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Abstract
Current cytogenetic risk stratification in primary myelofibrosis (PMF) is two-tiered: ‘favorable’ and ‘unfavorable’. Recent
studies have suggested prognostic heterogeneity within the unfavorable risk category. In 1002 consecutive patients, we
performed stepwise analysis of impact on survival from individual and prognostically ordered cytogenetic abnormalities,
leading to a revised three-tiered risk model: ‘very high risk (VHR)’—single/multiple abnormalities of −7, i(17q), inv(3)/
3q21, 12p−/12p11.2, 11q−/11q23, or other autosomal trisomies not including+ 8/+ 9 (e.g., +21, +19); ‘favorable’—
normal karyotype or sole abnormalities of 13q−, +9, 20q−, chromosome 1 translocation/duplication or sex chromosome
abnormality including -Y; ‘unfavorable’—all other abnormalities. Median survivals for VHR (n= 75), unfavorable (n= 190)
and favorable (n= 737) risk categories were 1.2 (HR 3.8, 95% CI 2.9–4.9), 2.9 (HR 1.7, 95% CI 1.4–2.0) and 4.4 years and
survival impact was independent of clinically derived prognostic systems, driver and ASXL1/SRSF2 mutations. The revised
model was also effective in predicting leukemic transformation: HRs (95% CI) were 4.4 (2.0–9.4) for VHR and 2.0 (1.2–3.4)
for unfavorable. The impact of driver mutations on survival was confined to favorable and that of ASXL1/SRSF2 mutations
to favorable/unfavorable cytogenetic risk categories. The current study clarifies the prognostic hierarchy of genetic risk
factors in PMF and provides a more refined three-tiered cytogenetic risk model.

Introduction

Current prognostication in primary myelofibrosis (PMF)
relies on information from clinical variables, karyotype and
mutations. The prototype international prognostic scoring
system (IPSS) [1] was first described in 2009 and was
designed to predict survival in newly diagnosed patients. In
2010, IPSS was modified into the dynamic IPSS (DIPSS)

[2], in order to allow prognostication of patients seen at any
time during their clinical course. Both IPSS and DIPSS
employed five clinical risk factors, including older age,
anemia, leukocytosis, constitutional symptoms and circu-
lating blasts, in order to construct a four-tiered risk cate-
gorization system. In 2011, DIPSS-plus [3] was introduced
in order to account for IPSS/DIPSS-independent risk fac-
tors, including thrombocytopenia, red cell transfusion need
and karyotype. The inclusion of cytogenetic information to
clinically derived risk models for PMF has boosted their
performance, especially in predicting leukemia-free survival
[3–5].

Observations regarding the prognostic contribution of
karyotype in PMF span over 30 years. In 1985 [6], a small
study of 28 patients was unable to demonstrate a survival
difference between normal and abnormal karyotype. In
1988 [7], Demory et al. first noticed the adverse impact of
abnormal karyotype on survival in PMF; this was subse-
quently confirmed by a series of reports in 1994 [8], 1996
[9] and 1997 [10]. In 2001 [11], +8 and 12p−, and in 2005
[12], −7/7q− were specifically associated with poor sur-
vival in PMF. In 2005 [13] and 2009 [14], we underlined
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the prognostic distinction between ‘abnormal’ and ‘unfa-
vorable’ karyotype. In 2010 [15], we confirmed the favor-
able (sole 20q−, 13q−, +9 abnormalities) and unfavorable
(+8 and complex karyotype) impact of specific lesions. We
validated these findings in a 2011 study [16], using 433
informative cases of PMF, and also identified sole chro-
mosome 1 translocation/duplication as favorable and −7/7q
− as unfavorable abnormalities; the particular study was
used to promote the currently employed two-tiered cyto-
genetic risk stratification in PMF: [3] unfavorable karyotype
is assigned to complex karyotype or sole or two abnorm-
alities of +8, −7/7q−, i(17q), inv(3), −5/5q−, 12p− or
11q23 rearrangement while all other scenarios, including
normal karyotype, were considered ‘favorable’ [15, 16].
Unfavorable karyotype in PMF occurs in ~14% of patients
and is associated with median survival of 2 years, compared
to 5.2 years in its absence; [16] unfavorable karyotype was
also associated with higher risk of leukemic transformation
with reported 5-year risk of 46% versus 7% in patients with
‘favorable’ karyotype [16].

The prognostic relevance of karyotype in PMF was
further highlighted by the demonstration of a dismal prog-
nosis associated with monosomal karyotype and abnorm-
alities of inv(3) and i(17q) [17]. The particular observation
suggested significant prognostic heterogeneity within the
conventional unfavorable karyotype category. At the same
time, studies in other myeloid malignancies have implicated
specific abnormalities as being responsible for the prog-
nostic relevance of broad categories such as complex or
monosomal karyotype [18, 19]. Another recent develop-
ment concerns the discovery of prognostically relevant
mutations in PMF and the prospect of their interaction with
karyotype [20]. PMF is characterized by three ‘driver’
mutations, which are often mutually exclusive and are
currently thought to be pathogenetically and prognostically
relevant: [21] JAK2, CALR and MPL. The respective
mutational frequencies of these mutations are estimated at
65, 20, and 5%, whereas 10% of patients may not express
any one of these three mutations and are accordingly
referred to as ‘triple-negative’ [21]. Other mutations of
prognostic relevance in PMF include ASXL1 and SRSF2
[20, 22]. Given the breadth of cytogenetic abnormalities in
PMF [23], and the prospect of genetically oriented prog-
nostic models [20], it is important to periodically revisit
with cytogenetic risk stratification in PMF, pending access
to higher number of informative cases.

Methods

After approval from the Mayo Clinic institutional review
board, clinical and laboratory data, including cytogenetic
information, were collected from patients at the time of

diagnosis or referral to the Mayo Clinic; the study date
spanned from 4 November 1977 through 16 April 2015.
The median time between time of cytogenetic studies and
death or last follow-up was 3.1 years with maximum
follow-up as long as 31 years; ~60% of patients were
evaluated within one year of initial diagnosis. Diagnoses of
PMF and leukemic transformation were according to World
Health Organization (WHO) criteria [24]. Cytogenetic
analysis and reporting was done according to the Interna-
tional System for Human Cytogenetic Nomenclature
(ISCN) criteria [25]. Cytogenetic analysis in all instances
was performed on fresh bone marrow aspirates, placed in
hypotonic trypsin-colcemid solution and processed accord-
ing to standard techniques for chromosome analysis using
GTL banding with trypsin and Leishman stain; we utilized
two 24-hour and 48-hour cultures without stimulation [26].
Thrombolytic agents were added to clotted bone marrow
specimens in order to improve success rates [27]. From
approximately the year 2000, the clinical laboratory has
transitioned from manual cutting of chromosomes from
Kodachrome prints to digital computer imaging.

Chromosomal abnormalities were considered clonal if
the same structural abnormality or extra chromosome
appears in at least 2 and monosomy in at least three meta-
phases. For the purposes of the current study, a minimum of
10 metaphases was analyzed before assigning a normal
karyotype status. A complex karyotype was defined as the
presence of three or more distinct structural or numeric
abnormalities. Monosomal karyotype was defined as two or
more distinct autosomal monosomies or single autosomal
monosomy associated with at least one structural abnorm-
ality [28]. Driver mutational status was classified into
favorable and unfavorable category based on the presence
or absence of type 1/like CALR mutations; [29] high
molecular risk (HMR) mutations studied in the current
report included ASXL1 and SRSF2 [20]. Driver and other
mutations were detected by Illumina platform-supported
targeted amplicon next generation or direct sequencing, as
previously described [20, 30–32].

We followed a stepwise approach (Supplemental Fig. 1),
in order to prognostically assign specific cytogenetic
abnormalities into distinct risk categories. The process first
considered sole abnormalities occurring in at least 10 inci-
dent cases and normal karyotype as the reference for sur-
vival data comparisons. Other notable but less frequent
abnormalities were then considered in the context of both
single and multiple abnormalities, in order to overcome
statistical limitations from inadequate sample size. Histor-
ical relevance was also considered in establishing opera-
tional cytogenetic groups. Overall and leukemia-free
survivals were calculated from time of referral to the Mayo
Clinic, commensurate with time of cytogenetic analysis.
Standard statistical methods were used to determine
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significance of differences among groups in the distribution
of continuous or nominal variables. Overall and leukemia-
free survival data were prepared by the Kaplan–Meier
method and compared by the long –rank test. Cox propor-
tional hazard regression model was applied for multi-
variable analysis. p−value < 0.05 was considered
significant. The Stat View (SAS Institute, Cary, NC, USA)
statistical package was used for all calculations.

Results

Patients

A total of 1002 patients with PMF (median age 65 years;
62% males) and available cytogenetic information were
considered. The study population was selected from an
initial group of 1067 patients with available cytogenetic
reports; 65 patients were excluded because they did not
meet the 10 metaphase minimum criteria for designation
of normal karyotype (n= 63) or detection of a minor t
(9;22)(q34;q11) clone (n= 2). The presenting clinical and
laboratory features of the study population, stratified by
the presence or absence of abnormal karyotype and by the
most frequent sole abnormalities are outlined in Table 1.
DIPSS risk distribution was 11% high, 43% intermediate-
2, 33% intermediate-1 and 13% low [2]. Driver muta-
tional information was available in 637 patients and
included 66% JAK2, 15% CALR type 1/like, 4% CALR
type 2/like, 5% MPL and 10% triple-negative. On infor-
mative cases, ASXL1 was mutated in 38% and SRSF2 in
14% (Table 1). Median follow-up was 3.1 years, during
which time 748 (73%) deaths, 75 (7.5%) leukemic events
and 52 (5.2%) AlloSCT were recorded. Treatment was
consistent with what was considered standard of care at
the time.

Cytogenetic findings and phenotypic correlates of
the most frequent sole abnormalities

Abnormal karyotype was reported in 449 (45%) patients.
Compared to normal karyotype (n= 553; 55%), abnormal
karyotype was associated with older age (p= 0.02), lower
hemoglobin level (p= 0.001), higher red cell transfusion
requirement (p= 0.03), lower leukocyte count (p= 0.007),
lower platelet count (p< 0.001), higher circulating blast
count (p= 0.001), higher risk DIPSS (p= 0.002), and
lower incidence of ASXL1 mutations (p= 0.01; Table 1).
Among the 449 (45%) cases with abnormal karyotype, 320
(32%) harbored sole, 68 (7%) two and 61 (6%) three or
more abnormalities; by definition, therefore, 61 (6%)
patients had complex karyotype and of these 25 (2.3%)
were classified as monosomal karyotype. The most frequent

sole abnormalities were 20q− (n= 74; ~7%), 13q− (n=
56; ~6%),+ 8 (n= 26; ~3%) and +9 (n= 14; 1.4%); less
frequent sole abnormalities included 7q− (n= 12), -Y
(n= 9) and a sex chromosome abnormality other than –Y
(n= 10). Phenotypic correlative studies involving the most
frequent sole abnormalities showed significant associations
between older age and 20q−, +9 and +8 (p= 0.03); lower
hemoglobin level and 20q− and +8 (p= 0.04); higher
leukocyte count and +9 and 13q− (p= 0.001); higher
platelet count and 13q− (p< 0.001); and ASXL1 mutations
and +9 and 20q− (p= 0.004) (Table 1).

Infrequent sole abnormalities included monosomy 7 (n
= 7), 5q− (n= 6)+ 21 (n= 5), 12p−/12p11.2 (n= 5), 11q
−/11q23 (n= 4), i(17q) (n= 4) and inv(3)/3q21 (n= 3)
abnormalities; the number of informative cases for these
infrequent abnormalities with historical relevance to prog-
nosis was higher when both single and multiple abnorm-
alities were considered: monosomy 7 (n= 18), 5q− (n=
11),+ 21 (n= 9), 12p−/12p11.2 (n= 11), 11q−/11q23 (n
= 13), i(17q) (n= 6), and inv(3)/3q21 (n= 5). Other sole
abnormalities of broader category included sole transloca-
tions/duplications of chromosome 1 (n= 21), sole translo-
cations not involving chromosome 1 (n= 25) and ‘other’
sole abnormalities that were otherwise not classified (n=
31; Table 2).

Prognostic classification of cytogenetic groups:
step 1

A stepwise approach was undertaken (Supplemental
Fig. 1), in order to prognostically classify specific cyto-
genetic abnormalities. Single abnormalities with at least
10 occurrences were initially considered; 20q− (n= 74),
13q− (n= 56), +8 (n= 26), +9 (n= 14) and 7q− (n=
12) (Table 2). Amongst these, 20q−, 13q− and +9 were
associated with survival data that was not significantly
different from that of normal karyotype (n= 553)
(Table 2; supplemental Fig. 2); the results remained
unchanged when analysis was adjusted for age. In con-
trast, survival of patients with either +8 or 7q− was
significantly worse than that seen with normal karyotype
(Table 2; supplemental Fig. 2). Age-adjusted survival data
were similar for 20q− vs 13q− vs +9 and for +8 vs 7q−
(supplemental Fig. 2). Furthermore, each one of 20q−,
13q− and +9, when compared to the combined +8/7q−
group, was associated with significantly longer survival
(Table 2). Accordingly, sole abnormalities of +8 and 7q−
were grouped together, to serve as the initial template for
‘unfavorable’ risk category, and sole abnormalities of 20q
−, 13q−, and +9 were classified with normal karyotype
to form the initial template for the prognostically superior
‘favorable’ risk category (age-adjusted p= 0.007; HR 0.6,
95% CI 0.4–0.8).
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Prognostic classification of cytogenetic groups:
step 2

We next focused on specific abnormalities that have his-
torically been marked as being particularly detrimental for
survival, including monosomy 7, inv(3)/3q21, i(17q),
11q−/11q23, and 12p−/12p11.2 (Supplemental Fig. 1)
[16, 17, 33]. Considering the relative rarity of sole occur-
rences involving these abnormalities, they were considered
in the setting of both single and multiple abnormalities, in
order to assemble eighteen cases of monosomy 7, 11 of inv
(3)/3q21 (n= 5) or i(17q) (n= 6), eleven of 12p−/12p11.2
and 13 of 11q−/11q23 (Table 2). Monosomy 7 was chosen
over monosomal karyotype after preliminary analysis con-
firmed its primary prognostic contribution to ‘monosomal’
karyotype (HR 3.4, 95% CI 1.3–8.8, compared to mono-
somal karyotype without monosomy 7).

As expected, each one of the above-listed high risk
cytogenetic categories was associated with significantly
worse survival, compared to normal karyotype, with more
than fivefold hazard ratio for inv(3)/3q21/i(17q) (HR 6.6,
95% CI 3.6–12.2), monosomy 7 (HR 6.3, 95% CI 3.8–10.4)
and 12p−/12p11.2 (HR 5.6, 95% CI 2.9–10.5; Table 2).
These latter three, but not 11q−/11q23 abnormalities, were
also associated with significantly shorter survival, compared
to the +8/7q− unfavorable risk category template (Table 2);
significance in all instances was retained when analysis was
adjusted for age. Accordingly, single/multiple abnormalities
of inv(3)/3q21, i(17q), monosomy 7 and 12p−/12p11.2
were grouped together and assigned to an operational very
high risk (VHR) category, and displayed similar survival
data when compared to each other (p= 0.8). Therefore, at
the completion of this second step process, we had estab-
lished three risk category templates: favorable (normal or
sole abnormalities of 20q−, 13q−, or +9; n= 697), unfa-
vorable (sole abnormalities of +8 or 7q−; n= 38; HR 2.2,
95% CI 1.5–3.2) and VHR (single or multiple abnormalities
of −7, inv(3)/3q21, i(17q) and 12p−/12p11.2; n= 40; HR
6.1, 95% CI 4.3–8.6) (supplemental Fig. 3).

Prognostic classification of cytogenetic groups:
step 3

For the third and final stage analysis, we organized the
remaining cytogenetic abnormalities, based on number and
type of abnormalities, historical mention and reported
relevance in other myeloid malignancies (Table 2). Sole
abnormalities of chromosome Y loss were grouped with
other sole abnormalities of a sex chromosome, in order to
offset statistical limitations from small sample size
(Table 2); of note, results of statistical calculations were
mostly unchanged when –Y was analyzed separately (data
not shown). Autosomal sole trisomies other than +9 or+ 8

(e.g., +21, +19) were considered separately from two
abnormalities and complex karyotype, including mono-
somal karyotype. Furthermore, in order to avoid con-
founding from prognostic contribution of a VHR
abnormality (i.e., −7, inv(3)/3q21, i(17q), 12p−/12p11.2),
complex and monosomal karyotype groups, as well as the
‘two abnormalities’ group, were required not to include
cases with VHR abnormalities (Table 2).

Each one of the above-listed operational cytogenetic
groups was subsequently compared to normal, unfavorable
and VHR cytogenetic risk templates, in order to determine
its best-fit category. Based on results obtained and outlined
in Table 2, risk allocations were straightforward for sole
chromosome 1 translocations/duplications (favorable risk),
sole sex chromosome abnormalities including –Y (favorable
risk), sole translocations not involving chromosome 1
(unfavorable), other sole abnormalities not otherwise clas-
sified (unfavorable) and non-monosomal and complex kar-
yotypes without VHR abnormality (unfavorable) (Table 2).
Also, careful inspection of hazard ratios (HR) and 95%
confidence limits (CI) favored placement of monosomal
karyotype without VHR abnormality into the unfavorable
risk category (Table 2).

Risk assignment for the remaining cytogenetic groups
was more complicated and required further analysis; initi-
ally, based on HR and 95% CI inspections (Table 2), we
grouped sole autosomal trisomies (e.g., +21, +19) and
single/multiple 11q−/11q23 abnormalities together in a
‘provisional VHR’ category; similarly, ‘two abnormalities’
without VHR abnormality and single/multiple abnormalities
of 5q− were grouped together in a ‘provisional unfavorable’
category (Fig. 1). Survival re-analysis that accounted for
these provisional risk groups revealed significantly shorter
survival when ‘provisional unfavorable’ group was com-
pared to favorable risk group (HR 1.4, 95% CI 1.0–1.8; p=
0.035) and similar survival data when compared to unfa-
vorable risk group (HR 1.2, 95% CI 0.9–1.8; p= 0.12).
Similarly, provisional VHR group displayed significantly
worse survival, when compared to unfavorable risk group
(HR 2.0, 95% CI 1.3–3.1; p= 0.0008) and similar survival
data, when compared to VHR group (p= 0.08; HR 1.6,
95% CI 0.9–2.7). Accordingly, it was decided to list sole
autosomal trisomies other than +8 and +9 and single/
multiple 11q−/11q23 abnormalities in the VHR group, and
‘two abnormalities’ without VHR abnormality and single/
multiple abnormalities of 5q−, in the unfavorable risk
group.

Final risk assignment in the revised three-tiered
cytogenetic risk model

Based on the above elaborated survival analysis, the fol-
lowing cytogenetic abnormalities were classified into the
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revised ‘favorable’ cytogenetic risk category: normal kar-
yotype and sole abnormalities of 20q−, 13q−, +9, chro-
mosome 1 translocation/duplication and sex chromosome
abnormality including –Y (n= 737); the following
abnormalities were assigned to the revised ‘VHR’ cytoge-
netic risk category: single/multiple abnormalities of −7, inv
(3)/3q21, i(17q), 12p−/12p11.2, 11q−/11q23 and auto-
somal trisomies (e.g., +21, +19) other than +8 or +9 (n=
75); all other abnormalities were assigned to the ‘unfavor-
able’ risk category (n= 190; Table 3; Fig. 2). By compar-
ison, according to the conventional two-tiered cytogenetic
risk model [3], 269 cases belonged to the unfavorable risk
category; among them, 75 (28%) were reassigned to the
revised VHR and 4 (1.5%) to favorable risk category.

Overall and leukemia-free survival analysis

Survival data stratified by the new revised cytogenetic risk
stratification are depicted in Fig. 2 and demonstrate the
adverse impact of VHR, compared to both unfavorable (HR
2.2, 95% CI 1.6–3.0) and favorable (HR 3.8, 95% CI,
2.9–4.9; p< 0.0001) risk categories, and that of unfavor-
able, compared to favorable (HR 1.7, 95% CI 1.4–2.0; p<
0.0001) risk category. Multivariable analysis confirmed the

independent prognostic contribution of the revised cytoge-
netic risk model in the context of DIPSS (HR 2.9; 95% CI
2.2–3.7 for VHR and 1.6, 1.3–1.9 for unfavorable), driver
mutational status (HR 4.5, 95% CI 3.2–6.4 for VHR and
1.6, 1.3–2.1 for unfavorable), and HMR (i.e., ASXL1/
SRSF2) mutations (HR 4.3, 95% CI 2.8–6.7 for VHR and
2.3, 1.7–3.0 for unfavorable); an all-inclusive multivariable
analysis found the revised cytogenetic risk model, DIPSS,
driver mutational status and HMR mutations to predict
shortened survival, independent of each other: HRs (95%
CI) were 4.1 (2.6–6.5) for VHR, 2.3 (1.7–3.1) for unfa-
vorable, 2.6 (1.9–3.6) for absence of type 1/like CALR, 1.9
(1.5–2.4) for HMR mutations, 7.7 (4.3–13.9) for DIPSS
high, 5.8 (3.5–9.7) for DIPSS intermediate-2 and 3.1
(1.9–5.2) for DIPSS intermediate-1.

The adverse impact of driver mutational status (i.e., type
1 CALR mutation absent vs present) was most evident in
patients with favorable karyotype (Fig. 3a; HR 3.2, 95% CI
2.1–4.7; p< 0.0001) and not apparent in those with VHR
(HR 1.1; 95% CI 0.5–2.5; p= 0.77) or unfavorable risk
category (HR 1.5, 95% CI 0.8–2.8; p= 0.22). Similarly, the
adverse impact of HMR mutations was evident in patients
with favorable (HR 2.4, 95% CI 1.8–3.1; p< 0.0001) or
unfavorable (HR 2.4, 95% CI 1.4–4.1; p= 0.002)
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Fig. 1 Overall survival of 1002 patients with primary myelofibrosis stratified by more definitive and provisional cytogenetic risk categories
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karyotype but not in those with VHR (HR 1.4, 95% CI
0.6–3.2; p= 0.47) karyotype (Fig. 3b).

The revised cytogenetic risk model was also effective in
predicting leukemic transformation (HR 4.4, 95% CI
2.0–9.4 for VHR and 2.0, 1.2–3.4 for unfavorable; Sup-
plemental figure 4), independent of other recognized risk
factors for leukemia-free survival, including presence of
HMR mutations, thrombocytopenia and DIPSS; during an
all-inclusive multivariable analysis that included all of these
risk factors, DIPSS lost its significance whereas VHR (HR
3.0, 95% CI 1.01–9.0), unfavorable risk (HR 2.0, 95% CI

1.01–4.0), HMR mutations (HR 2.6; 95% CI 1.5–4.7) and
platelet <100× 10(9)/l (HR 2.1, 95% CI 1.2-3.9) retained
their significance.

Discussion

The prognostic value of karyotype in myeloid malignancies
is well recognized and integrated into formal prognostic
models [34–36]. Prognostically relevant cytogenetic
abnormalities in other myeloid malignancies do not always

Table 3 Revised cytogenetic risk stratification for primary myelofibrosis

Cytogenetic risk category Specific abnormalities Median survival

Favorable risk Normal karyotype Sole 20q− Sole 13q− Sole +9 Sole –Y Sole sex chromosome abnormality Sole
chromosome 1 translocation/duplication

4.4 years

Unfavorable risk Sole +8 Sole 7q− Sole translocations not involving chromosome 1 Two abnormalities not
including a VHR abnormality Single/multiple 5q− abnormalities Complex karyotype without a
VHR abnormality Monosomal karyotype without a VHR abnormality Sole abnormalities not
otherwise classified

2.9 years

Very high risk (VHR) Single/multiple monosomy 7 Single/multiple inv(3)/3q21 abnormalities Single/multiple i(17q)
abnormalities Single/multiple 12p−/12p11.2 abnormalities Single/multiple 11q−/11q23
abnormalities Single/multiple autosomal trisomies other than +8 or +9 (e.g., +21, +19)

1.2 years
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Fig. 2 Overall survival of 1002 patients with primary myelofibrosis stratified by the revised three-tiered cytogenetic risk model
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signify similar risk in PMF. For example, 11q− and 12p−
abnormalities have been associated with good or very good
risk disease in myelodysplastic syndromes (MDS) [35],
while they were flagged as VHR abnormalities in PMF.
Similarly, other VHR abnormalities in PMF, including i(17)
(q10), +21 and +19, were classified as being intermediate
risk in MDS [35]. On the other hand, monosomy 7 and inv
(3)(q21.3q26.2)/t(3;3)(q21.3;q26.2) were associated with
VHR/poor risk and +8 with unfavorable/intermediate risk
disease, in both PMF and MDS, as well as in acute myeloid
leukemia (AML) [35, 36]. The current study suggests that
broad categories such as ‘complex’ or ‘monosomal’

karyotype do not necessarily imply dismal outcome if one
were to account for more specific abnormalities associated
with very high risk disease, which in the case of PMF
included monosomy 7, i(17)(q10), inv(3)/3q21 and 12p
−/12p11.2. The particular concept was recently examined
in patients with AML where the prognostic relevance of
monosomal karyotype was ascertained in a less complex
setting and where monosomy 17 and other specific mono-
somies might have accounted for the adverse prognosis
attached to monosomal karyotype [18, 37].

The current study reveals that more than a quarter of
PMF patients currently belonging to ‘unfavorable’
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cytogenetic risk category harbor VHR abnormalities, which
downgrades their prognosis significantly. In this regard, it is
important to note that most of the specific abnormalities
currently included in the unfavorable risk category con-
stituted VHR lesions, including single/multiple abnormal-
ities of i(17q), inv(3), 12p− and 11q23; [3] on the other
hand, +8, 7q−, and 5q− abnormalities remained in the
unfavorable category in the revised risk model, along with
complex karyotype without VHR abnormality. Single/
multiple abnormalities of monosomy 7 were shown to exert
a significantly worse prognosis, compared to otherwise
monosomal karyotype without VHR abnormality; the for-
mer was accordingly included in the VHR and the latter in
the unfavorable risk categories. The current study identified
autosomal trisomies, including +21 and +19, to be parti-
cularly detrimental to survival, and worthy of inclusion in
the VHR category. The distinction between VHR and
unfavorable karyotype is practically relevant in terms of
both personalized disease prognostication and treatment
decision-making; in the latter regard, the presence of VHR
karyotype alerts the patient and their physician regarding
the urgency to pursue more aggressive treatment approa-
ches, such as AlloSCT, whereas the same might not be true
for unfavorable karyotype that is not accompanied by other
prognostically adverse mutations, such as ASXL1 and
SRSF2. The revised cytogenetic risk model refines the
favorable risk category by limiting it to specific abnormal-
ities with survival impact that is not significantly different
than that seen with normal karyotype: single abnormalities
of 20q−, 13q−, +9, chromosome 1 translocation/duplica-
tion and sex chromosome abnormality including –Y.

The current study is unique in regards to its sample size
(n= 1002), maturity of survival data (73% of patients
were followed till time of death) and availability of other
genetic information, which allowed assessment of prog-
nostic interaction between karyotype and mutations. In
this regard, it was particularly noteworthy to find the
survival impact of driver mutations being confined to
patients with favorable karyotype and that of HMR
mutations to patients with either favorable or unfavorable
karyotype. In other words, the presence of a VHR cyto-
genetic abnormality superseded the prognostic contribu-
tion of both driver and HMR mutations while patients
with favorable karyotype were the most susceptible in this
regard. Taken together, the current study clarifies the
hierarchy of prognostic contribution from genetic markers
and confirms the inter-independent prognostic contribu-
tion of a newly revised three-tiered cytogenetic risk stra-
tification, driver mutational status, HMR mutations and
clinically derived prognostic scoring systems. These
observations support the development of comprehensive
prognostic tools that integrate these variables and there-
fore facilitate the process of risk-appropriate treatment

selections. Finally, it is important to recognize the lim-
itations in the current study design that include prior
assumptions of adverse cytogenetic and mutation
abnormalities and the fact that information on relevant
mutations was neither comprehensive nor complete.
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