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Background: Heart rate variability (HRV) is an indicator of dynamic adaptability of the 
autonomic nervous system. Few interventions target upstream, cerebral cortex com-
ponents of the heart–brain system for autonomic management. We report changes in 
HRV and baroreflex sensitivity (BRS), associated with use of a noninvasive, closed-loop, 
allostatic, computer-guided, acoustic stimulation neurotechnology.

Methods: Over 5 years, 220 subjects with heterogeneous neurological, cardiovascular, 
and psychophysiological conditions consecutively enrolled in a naturalistic, single-arm 
study exploring clinical effects associated with use of the neurotechnology. Of those, 
202 completed the study protocol and 160 had recordings adequate to analyze HRV 
and BRS. Mean age was 44.0 (SD 19.4), with 130 women. Participants received a 
mean of 16.1 (5.2) sessions, over 24.2 days (23.3), with 9.5 (3.8) actual intervention 
days. Sessions included real-time analysis of brain electrical activity and software algo-
rithm-guided translation of selected frequencies into patterns of acoustic stimulation 
(audible tones of variable pitch and timing), to facilitate auto-calibration of neural oscilla-
tions. Outcomes including 10-min supine, at-rest recordings of blood pressure and heart 
rate, and inventories for insomnia (ISI) and depression (CES-D or BDI-II), were obtained 
at baseline and 15.3 (16.7) days after the last session.

results: Compared to baseline, significant increases (all p < 0.001) were observed 
for measures of HRV across all participants including the mean percentage change for 
SDNN 24.2% (SE 0.04), and RMSSD, 42.2% (0.08), and BRS [Sequence Up, 55.5% 
(0.09), Sequence Down, 77.6% (0.23), and Sequence All, 53.7% (0.07)]. Significant 
improvements were noted in SAP, MAP, and DAP, as well as natural log of HF, and 
total power. Self-reported ISI was reduced (ISI, −6.4 points, SD 5.6, p  <  0.001). 
The proportion reporting clinically significant depressive symptoms reduced from 
48.2% at baseline to 22.1% at follow-up. Linear regression showed that rightward 
asymmetry predicted lower SDNN (p = 0.02). Exploratory analysis showed a trend 
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for improved balance of temporal lobe high-frequency amplitudes over the course of 
initial sessions.

conclusion: These findings indicate that use of a noninvasive, allostatic, closed-loop 
neurotechnology appears to have robust potential for public health efforts to support 
greater flexibility in autonomic cardiovascular regulation, through self-optimization of 
electrical activity at the level of the brain.

Keywords: neurotechnology, allostasis, heart rate variability, acoustic stimulation, baroreflex sensitivity, closed-
loop, neural oscillations, hirreM

inTrODUcTiOn

Numerous studies have shown that heart rate variability (HRV) 
is a useful physiological indicator of dynamic adaptability in the 
autonomic nervous system. In adults, low HRV is a risk factor for 
adverse cardiovascular outcomes (1, 2), new onset of diabetes (3), 
progression of chronic kidney disease (4), and all-cause mortal-
ity (5). The ubiquity of diminished HRV in behavioral health 
disorders has led to its proposal as a transdiagnostic biomarker 
for psychopathology (6). As a measure that can be obtained 
easily and noninvasively, HRV merits serious consideration as a 
target for observation and intervention on a public health basis 
(7). Furthermore, attention to HRV may support the progress of 
advanced practices which are beneficial for both physical and 
mental health or adaptive neurovisceral integration (8).

A wide variety of behavioral, physical exercise, and phar-
macological therapies have been shown to increase HRV (9). 
Especially for interventions that entail relatively non-specific 
features, it seems likely that effects will depend on the capacity to 
influence both central and peripheral nervous system pathways. 
An intriguing question is whether focused engagement of critical 
central structures, especially those known to have specific roles for 
autonomic management, may be a way to produce more efficient 
or pronounced effects on HRV. For example, the bihemispheric 
autonomic model for management of traumatic stress (BHAM) 
begins with recognition that the right and left hemispheres are 
primarily responsible for cortical management of the sympathetic 
and parasympathetic divisions, respectively (10). The BHAM sug-
gests that temporal lobe electrical asymmetry may be an indica-
tion of traumatic stress exposure, associated with health effects 
including reduced HRV, and the model proposes that intervention 
to reduce asymmetrical activity may be a way to facilitate a state of 
enhanced autonomic regulation, including increased HRV.

High-resolution, relational, resonance-based, electroen-
cephalic mirroring (HIRREM®, Brain State Technologies, 
Scottsdale, AZ, USA), is a noninvasive, closed-loop, allostatic, 
acoustic stimulation neurotechnology (11), that is designed to 
facilitate auto-calibration of neural oscillations. The HIRREM 
brainwave mirroring interventional strategy aims to facilitate 
more adaptive forms of symmetry at the temporal lobes and 
other cortical regions. HIRREM is aligned with the BHAM as 
well as the broader physiological paradigm of allostasis (stability 
through change), which recognizes the brain as the organ of the 
central command (12). As a closed-loop neurotechnology (i.e., 
an intervention whose inputs are objectively measured real-time 

neurological data), HIRREM is not intended to depend on con-
scious, cognitive activity, volitional self-regulation, or behavioral 
monitoring.

The primary objective of this report is to summarize changes in 
measures of HRV and baroreflex sensitivity (BRS), as well as self-
reported symptoms of insomnia (ISI) and depression, in a large, 
consecutively enrolled, heterogeneous population of subjects 
who undertook use of HIRREM. Subsets of these data have been 
presented earlier for patients with menopausal hot flashes (13), 
postural orthostatic tachycardia syndrome (14), sport-related 
concussion (15), and post-traumatic stress (16). The secondary 
objective is to explore the potential role of temporal lobe high fre-
quency patterns of change in temporal lobe asymmetry that were 
expressed over the course of the initial five sessions of HIRREM.

MaTerials anD MeThODs

Population and subject recruitment
Participants were drawn from among those enrolled between 
07/16/2012 and 08/05/2016, in a single site, IRB-approved, open 
label exploratory study to evaluate the feasibility and effects of 
HIRREM for individuals with one or more diverse neurological, 
cardiovascular, or psychophysiological conditions (ClinicalTrials.
gov NCT02709369). The study was carried out in the Department 
of Neurology at the Wake Forest School of Medicine, Winston-
Salem, NC, USA. Participants were identified by clinician referral 
or informal networks, and all provided informed consent. Those 
unable to provide informed consent, attend study visits, or sit 
comfortably in a chair were excluded, as were those with bilateral 
total hearing loss, known seizure disorders, or ongoing use of 
benzodiazepines, opiate, or anti-psychotic medications.

Following informed consent, participants completed a set of 
outcome measures (below) before beginning their series of in-
office HIRREM sessions, which were all conducted at the clinical 
study site (details below). Post-intervention outcome measures 
were repeated at a time following completion of the HIRREM 
sessions that was convenient for the subject, preferably within 
2 weeks of the last session.

assessment of hrV and Brs
Continuous recordings of blood pressure (BP) and heart rate 
(HR) were acquired from noninvasive finger arterial pres-
sure measurements and electrocardiogram for a minimum of 
10-min in subjects lying down quietly, supine, breathing freely. 
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Recordings were obtained at the enrollment visit, approximately 
30 min before the HIRREM assessment, and at the follow-up 
visit after completion of the HIRREM intervention. Systolic, 
diastolic, and mean arterial BP, as well as beat-to-beat RR 
interval files generated via the data acquisition system (BIOPAC 
acquisition system and Acknowledge 4.2 software, Santa 
Barbara, CA, USA) at 1,000 Hz were analyzed using Nevrokard 
SA-BRS software (by Nevrokard Kiauta, d.o.o., Izola, Slovenia). 
Evaluation included measures of BRS including Sequence UP, 
DOWN, and ALL, and HRV in both the time and frequency 
domains. All recordings were visually inspected, and the 
first 5  min of usable tracings were analyzed using Nevrokard 
Software to identify R waves from the ECG and BP tracing fol-
lowed by subsequent determination of HRV and BRS in both 
time and frequency domains. The primary frequency domain 
variables of interest were low-frequency (LF) power, and high-
frequency (HF) power, the ratio of LF to HF (LF/HF), and the 
total power determined from power spectral analysis using fast 
Fourier transformations (Hamming window) with band widths 
0.04–0.15 and 0.15–0.40  Hz for LF and HF, respectively. The 
HF is believed to reflect parasympathetic modulation of HR. 
And the LF and the LF/HF are commonly used to reflect sympa-
thetic regulation and sympathovagal balance, respectively. The 
primary time domain variables of interest were the SD of all R 
to R intervals, commonly reported as N to N intervals (SDNN), 
the square root of the mean of sum of squares of differences in 
successive N to N intervals (rMSSD). For all of these variables, 
a higher value suggests greater HRV. Recordings with dropped 
beats or gross motion artifact were excluded from analysis.

self-report Measures for symptoms of isi 
and Depressive Mood
The ISI is a 7-item survey that assesses the severity, nature, 
and impact of ISI symptoms on quality of life over the previ-
ous 2 weeks (17). It is scored on a 5-point Likert scale from 0 
(no problem) to 4 (very severe problem) on a composite score 
range from 0 to 28. Composite scores can be stratified into the 
following clinical severities of ISI: absence (0–7), sub-threshold 
(8–14), moderate (15–21), and severe (22–28) (18). The ISI’s 
internal consistency was found to be 0.74 and a correlation with 
sleep diaries was also established. Depressive mood was meas-
ured by the CESD (19) and the BDI-II (20), over the period of 
the study. Severity of depressive symptomatology was measured 
dichotomously, using scores of 16 or greater for the CES-D and 
14 or greater for the BDI-II.

hirreM intervention
Process and procedures for provision of HIRREM have been 
discussed in detail previously (11). The initial brainwave assess-
ment consisted of two-channel recordings of brain electrical 
activity from at least six paired locations on the scalp (F3/F4, 
C3/C4, T3/T4, P3/P4, FZ/OZ, and O1/O2), with the recipient at 
rest and while carrying out a task, using sensors and amplifiers 
(Brain State Technologies, Scottsdale, AZ, USA) that sample at 
256  Hz. At each location, data were recorded for 1  min each 
with eyes closed, eyes partially open as a transition in state of 

arousal, and eyes open while engaging with a mental task (e.g., 
reading numbers, performing mental calculations, etc.). Trained 
technologists evaluated assessment data to choose protocols for 
the initial HIRREM session.

Intervention protocols included recording brain electrical 
activity through generally two channels, with scalp sensors placed 
at homologous regions of the hemispheres according to the 10–20 
International EEG system. In real-time, software algorithms ana-
lyzed specific ranges of the brain electrical frequency spectrum, 
identified dominant frequencies on the basis of proprietary 
mathematical formulae, and translated those frequencies to 
acoustic stimuli (audible tones of variable pitch and timing). The 
tones were presented to participants through standard earphones 
(Creative EP-630 or Sony Stereo Headphones MDR-EX58V) with 
as little as an 8-ms delay. Volume (decibels) of acoustic stimula-
tion was adjusted by each participant in accordance with their 
preference.

The HIRREM sessions were scheduled to maximize frequency 
and efficiency with participants generally completing two sessions 
in a half day, separated by a break of 20–30 min. Each HIRREM 
session (approximately 90 min each) consisted of 3–10 HIRREM 
protocols addressing different locations (3–40 min each), some 
done with eyes closed and some with eyes open, with the partici-
pant being asked to relax while sitting or reclining comfortably 
in a zero-gravity chair. Specific protocols for successive HIRREM 
sessions were chosen based on brain electrical data from the 
preceding session, which for purposes of technologist review 
was aggregated in broad-band frequency ranges (<1.0, 1.0–3.0, 
3.0–5.5, 5.5–7.5, 7.5–10.0, 10.0–12.0, 12.0–15.0, 15.0–23.0, 
23.0–36.0, 36.0–48.0 Hz). Special attention was given to activity 
set points suggestive of dominant hemispheric asymmetries and/
or suboptimal ratios of energy across the frequency spectrum. 
Algorithms are designed to support de-establishment of relatively 
invariant and potentially maladaptive activity patterns. The deci-
sion for the total number of sessions to be received was based 
on impressions of clinical improvement or plateau, including 
evaluation of the participants’ brain pattern evolution over the 
course of their sessions, as well as the participants’ schedules and 
preferences. All participants continued with their usual medical 
or behavioral care.

Main statistical analyses
All pre- to post-intervention comparisons for autonomic and 
self-report measures were conducted with Excel, using paired 
t-tests. Variability estimates for time domain measures of HRV, 
BRS, BP, and self-report inventories were generated as SDs or 
SEs. Spectral measures of HRV (LF, HF, and total power) were 
evaluated as natural logarithms.

exploratory analyses of Temporal lobe 
electrical asymmetry
A HF (23–36 Hz) band was selected and filtered as the range of 
interest for analysis on the basis that activity in this range may 
be taken as an indication of cortical activation (21). Electrical 
amplitudes (microvolts) in this range were aggregated as a 
HF band average. The HIRREM approach is designed to be 
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TaBle 1 | Self-reported health conditions of study participants.

condition number of participants 
(percent of n = 202)

ADD/ADHD 28 (13.86)
Chronic fatigue 22 (10.89)
Chronic pain 32 (15.84)
Concussion/traumatic brain injury 62 (30.69)
Depression 74 (36.63)
Headaches 84 (41.58)
Hot flashes 44 (21.78)
Hyperlipidemia 25 (12.38)
Hypertension 38 (18.81)
Insomnia 87 (43.07)
Migraines 65 (32.18)
PTSD 29 (14.36)
Stress/anxiety 84 (41.58)

FigUre 1 | Study participant flow.
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insensitive to recording artifacts (11). To be consistent with the 
procedural needs of a point-of-care intervention in a resource-
sensitive context, no attempt was made to identify sub-epochs 
of data that may have reflected noncortical factors (e.g., eye 
blinks or muscular contractions). A temporal lobe HF electrical 
asymmetry percentage score (eyes closed) was calculated for each 
subject by subtracting the value for the HF band average at T3 
from the value at T4 and dividing by the lesser of the two, yielding 
a positive score for rightward (T4) asymmetry. Scalp-measured 
temporal lobe electrical asymmetry has been proposed as a way to 
assess autonomic tendencies (22) because temporal regions have 
relative proximity to the insular cortices, which show a division of 
labor for management of the autonomic nervous system (23, 24).

Evaluation for a potential relationship between temporal 
lobe HF asymmetry and SDNN was conducted through a linear 
regression that tested whether baseline HF asymmetry was a 
predictor of SDNN. An additional model was tested that included 
age, gender, current beta-blocker usage, and the revised Charlson 
comorbidity score (25) as covariates.

Evaluation of change in asymmetry over the first five HIRREM 
sessions at the bilateral temporal lobes was conducted through 
an exploratory analysis based on the slope of fitted trend lines 
for changing asymmetry scores at the start of those succes-
sive sessions. Subjects were categorized based on their initial 
temporal lobe dominance shown during their assessment (eyes 
closed). Rightward dominance was defined as temporal lobe HF 
asymmetry of 10% or greater; leftward dominance was defined 
as asymmetry of −10% or lesser; and symmetry was defined as 
between −10 and 10%. Except for the first 15-s epoch, data from 
the first 7 min for each of the first five sessions were analyzed to 
produce 27 serial asymmetry scores per session (15 s per epoch), 
which were averaged across all subjects for each dominance 
group. To assess whether the fitted lines reflected a tendency for 
change in asymmetry score, a mixed model F-test was performed 
on each slope (SAS, Cary, NC, USA) to account for within-subject 
temporal correlation, with the null hypotheses being that the 
slope was 0.

resUlTs

A summary of the flow for participant recruitment, screening, 
enrollment, intervention usage, and follow-up is shown in 
Figure 1. At the screening stage, the need for ongoing usage of 
a benzodiazepine, opioid, or anti-psychotic medication was the 
most common reason for ineligibility. Sixty-four percent of the 
enrolled subjects were women, mean age was 44.0 (SD 19.4, range 
13–83). Mean score on the Charlson comorbidity index was 0.9 
(SD 1.1, range 0–8), and Table 1 provides a listing of comorbid 
health conditions that subjects reported. Clinical diagnoses 
which subjects gave as their primary motivations for enrolling in 
the study were ISI (26.7%), traumatic brain injury or concussion 
(15.8%), menopausal hot flashes (8.9%), post-traumatic stress 
(8.9%), migraine or headache (7.4%), postural orthostatic tachy-
cardia syndrome (5.0%), or other conditions including anxiety 
or depression, fatigue or burnout, cancer recovery, autonomic or 
neurological disorders, and others (27.2%). Participants received 
a mean of 16.1 (SD 5.2) HIRREM sessions, and there was a mean 

of 15.3 (16.47) days between the last session and the follow-up 
visit. There were no serious adverse events reported.

Figure 2 shows percentage changes for measures of HRV in 
the time domain and BRS, and Figure 3 shows pre- and post-
intervention values for frequency domain HRV measures and 
BP, before and after usage of HIRREM (n = 160). This included 
significant changes in measures of HRV (p  <  0.001 for these 
measures) across all participants including the mean percentage 
change for SDNN 24.2% (SE 0.04), and RMSSD, 42.2% (0.08), and 

https://www.frontiersin.org/Public_Health
https://www.frontiersin.org
https://www.frontiersin.org/Public_Health/archive


FigUre 2 | Post-interventional changes in heart rate variability and baroreflex sensitivity on percentage basis. Bars indicate ± SEs for the average percent 
changes. All changes were statistically significant at p < 0.001 except the following, for men: RMSSD, SBP DOWN, SBP ALL (p < 0.01 for each), and SBP UP 
(p = 0.02).

FigUre 3 | Pre- and post-interventional values for spectral measures of heart rate variability, and blood pressure. Values for low frequency (LF), high frequency (HF), 
and total power are given as natural logarithms of the absolute values. Values for systolic, diastolic, and mean arterial pressure are given as millimeters of mercury. 
Single asterisk indicates 0.1 ≤ p ≤ 0.05; double asterisks indicate p < 0.01.
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TaBle 3 | Heart rate variability (HRV), baroreflex sensitivity, and blood pressure changes by quartile of low-frequency (LF) power.

Quartile 1 Quartile 2 Quartile 3 Quartile 4

V1 V2 V1 V2 V1 V2 V1 V2

Ln LF 4.3 5.0 5.8 6.0 6.6 6.6 7.8 7.5
Ln HF 4.3 4.9 5.4 5.5 6.2 6.2 7.1 7.3
Ln TP 5.2 5.7 6.4 6.5 7.2 7.2 8.3 8.2
UP SBP 8.2 (5.6) 10.8 (7.1) 10.9 (6.5) 16.3 (10.2) 17.3 (9.1) 20.0 (14.8) 26.0 (14.8) 31.4 (15.1)
DOWN SBP 8.5 (4.7) 11.7 (7.1) 11.6 (6.6) 15.7 (8.8) 16.2 (8.9) 18.8 (14.0) 21.6 (10.0) 31.5 (19.7)
ALL SBP 7.9 (4.5) 11.3 (6.6) 11.1 (5.7) 15.6 (8.7) 16.4 (8.0) 20.2 (14.3) 24.0 (11.2) 32.2 (17.0)
SDNN 24.7 (9.9) 33.6 (17.0) 36.2 (7.9) 42.4 (17.0) 47.0 (13.3) 52.3 (21.2) 69.4 (17.8) 79.9 (21.6)
RMSSD 18.1 (12.5) 26.8 (18.4) 24.6 (11.7) 32.9 (21.3) 37.3 (18.2) 40.9 (21.8) 61.8 (23.7) 71.6 (30.5)
Heart rate 72.2 (17.5) 69.6 (9.4) 70.9 (11.1) 70.7 (11.6) 70.7 (9.2) 71.3 (10.4) 59.3 (8.4) 59.3 (7.8)
SAP 127.8 (18.5) 125.8 (15.2) 126.3 (19.7) 119.1 (19.4) 122.1 (16.4) 119.7 (15.4) 120.0 (20.0) 119.2 (17.3)
MAP 95.3 (18.5) 92.9 (10.5) 94.9 (11.7) 89.9 (12.0) 91.6 (12.3) 88.9 (10.2) 90.4 (13.4) 87.4 (8.4)
DAP 78.0 (9.9) 75.4 (9.9) 77.9 (9.7) 75.1 (11.1) 76.1 (11.5) 73.3 (10.5) 75.0 (11.9) 71.3 (8.9)

Pre- and post-intervention values are shown for subjects with lower (quartiles 1 and 2) and higher (quartiles 3 and 4) baseline levels of LF HRV power. LF, high frequency, and 
total power values are shown as natural logarithms of the absolute power values. SDs are indicated in parentheses. Statistically significant differences between pre- and post-
interventional values are shown with colored font (blue for 0.01 ≤ p ≤ 0.05; red for p < 0.01).

TaBle 2 | Heart rate variability, baroreflex sensitivity, and blood pressure changes by quartile of SDNN.

Quartile 1 Quartile 2 Quartile 3 Quartile 4

V1 V2 V1 V2 V1 V2 V1 V2

Ln LF 4.6 4.9 5.8 6.0 6.5 6.7 7.6 7.4
Ln HF 4.1 4.7 5.6 5.6 6.1 6.2 7.2 7.3
Ln TP 5.2 5.6 6.5 6.6 7.1 7.2 8.3 8.2
UP SBP 6.7 (4.4) 9.9 (5.7) 11.9 (5.6) 16.8 (10.5) 15.0 (7.8) 19.2 (12.3) 28.6 (13.8) 32.6 (16.1)
DOWN SBP 7.3 (3.4) 10.1 (6.1) 12.9 (7.4) 16.1 (8.5) 14.2 (6.8) 19.4 (11.3) 23.4 (9.7) 32.2 (20.8)
ALL SBP 6.5 (2.8) 10.1 (5.5) 12.2 (5.3) 16.1 (8.7) 14.4 (6.6) 19.7 (12.1) 26.1 (10.2) 33.4 (17.6)
SDNN 21.6 (5.8) 30.8 (15.8) 35.7 (3.3) 42.8 (16.2) 46.6 (4.3) 53.9 (16.0) 73.5 (14.8) 80.6 (24.0)
RMSSD 12.9 (5.0) 24.3 (19.4) 26.2 (9.4) 31.3 (17.0) 37.0 (13.8) 42.3 (18.6) 65.6 (21.9) 74.2 (30.0)
Heart rate 72.8 (11.0) 70.8 (9.8) 72.1 (17.8) 71.3 (11.0) 67.2 (8.3) 68.2 (10.6) 61.0 (9.8) 60.6 (9.3)
SAP 128.5 (18.4) 124.9 (15.6) 122.9 (18.4) 117.0 (16.8) 127.1 (19.2) 125.1 (18.4) 117.7 (18.0) 116.9 (15.6)
MAP 96.7 (11.4) 93.2 (10.2) 92.1 (11.6) 88.8 (11.1) 94.9 (11.7) 90.9 (10.4) 88.5 (13.7) 86.2 (8.9)
DAP 79.5 (9.0) 76.2 (8.7) 76.2 (10.4) 74.5 (10.7) 77.7 (10.1) 74.0 (11.0) 73.6 (12.8) 70.4 (9.4)

Pre- and post-intervention values are shown for subjects with lower (quartiles 1 and 2) and higher (quartiles 3 and 4) baseline levels of SDNN. Low frequency, high frequency, and 
total power values are shown as natural logarithms of the absolute power values. SDs are indicated in parentheses. Statistically significant differences between pre- and post-
interventional values are shown with colored font (blue for 0.01 ≤ p ≤ 0.05; red for p < 0.01).
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BRS [Sequence Up, 55.5% (0.09), Sequence Down, 77.6% (0.23), 
and Sequence All, 53.7% (0.07)]. Significant improvements were 
also noted in SAP, MAP, and DAP, as well as natural log of HF, 
and total power. The baseline value for SDNN across all subjects 
was 44.1 (SD 20.8), and it was 52.0 (SD 25.9) at the follow-up 
visit. Pre- and post-intervention values for the measures when 
participants were stratified according to their baseline value for 
SDNN and LF power are shown in Tables 2 and 3, respectively. 
On average, all baseline SDNN quartiles showed improvements 
in SDNN and BRS. Those in the lowest quartile for LF power 
showed an increase in their mean LF power, and those in the 
highest group showed a decrease. Mean change in the ISI was 
−6.4 points (SD 5.6, p < 0.001), and the proportion of subjects 
in different clinical categories of ISI symptom severity before and 
after the intervention are shown in Figure 4. At baseline, 48.2% of 
subjects reported clinically significant levels of depressive mood, 
while 22.1% did so at follow-up.

Result of a linear regression to explore for the contribution of 
temporal lobe HF electrical asymmetry toward SDNN is shown in 

Figure 5. Rightward asymmetry was a predictor of lower SDNN (β 
coefficient = −6.5, p = 0.023). In a model for SDNN that included 
age, gender, beta-blocker usage, and Charlson comorbidity score 
as covariates, the relationship between temporal lobe HF asym-
metry was increased (β = −8.1, p = 0.002). Figure 6 shows the 
average temporal lobe HF asymmetry values for the first 7 min 
of each of the first five HIRREM exercises at the temporal lobes 
(concatenated), when subjects were categorized according to 
their asymmetry status as measured during the baseline assess-
ment. For subjects who were rightward or leftward dominant at 
baseline, the slopes of their trend lines for their asymmetry scores 
over those sessions were negative and positive, respectively; how-
ever, analysis did not indicate a statistically significant likelihood 
of these slopes being non-zero.

DiscUssiOn

This report summarizes main findings from an ongoing prospec-
tive, single-arm study involving usage of a closed-loop, allostatic 

https://www.frontiersin.org/Public_Health
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FigUre 4 | Proportions of subjects reporting different levels of insomnia (ISI) symptom severity. Categorizations are based on self-reported scores on ISI.
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FigUre 5 | Relationship between baseline temporal lobe high frequency (HF) asymmetry and SDNN. Horizontal axis indicates temporal lobe HF asymmetry score, 
with positive scores indicating rightward asymmetry and negative scores indicating leftward asymmetry.
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neurotechnology. At a follow-up visit that occurred on average 
just over 2 weeks after intervention completion, individuals with 
heterogeneous clinical conditions showed statistically significant 
increases in HRV and BRS; decreases in systolic, diastolic, and 
mean arterial pressure; and reductions in symptoms of ISI 
and depression. The results appear to indicate that significant 
impact on HRV and related measures of autonomic cardiovas-
cular regulation, as well as improvements in sleep and mood, 
are possible through use of a well-tolerated, noninvasive, and 
non-pharmacological intervention for auto-calibration of neural 
oscillations. The expression of these changes in a heterogeneous 
cohort is encouraging for the prospect of impacting public health 
without targeting specific clinical diagnoses.

In broad terms, the HIRREM approach is aligned with other 
closed-loop interventional strategies that are intended as major 
advances for neurological and psychiatric disorders, sleep 
enhancement, and potentially for performance optimization 
(26–29). Closed-loop neurotechnologies leverage real-time 
analysis of biological functioning to permit direct, precision-
guided modulation of the neural substrates of mentation, emo-
tion, or behavior. As components of a potential public health 
agenda, noninvasive closed-loop interventions may hold special 
promise if they are shown to be safe, cost-effective, acceptable, 
and scalable. Recently, a self-care configuration (Braintellect-2®; 
Brain State Technologies, Scottsdale, AZ, USA) of the closed-loop 
allostatic neurotechnology evaluated in this study has been devel-
oped with support from the United States Army Research Office 
(30) with sensor placements for temporal and prefrontal cortices 
only, and integration of this device is envisioned to improve the 
cost-effectiveness and scalability of neurotechnology-based auto-
calibration of neural oscillations.

Given its naturalistic character and in the absence of a control 
arm, this study was not intended to permit definitive inferences 
about the specific etiology for changes observed post-intervention. 
Nonetheless, the relative magnitude and time frame of the HRV 
increases are noteworthy even if the outcomes were due to non-
specific factors including subjective expectation, social interac-
tions with study personnel, or other components of the placebo 
effect. For the group as a whole, the increase in SDNN compares 

favorably to the average improvement of 15.9% that was reported 
in a meta-analysis of interventions to improve HRV (9). The time 
interval between the last HIRREM session and the follow-up data 
collection is likely to have been too long for the HRV changes to 
reflect a short-term state change through temporary relaxation 
induction. It is also likely to have been too short to reflect HRV 
change due to an undocumented behavioral cointervention such 
as aerobic exercise training, which is typically shown to occur 
after a period of months (31–33).

Our study population was heterogeneous and the inclusion 
criteria were deliberately transdiagnostic. Analyses based on 
autonomic cardiovascular regulation profiles revealed findings 
which may inform future studies of interventions to promote 
neurovisceral integration. On average, and when stratified 
according to baseline quartiles of SDNN, all subjects showed 
greater SDNN after usage of HIRREM. This finding is consistent 
with the supposition that autonomic regulation is diminished 
in a wide range of clinical conditions (34), and that potentially 
beneficial increases in HRV may be achievable regardless of one’s 
baseline. From the public health perspective, it may be that a 
campaign for HRV improvement could yield benefits for clinical 
populations without necessarily targeting those with the lowest 
HRV. Furthermore, it was intriguing that stratification of subjects 
by their baseline quartile of LF power showed a post-intervention 
increase in average power for the lowest quartile, and a decrease 
in power for the highest quartile. Since LF power comprises both 
sympathetic and parasympathetic influences (35), this finding 
gives ground to speculate whether diminished, or high, levels 
of LF power are a specific reflection of relative activity in one 
or the other of the autonomic divisions, and whether allostatic 
neurotechnology can facilitate activity in both divisions to move 
in healthful directions.

The finding that baseline rightward temporal lobe HF asym-
metry was a negative predictor for SDNN is consistent with a 
cross-sectional analysis we performed previously on a subset 
of the current subject population (22), which was focused on 
those individuals with greater degrees of asymmetry. Although 
the slopes of trend lines for asymmetry did not statistically 
differ from zero during the first five HIRREM sessions, when 

FigUre 6 | Temporal lobe high frequency asymmetry scores during the initial five HIRREM sessions. Vertical axes indicate values for asymmetry scores calculated 
from serial 15-s epochs (27 per session), from the first 7 min of a temporal lobe exercise conducted during that session. Gridlines along horizontal axis indicate the 
start of each session.
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