figure 3. Several graph measures were

calculated and compared to a background of networks generated

with randomized sets of query proteins. Significance was measured

for topological characteristics such as size (diameter, index of

aggregation), density (mean degree, connectivity, clustering

coefficient), and distribution (assortative mixing coefficient). For

example, size can be described by the graph diameter, which is the

maximum distance between any two nodes, and the index of

aggregation, which is the ratio of the size of the largest subset of

proteins connected by at least one path to the total number of

nodes in the network. In a dense network, nodes are closer to each

other and connected more extensively. This is reflected by the

degree parameter, which reports on the number of edges connected

to one node.

The node degree distribution of Hsp90Int shows significantly

more nodes at any degree while the distribution of the clustering

coefficient shows a significantly lower number of nodes between 0

and 0.1, and significantly higher number of nodes above

(especially between 0.1 and 0.7), which resembles the modular

organization of metabolic networks [48]. The high density of

Hsp90Int is reflected by a significantly higher mean degree,

connectivity, and clustering coefficient when compared to

randomly selected networks. 99% of the nodes are interconnected

in the largest component, which is reflected by the high index of

aggregation (0.99; control networks, m= 0.91) and also by the

lower number of connected components (6; control networks,

m= 24) whereas the diameter (6; control networks, m= 12)

highlights the compactness of Hsp90Int. The assortative mixing

coefficient is a parameter, very well known for social networks [49],

which reflects the level of preferential versus completely random

associations in networks. The assortative mixing coefficient of

Hsp90Int (0.02; control networks, m= 20.74) indicates an even

edge-to-edge distribution, that is a correlation between the degrees

of connected nodes, which is in accordance with the dense nature

of the network. Thus, the distinctive topological features of

Hsp90Int distinguish it very clearly from control networks, most

certainly reflecting underlying functional connections of this

biological machine. This suggests that Hsp90Int.db is suitable as

a discovery tool.

Functional map of Hsp90Int
One goal of determining or analyzing an interactome is to gain

an overview of the biological functions of a particular protein or

complex and to predict new ones. For this purpose, we

investigated whether Hsp90Int contains over-represented GO

terms indicating biological processes. Based on the full interactome

of Figure 2, we generated a functional map (Figure 4) where

members of Hsp90Int end up in nodes corresponding to their

associated enriched GO terms, and where edges connecting GO

terms indicate that some of their respective proteins share the same

enriched GO terms. It should be noted that this functional map,

like the underlying Hsp90Int, also takes advantage of and includes

second level interactions between proteins that are the ones that

interact with our query proteins (see Table S3 for the whole set of

enriched GO terms and their associated proteins).

In the functional map, major biological functions such as

development, signaling, and cell cycle cluster in distinct geographic

regions that are easily identified (Figure 4). Interestingly, the

functions ‘‘stress response’’ and ‘‘protein folding’’, which could

have been expected to be prominently associated with Hsp90Int,

represent only a small portion of all displayed functions.

‘‘Development’’ is the single most extensive function on the map

with development in a broad sense of many cell types, organs, and

life stages being associated with the Hsp90 molecular chaperone

machine itself and/or its interacting proteins that include clients

and novel cofactors and regulators. Several functions on the map,

for example ‘‘nucleocytoplasmic transport’’, ‘‘signaling’’, ‘‘cell

cycle’’, ‘‘immune response’’, and ‘‘telomere maintenance’’ have

previously been associated with Hsp90 and/or its co-chaperones

[1,50–52]. Intriguingly, the functional map offers a whole set of

novel connections that may be relevant to explain the phenotype

of an hsp90a mutation in the mouse that we have recently reported

[53]. Males without Hsp90a are sterile because of a very specific

pachytene arrest in spermatogenesis. The GO terms ‘‘sexual

development’’, ‘‘cell cycle’’, and ‘‘DNA repair’’ are enriched and

connected because of a link between the terms ‘‘spermatogenesis’’

and ‘‘meiosis’’, respectively (Figure 4). The proteins associated

with these, MLH1, MSH4, H2AFX and DMC1, would be

interesting to investigate in the context of this particular

phenotype.

Functional map of the Aha1-centric PPI network
To gain new insights into the functions of the Hsp90 molecular

chaperone machine and at the same time to test the predictive

value of our new resource, we decided to explore Hsp90Int from

the point of view of the Hsp90 co-chaperone Aha1. We retrieved

all of the interactors of Aha1 itself and the ones of the core

chaperones Hsp90a and Hsp90b that share functional terms with

Aha1 interactors (Figure S1). As before, we visualized the over-

represented GO terms in a functional map for this specific

interactome (Figure 5). The biological functions associated with

Aha1-Hsp90 include ‘‘nucleocytoplasmic transport’’. This attract-

ed our attention because molecular chaperones have increasingly

been linked to intracellular transport, either into organelles [54,55]

or into the nucleus. The latter has been highlighted recently

notably for the Hsp90 complex in the context of the nucleocy-

toplasmic shuttling of steroid receptors [51,56]. The proteins in the

Aha1-Hsp90 functional map that share this particular GO term

are listed as an inset in Figure 5. This particular GO term and the

associated proteins provide the basis for our subsequent experi-

mental validation.

New partners and functions for Aha1
Within Hsp90Int, we zoomed in on the interactions corre-

sponding to the module ‘‘nucleocytoplasmic shuttling’’ and to one

particular Hsp90 client, the GR, whose nuclear localization is well

known to be regulated by the Hsp90 complex [57–59]. Hsp90Int

predicts a number of novel interactions whereas others were

already more or less established (Figure 6A, upper panel). One

example of the latter that also serves to illustrate some of the

limitations of the data in individual public repositories is the

interaction between exportin-1 (XPO1) and Hsp90, which was

identified as part of an Hsp90 proteomics effort [14]. Although the

Hsp90-specific antibody that was used could not have discrimi-

nated between Hsp90a and Hsp90b, only the interaction with

Hsp90b found its way into some but not all databases. Overall, this

The Hsp90 Interactome
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close-up view from an Aha1-centric perspective predicts new PPIs

and a functional role in the nuclear localization of GR. We tested

the former by assessing the co-immunoprecipitation of a series of

proteins with Flag-tagged Aha1 and XPO1, exogenously

expressed in human 293T cells (Figure 6B). This result indicated

that Aha1 and XPO1 are not only associated with both Hsp90

isoforms, but also with importin-4 (IPO4) and importin-a6

(KPNA5), thereby confirming and validating several connections

(indicated as solid red edges in the lower panel of Figure 6A).

Although our current data cannot discriminate between direct and

indirect interactions, we speculate that most if not all Aha1

interactions discussed here are Hsp90-mediated.

To examine the functional importance of Aha1 for the

‘‘nucleocytoplasmic transport’’ of GR, we compared the kinetics

of its hormone-induced nuclear localization in cells with and

without Aha1. We transiently expressed GR as a red fluorescent

protein fusion protein (Tom.GR) in mouse fibroblast cells that

were either wild-type or lacking Aha1 because of a gene trap

mutation (herein referred to as Aha1-null cells). Without the

steroid hormone dexamethasone (Dex), Tom.GR showed a fairly

Figure 3. Topological characteristics of Hsp90Int. (A) Schematic representation summarizing the topological characteristics of Hsp90Int
compared to randomly selected networks. (B) Mean values of the graph measures calculated for Hsp90Int (red dots) with 1’150 nodes and 8’892
edges and for the control networks (black boxplots). (C) Node distributions for mean degree and clustering coefficient.
doi:10.1371/journal.pone.0026044.g003

Figure 4. Functional map of Hsp90Int. In this functionally grouped GO annotation network, nodes represent a GO term (biological process)
significantly overrepresented in a group of proteins from the interactome (at least 8). The node sizes represent the term enrichment significance.
Edges connect GO terms that share common sets of proteins present in Hsp90Int. Similar functional terms are grouped in colored regions and labeled
with a representative name. For clarity, the original ClueGO output was edited with Adobe Illustrator. For example, some terms are highlighted in red
to guide the viewer.
doi:10.1371/journal.pone.0026044.g004

The Hsp90 Interactome
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similar and primarily cytoplasmic subcellular localization, both

with and without Aha1. After 40 minutes of Dex treatment,

Tom.GR was almost exclusively nuclear in wild-type cells but only

partially nuclear in Aha1-null cells (Figure 6C). A time-course

confirmed that the nuclear accumulation of Tom.GR is slower and

ultimately less complete in the absence of Aha1 (Figure 6D). This

quantitative analysis also revealed that the nuclear levels of the

unliganded Tom.GR may be slightly higher in the absence of

Aha1, possibly further supporting the conclusion that Aha1 is

involved in ‘‘nucleocytoplasmic transport’’ and that the overall

equilibrium may be perturbed in its absence.

Discussion

We have presented a novel workflow to assemble the virtual

interactome of a POI from the vast amount of data that are

already available in a variety of public databases. We have applied

it to the Hsp90 molecular chaperone machine where the results

from individual efforts to describe the interactome have been

particularly incomplete. Our approach to building Hsp90Int has

proven superior to other available databases or algorithms. There

are of course already a number of storehouses that combine

different PPI databases by merging networks stored in different

formats, even inferring human PPIs from orthologs, or working as

Cytoscape plugins and allowing the mining of interactomes using a

protein query list. However, for our purposes they proved to be

incompletely consolidated and insufficiently updated. For exam-

ple, the use of our query list to mine the human data in BisoGenet

[60] yielded only 553 nodes and 3424 edges compared to 618

nodes and 4552 edges in our own human PPI data. Two features

of our workflow have been critical to build Hsp90Int. We used

data from several model organisms and incorporated and/or

converted them into a human PPI network, and we incorporated a

large amount of PPI data from the literature. As far as the

workflow for building the database goes, there is nothing peculiar

about the fact that this is a human PPI network except that it relies

on far more primary data from the same species. This approach

could be applied for any other species as well except that the

proportion of predicted interactions would be much higher. An

important feature is that once a PPI network has been built, it can

be explored from many different angles. One can zoom into

another POI or one can interrogate it with functional GO terms.

Figure 5. A functional map of the Aha1-Hsp90 subset. The Aha1-focused PPI network (see Figure S1) was functionally grouped into a GO
annotation network. The proteins in the node ‘‘nucleocytoplasmic transport’’ are listed as an inset. Other map details are as in Figure 4.
doi:10.1371/journal.pone.0026044.g005
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And it can easily be updated, which is essential for it to remain a

useful tool.

The database acronym and our presentation of Hsp90Int

should not mislead to believe that it only contains interactors of

Hsp90 or Hsp90 co-chaperones themselves. Even though

Hsp90Int.db is strongly enriched for Hsp90 interactors because

of the weight of the manually incorporated literature data, it

extends beyond the core of the cytosolic Hsp90 machine by design

and by necessity. Our query list also contained the Hsp90 isoforms

of mitochondria and the endoplasmic reticulum, even though

hardly any interactors are currently known for these proteins. It

also contained Hsp70 and some of its isoforms as another major

molecular chaperone. This was necessary since Hsp70 functionally

collaborates and interacts, at least indirectly through Hop, with

Hsp90. For newly synthesized proteins, the Hsp70 multicompo-

nent machine tends to work upstream of Hsp90 [61,62], and thus,

in this context and others, intersections between these two

molecular chaperone systems are expected.

To demonstrate the usefulness and the power of Hsp90Int.db,

we followed up on the prediction that Aha1 is involved in

nucleocytoplasmic transport and were able to confirm it

experimentally. Naturally, these results raise further questions.

For example, the interplay of Aha1 and Hsp90 will need to be

further clarified. Likewise, it will be interesting to investigate the

generality of a role for Aha1 in nuclear import and its role in

export. However, these early successes of Hsp90Int.db should

suffice to incite researchers to explore Hsp90Int.db and/or to

build a PPI for their own POI using our workflow.

Supporting Information

Figure S1 Pdf file with a visualization of the Aha1 PPI network.

Interactors of Aha1 itself and the ones of the core chaperones

Hsp90a and Hsp90b that share functional terms with Aha1

interactors.

(PDF)

File S1 Compressed archive containing a step-by-step protocol

for building a PPI network (in pdf format) and a folder with scripts.

(Z )

File S2 Hsp90Int data as a Cytoscape file (xgmml format for

import).

(XML)

Table S1 Excel file with the full list of interactors and interaction

pairs and associated information of Hsp90Int.

(XLS)

Table S2 Pdf file with list of query proteins.

(PDF)

Table S3 Excel file listing the enriched GO terms associated

with the components of Hsp90Int.

(XLS)

Video S1 Animation file in .mov format with a visualization of

the dynamic changes in expression levels of components of

Hsp90Int along human development.

(MOV)

Figure 6. Experimental validation of the involvement of Aha1 in nucleocytoplasmic transport. (A) PPI map of the proteins (red nodes) in
the GO module ‘‘nucleocytoplasmic transport’’ of the Aha1-Hsp90 PPI subset of Figure 5. It contains potential and known (dashed and full line edges,
respectively) Aha1 interactions. The Hsp90 client protein GR was also integrated into the predicted PPI (upper panel). The co-immunoprecipitation
assays of panel B allowed the experimental confirmation and new demonstration of PPIs as indicated by red and green edges, respectively (lower
panel). (B) Co-immunoprecipitation experiment demonstrating interactions between Aha1 or exportin-1 (XPO1) and components of the GO module
‘‘nucleocytoplasmic transport’’ shown in panel A. Flag-tagged Aha1, exportin-1, and GPR30 as an unrelated control protein were exogenously
expressed in 293T cells. IPO4, importin-4; KPNA5, importin-a6. (C) and (D) Nuclear localization of GR in mouse fibroblasts with and without Aha1.
Panel C shows representative micrographs of the localization of Tom.GR with our without treatment with dexamethasone (Dex) for 40 min, and an
immunoblot on the right verifying the absence of Aha1 in the Aha1-null fibroblasts. Panel D shows the nuclear accumulation of Tom.GR over time in
wild-type (m) and Aha1-null (.) cells. Nuclear localization of GR was initiated at time zero with the addition of 10 nM dexamethasone. Data points are
the means with standard errors of three independent experiments where ,100 cells were counted for each time point. *, significantly different with
p,0.005.
doi:10.1371/journal.pone.0026044.g006
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8. Albanèse V, Yam AY, Baughman J, Parnot C, Frydman J (2006) Systems

analyses reveal two chaperone networks with distinct functions in eukaryotic

cells. Cell 124: 75–88.

9. Pavithra SR, Kumar R, Tatu U (2007) Systems analysis of chaperone networks

in the malarial parasite Plasmodium falciparum. PLoS Comput Biol 3: 1701–1715.

10. Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular

networks: changes of cellular integrity in stress and diseases. IUBMB Life 60:

10–18.

11. Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, et al. (2009) An atlas of

chaperone-protein interactions in Saccharomyces cerevisiae: implications to

protein folding pathways in the cell. Mol Syst Biol 5: 275.

12. Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, et al. (2005) Navigating the

chaperone network: integrative map of physical and genetic interactions

mediated by the Hsp90 chaperone. Cell 120: 715–727.

13. Millson SH, Truman AW, King V, Prodromou C, Pearl LH, et al. (2005) A two-

hybrid screen of the yeast proteome for hsp90 interactors uncovers a novel

Hsp90 chaperone requirement in the activity of a stress-activated mitogen-

activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4: 849–860.

14. Falsone SF, Gesslbauer B, Tirk F, Piccinini AM, Kungl AJ (2005) A proteomic

snapshot of the human heat shock protein 90 interactome. FEBS Lett 579:

6350–6354.

15. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, et al. (2007)

Diverse cellular functions of the Hsp90 molecular chaperone uncovered using

systems approaches. Cell 131: 121–135.

16. Te J, Jia L, Rogers J, Miller A, Hartson SD (2007) Novel subunits of the

mammalian Hsp90 signal transduction chaperone. J Proteome Res 6:

1963–1973.

17. Falsone SF, Gesslbauer B, Rek A, Kungl AJ (2007) A proteomic approach

towards the Hsp90-dependent ubiquitinylated proteome. Proteomics 7:

2375–2383.

18. Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, et al. (2009)

Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces

complete responses in triple-negative breast cancer models. Proc Natl Acad Sci

USA 106: 8368–8373.

19. Tsaytler PA, Krijgsveld J, Goerdayal SS, Rudiger S, Egmond MR (2009) Novel

Hsp90 partners discovered using complementary proteomic approaches. Cell

Stress Chaperones 14: 629–638.

20. Gano JJ, Simon JA (2010) A proteomic investigation of ligand-dependent HSP90

complexes reveals CHORDC1 as a novel ADP-dependent HSP90-interacting

protein. Mol Cell Proteomics 9: 255–270.

21. Wang X, Heuvelman DM, Carroll JA, Dufield DR, Masferrer JL (2010)

Geldanamycin-induced PCNA degradation in isolated Hsp90 complex from

cancer cells. Cancer Invest 28: 635–641.

22. Skarra DV, Goudreault M, Choi H, Mullin M, Nesvizhskii AI, et al. (2011)

Label-free quantitative proteomics and SAINT analysis enable interactome

mapping for the human Ser/Thr protein phosphatase 5. Proteomics 11:

1508–1516.

23. Hartson SD, Matts RL (2011) Approaches for defining the Hsp90-dependent

proteome. Biochim Biophys Acta. in press.

24. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, et al. (2007)

Integration of biological networks and gene expression data using Cytoscape.

Nat Protoc 2: 2366–2382.

25. Platzer A, Perco P, Lukas A, Mayer B (2007) Characterization of protein-

interaction networks in tumors. BMC Bioinformatics 8: 224.

26. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, et al. (2009)

ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology

and pathway annotation networks. Bioinformatics 25: 1091–1093.

27. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, et al.

(2004) Improved monomeric red, orange and yellow fluorescent proteins derived
from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567–1572.

28. Lehne B, Schlitt T (2009) Protein-protein interaction databases: keeping up with
growing interactomes. Hum Genomics 3: 291–297.

29. De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key

concepts to building and analyzing interactome networks. PLoS Comput Biol 6:
e1000807.

30. Walhout AJ, Vidal M (2001) Protein interaction maps for model organisms. Nat

Rev Mol Cell Biol 2: 55–62.

31. He F, Zhang Y, Chen H, Zhang Z, Peng YL (2008) The prediction of protein-

protein interaction networks in rice blast fungus. BMC genomics 9: 519.

32. Shin CJ, Davis MJ, Ragan MA (2009) Towards the mammalian interactome:

Inference of a core mammalian interaction set in mouse. Proteomics 9:

5256–5266.

33. Wang TY, He F, Hu QW, Zhang Z (2011) A predicted protein-protein

interaction network of the filamentous fungus Neurospora crassa. Molecular
bioSystems 7: 2278–2285.

34. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, et al. (2008) The

BioGRID Interaction Database: 2008 update. Nucleic Acids Res 36: D637–640.

35. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, et al.

(2004) IntAct: an open source molecular interaction database. Nucleic Acids Res

32: D452–455.

36. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, et al. (2006)

Human protein reference database–2006 update. Nucleic Acids Res 34:
D411–414.

37. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, et al. (2000) DIP:

the database of interacting proteins. Nucleic Acids Res 28: 289–291.

38. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M,

et al. (2002) MINT: a Molecular INTeraction database. FEBS Lett 513:

135–140.

39. Bader GD, Betel D, Hogue CW (2003) BIND: the Biomolecular Interaction

Network Database. Nucleic Acids Res 31: 248–250.

40. Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, et al. (2009) Infrastructure for

the life sciences: design and implementation of the UniProt website. BMC

Bioinformatics 10: 136.

41. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:
44–57.

42. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium.
Nat Genet 25: 25–29.

43. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, et al. (2008)

Genevestigator v3: a reference expression database for the meta-analysis of
transcriptomes. Adv Bioinformatics 2008: 420747.

44. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein
networks. Science 296: 910–913.

45. Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles

of biological networks. Genes Dev 21: 1010–1024.

46. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The

architecture of complex weighted networks. Proc Natl Acad Sci USA 101:
3747–3752.

47. Seebacher J, Gavin AC (2011) SnapShot: Protein-Protein Interaction Networks.

Cell 144: 1000–1000.e1001.

48. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002)

Hierarchical organization of modularity in metabolic networks. Science 297:

1551–1555.

49. Newman MEJ (2003) The structure and function of complex networks. SIAM

Review 45: 167–256.

50. Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol

85: 905–910.

51. Echeverrı́a PC, Picard D (2010) Molecular chaperones, essential partners of
steroid hormone receptors for activity and mobility. Biochim Biophys Acta 1803:

641–649.

52. DeZwaan DC, Freeman BC (2010) HSP90 manages the ends. Trends Biochem
Sci 35: 384–391.

53. Grad I, Cederroth CR, Walicki J, Grey C, Barluenga S, et al. (2010) The
molecular chaperone Hsp90a is required for meiotic progression of spermato-

cytes beyond pachytene in the mouse. PLoS ONE 5: e15770.

54. Endo T, Yamano K (2010) Transport of proteins across or into the
mitochondrial outer membrane. Biochim Biophys Acta 1803: 706–714.

55. Kovacs-Bogdan E, Soll J, Bolter B (2010) Protein import into chloroplasts: the
Tic complex and its regulation. Biochim Biophys Acta 1803: 740–747.

The Hsp90 Interactome

PLoS ONE | www.plosone.org 10 October 2011 | Volume 6 | Issue 10 | e26044



56. Galigniana MD, Echeverrı́a PC, Erlejman A, Piwien-Pilipuk G (2010) Role of

molecular chaperones and TPR-domain proteins in the cytoplasmic transport of
steroid receptors and their passage through the nuclear pore. Nucleus 1:

299–308.

57. Freedman ND, Yamamoto KR (2004) Importin 7 and importin a/importin b
are nuclear import receptors for the glucocorticoid receptor. Mol Biol Cell 15:

2276–2286.
58. Echeverria PC, Mazaira G, Erlejman A, Gomez-Sanchez C, Piwien Pilipuk G,

et al. (2009) Nuclear import of the glucocorticoid receptor-Hsp90 complex

through the nuclear pore complex is mediated by its interaction with Nup62 and
importin b. Mol Cell Biol 29: 4788–4797.

59. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein

and immunophilin chaperones. Endocr Rev 18: 306–360.

60. Martin A, Ochagavia ME, Rabasa LC, Miranda J, Fernandez-de-Cossio J, et al.

(2010) BisoGenet: a new tool for gene network building, visualization and

analysis. BMC Bioinformatics 11: 91.

61. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from

nascent chain to folded protein. Science 295: 1852–1858.

62. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the

verge of death. Mol Cell 40: 253–266.

The Hsp90 Interactome

PLoS ONE | www.plosone.org 11 October 2011 | Volume 6 | Issue 10 | e26044


