
 

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

Discuss this article

 (0)Comments

REVIEW

Leaders in collective migration: are front cells really endowed
 with a particular set of skills? [version 1; referees: 2 approved]

Eric Theveneau , Claudia Linker2

Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
Randall Division of Cell & Molecular Biophysics, King's College London, London, UK

Abstract
Collective cell migration is the coordinated movement emerging from the
interaction of at least two cells. In multicellular organisms, collective cell
migration is ubiquitous. During development, embryonic cells often travel in
numbers, whereas in adults, epithelial cells close wounds collectively. There is
often a division of labour and two categories of cells have been proposed:
leaders and followers. These two terms imply that followers are subordinated to
leaders whose proposed broad range of actions significantly biases the
direction of the group of cells towards a specific target. These two terms are
also tied to topology. Leaders are at the front while followers are located behind
them. Here, we review recent work on some of the main experimental models
for collective cell migration, concluding that leader-follower terminology may
not be the most appropriate. It appears that not all collectively migrating groups
are driven by cells located at the front. Moreover, the qualities that define
leaders (pathfinding, traction forces and matrix remodelling) are not specific to
front cells. These observations indicate that the terms leaders and followers are
not suited to every case. We think that it would be more accurate to dissociate
the function of a cell from its position in the group. The position of cells can be
precisely defined with respect to the direction of movement by purely
topological terms such as “front” or “rear” cells. In addition, we propose the
more ample and strictly functional definition of “steering cells” which are able to
determine the directionality of movement for the entire group. In this context, a
leader cell represents only a specific case in which a steering cell is positioned
at the front of the group.
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Introduction
Collective cell migration is the coordinated motion of a group of 
cells that emerges from their chemical, physical and/or mechani-
cal interaction1–3. Collective cell migration is a prevalent feature  
during development. Morphogenesis is achieved by orchestrat-
ing cell specification and patterning and coordinating movement 
of cells over time. The main movements of cells are intercalation 
and single or collective cell migration. Collectively migrating  
groups can be formed of epithelial or mesenchymal cells origi-
nating from one cell population or composed of a mixture of cell 
types. Different modes of cooperation have been described, from 
the tightly interconnected epithelial sheets or strands to the loose 
streams of individual cells communicating via transient contacts 
and secreted signals.

Often the role of the different cells in the collectively migrating 
group is described through division of labour in two categories: 
leader or follower cells4–6. Leader cells are located at the front 
of the group and allegedly control directionality of movement. 
Khalil and Friedl originally proposed that leaders would act by  
“exploring the environment, finding the path, generating traction 
force and proteolytically remodelling the extracellular matrix”6. 
Accordingly, follower cells trail leaders and have been proposed 
to be defined by their inability to generate their own tracks7.  
Since this original framing of the concept, experimental data 
from epithelial and mesenchymal models of collective migration, 
which we comment on hereafter, indicate that (i) directionality 
of the group is not systematically set by cells located at the front,  
(ii) generation of traction forces and protrusive and proteolytic 
activities are not specific to front cells, and (iii) protrusive activity 
and the ability to guide a group of cells are uncoupled.

It was recently recognized that, in conjunction with chemical  
signals, the physical interaction between cells plays a fundamen-
tal role during collective migration2. Therefore, unveiling the 
mechanisms regulating this process will require an interdisci-
plinary approach comprising biology, physics and mathematics.  
Multiple agent-based or continuous mathematical models of  
collective cell movement have been proposed and reviewed  
elsewhere8–17. These models incorporate strategies previously used 
in a variety of systems from swarming of bacteria, flocking of birds 
or schooling fish to foam dynamics. It turns out that modulation of 
cell motility and cell mechanical interactions are the key param-
eters sufficient to recapitulate the main cell behaviours observed 
in vivo and in vitro. Interestingly, in the context of mechani-
cally interacting cells, a small fraction of cells responding to an 
external signal is sufficient to significantly bias the direction of  
movement10. Importantly, though, these cells do not need to be 
at the front of the population or to be organized into a specific 
subgroup. They can act while being evenly scattered across the 
cell population. Additionally, models of epithelial cell monolay-
ers in which no differentiation into leader cells is implemented18  
still recapitulate experimental data on wound closure19. Further-
more, models of cooperation among mesenchymal cells show  
that local cell interactions and confinement, in the absence of 
leader-follower identities and external gradients, are sufficient to 
achieve directional movement9. Overall, in silico studies suggest 
that (i) directional collective migration can occur in the absence 

of a specialized subset of cells and (ii) when specialized cells are 
present, these do not need to be localized at the front of the group to 
drive collective migration.

Altogether, experimental and in silico data indicate that the  
original do-it-all leader and passive follower nomenclature is not 
suitable. In addition, we think that the leader-follower terminol-
ogy is biased as it combines function and position when these  
may be uncoupled and leads to the expectation that front cells have 
a prominent guidance role. Therefore, we propose to introduce a 
purely functional “steering cell” term, of which a looser leader 
cell definition might represent a specific subtype of specialized  
front cell. The steering cell term should, in turn, be used together 
with purely topological terms such as “front cell” or “rear cell”.

Epithelial models of collective cell migration
There are several models of collective migration of epithelial 
cells. Some of the most common include mammalian epithelial  
monolayers in culture20, sprouting blood vessels21, tracheal  
cells22 and germ-band extension23 of the Drosophila  embryo as  
well as border cells of the drosophila egg chamber24.

Epithelial monolayers are extremely large systems formed by  
hundreds of cells. Experimental setups start with a confluent  
monolayer in which space is generated by wounding, scratching  
or lifting barriers that separate two populations. A limited number 
of leader cells emerge at the free edge. It has been shown that Notch 
lateral inhibition, mechanical cues and topology25,26 are pivotal for 
leader cell selection. Indeed, once leaders emerge, they take on a 
specific morphology characterized by a pseudomesenchymal phe-
notype with a large lamellipodia at the free edge20,25,27,28. Leader 
cells are linked to the rest of the group by actomyosin cables29. Such 
cables mechanically couple leaders with their immediate neigh-
bours and play a role in preventing adjacent cells from displaying  
protrusive activity. Follower cells, located behind leaders, estab-
lish their directionality through communication with leaders. This 
relies on signalling molecules and on the local balance of forces. 
In extreme cases, leader cells can pull a so-called finger, formed of 
multiple follower cells, from the epithelial monolayer to invade the 
free space30,31. The whole structure has actin cables running along 
the side membranes from the leader at the tip through the several 
rows of followers behind. Thus, the finger behaves as a super cell 
with a distribution of actin polymerization and actomyosin con-
traction spanning several cells along the finger30. In this situation, 
motility is not restricted to front cells, even if leaders can exert 
more force28,29,32,33. The number of leader cells has been shown to be 
regulated by Notch lateral inhibition25,26 and mechanical coupling 
that prevent follower cells from becoming leaders25,26. Interest-
ingly, during wound healing, metalloproteinase expression differs  
between leading and trailing populations (reviewed in 34–36). 
Matrix metalloproteinase 1 (MMP1), 9 and 10 are expressed in 
keratinocytes at the leading edge35, while other MMPs are expressed 
by keratinocytes away from the leading edge, such as MMP336 and 
MMP2837, or by stromal cells near the wound, like MMP838. In 
summary, in epithelial sheets, specialized front cells emerge at the 
leading edge and are maintained for long periods of time through 
local interactions among migratory cells, but matrix remodelling 
and traction forces are not restricted to these specialized cells.
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In invasive carcinoma (tumour of an epithelial tissue), cancer cells 
invade by themselves with tip cells either adopting a pseudomes-
enchymal phenotype or associated with non-tumoral cells such 
as cancer-associated fibroblasts (CAFs)39. In the former case, tip 
cells are similar to leader cells emerging in the aforementioned epi-
thelial monolayers. The emergence of leader cancer cells can be  
enhanced via environmental changes such as local increase  
of compression40. In the latter case, CAFs are thought to be induced 
from various cell types to become invasive, capable of matrix 
remodelling (that is, expressing MMP2, 9 and 14) and able to  
determine the directionality of the metastatic group. CAFs can  
generate tracks in the matrix for cancer cells to use41,42 and even 
directly pull cancer cells out of a tumour43. The strand formed  
by a leading CAF followed by carcinoma cells resembles the  
structure of epithelial fingers described above.

Angiogenesis is the process by which new blood vessels are  
formed from existing vessels. At the onset of vessel sprouting, 
all endothelial cells are able to respond to the chemoattractant 
VEGF (vascular endothelium-derived growth factor) by upregulat-
ing the expression of the Notch ligand Dll4 (Delta like-4), which  
results in the downregulation of VEGF receptor in adjacent cells. 
In this manner, the VEGF-Dll4/Notch lateral inhibition path-
way generates heterogeneity in the population and singles out tip  
(leader) cells44. Importantly, high levels of VEGF activity also  
determine tip cell morphology by inducing the formation of large 
lamellipodia and high numbers of filopodia and defining the 
strength of cell-cell adhesion by controlling the polarized presen-
tation of vascular endothelial (VE)-cadherin at the cell surface45. 
In the stalk (follower cell), on the other hand, active Notch signal-
ling interacts with the Wnt/PCP pathway to define its polarity and 
differentiation (lumen formation). In consequence, transcriptional 
control through Notch lateral inhibition initially sorts out leader 
cells and then maintains the identity of follower cells. Dynamic 
identity allocation, that is concomitant with movement, can also 
be achieved by asymmetric cell division46. To summarize, in this 
system, tip cells have a highly dynamic actin cytoskeleton with a  
large protrusion and are mechanically coupled via cadherins and 
actomyosin to their direct followers47. Functionally, epithelial/
endothelial fingers or strands resemble a bike with multiple riders  
(Figure 1A). All riders are interconnected, they all contribute  
physically but the front rider sets the directionality of the course.

Border cells in Drosophila ovaries form a small cluster of about 
eight cells in total, organized around a core of two immobile cells 
named polar cells48. They migrate through the surrounding nurse 
cells towards the oocyte in two distinct ways. An almost lin-
ear migration (the running mode) dominates during the earliest 
phase towards the oocyte. Running is characterized by protrusive  
activity essentially restricted to the front cell and oriented towards 
the nurse cells facing it49. The late phase of displacement, near the 
oocyte, is dominated by the rotating mode of migration. During 
rotation, all cells display protrusive activity, protrusions are even 
detected in between border cells and some neighbour exchange 
can take place49. During the running part of the migration, the  
cluster has one front cell at a time. The role of leader is taken by 
the cell that better responds to the external gradient of molecules 
secreted by the oocyte, including PVF (platelet-derived/vascular 

endothelium-derived growth factor homologue) and epidermal 
growth factor (EGF) ligands48,50. The cell with the highest recep-
tor tyrosine kinase signalling levels in turn generates higher Rac1  
levels, resulting in the formation of a stronger protrusion, which 
allows this cell to take the leading role. As in sheets, the mechani-
cal coupling of the cells via cadherin junction within the cluster  
prevents other cells from forming protrusions51–55. Impairing this 
physical coupling induces the formation of protrusions in all cells 
and loss of directional migration. This is in agreement with the 
observation that during the rotating phase all cells display high 
protrusive activity49. Furthermore, mechanical coupling is such 
that experimental activation of Rac1 in a cell different from the  
leader56 inhibits protrusion formation elsewhere in the group and 
migration is redirected to a new location. In summary, in bor-
der cells, during the linear migration phase, a leader emerges 
in response to an environmental chemoattractant and leader- 
follower roles are maintained via mechanical coupling preventing 
excessive protrusive activity in non-front cells. All outer, migra-
tory cells of the group contribute motile force, but the lead cell 
likely contributes more than followers13. Occasionally, a follower 
cell takes over the lead position and this suggests that there is  
nothing unique in the identity of the lead cell. The reasons behind 
this turnover remain unknown. Although desensitization by  
endocytosis of the guidance receptor may explain this behav-
iour, cell turnover has been proposed as a mechanism to prevent  
desensitization in large groups of chemotactic immune cells57. 
Functionally, the border cell cluster can be compared to a sedan 
chair (Figure 1B). Several active persons carry passive travellers. 
All carriers are mechanically coupled to each other and to their  
passive load, but the front carriers set the direction of the course.

Mammary glands develop by progressive branching of an initial 
epithelium58. Each branch has a terminal end bud migrating into 
the stroma. End buds are formed of non-protrusive front cells,  
called cap cells59, and ensheathing terminal end bud body cells 
that collectively migrate without direct physical contact with the 
local environment59. Branching is thought to depend on remodel-
ling of the extracellular matrix by MMPs expressed by end bud 
cells and stromal cells. However, there is no in vivo evidence that  
mammary epithelial cells degrade their basement membranes.  
Furthermore, recent in vivo data indicate that MMP14 and 15  
found in the terminal end bud during branching are required for 
non-catalytic purposes (see 60 for further discussion). Therefore, 
in this system, front cells are not pathfinding, they do not actively 
remodel the matrix in vivo and the bulk of the traction force is  
coming from motile end bud body cells that do not occupy the  
leading edge position.

Ganglia of the cranial nerves VII, IX and X are formed by  
neural crest and epibranchial placodal cells61. These placodes are 
epithelial cells located laterally to the neural plate at early stages 
of development62. Epibranchial placode precursors collectively 
migrate ventrally and progressively split into distinct subgroups 
distributed along the antero-posterior axis. Interestingly, placodal 
cells are motile but lack directionality on their own. They produce 
a chemokine CXCL12 that attracts nearby, dorsally located, neural 
crest cells. When a physical contact occurs, N-cadherin–depend-
ent contact inhibition of locomotion promotes the collapse of cell 
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Figure 1. The many ways of steering a cell collective. (A) Endothelial cells. One tip cell responds to vascular endothelium-derived growth 
factor (VEGF) and adopts a pseudomesenchymal phenotype with distinctive lamellipodia. This works as a bicycle with multiple riders (tandem, 
triplets, quads or quints). The front cyclist (the tip cell) is responsible for sensing and steering while traction force is shared among cyclists. 
(B) Border cells. One cell responds better to platelet-derived/vascular endothelium-derived growth factor homologue (PVF) and adopts 
a pseudomesenchymal phenotype with a distinctive protrusion. This works as several persons carrying a sedan chair. The front person 
(front cell) is responsible for sensing and steering and exerts traction force but all cells are mechanically coupled and traction is shared.  
(C) Placodes and neural crest cells. Epithelial placodes and mesenchymal neural crest cells have intrinsic motility (low for placodes and high 
for neural crest cells) but no directionality on their own. Neural crest cells sense placodes via Cxcl12. Placodes do not sense an external cue 
but are repelled by repeated physical contact with the neural crest. This works as a sheepdog (neural crest cells) and livestock (placodes) 
interaction. The sheepdog (highly motile) is attracted by the livestock (gregarious). The livestock only moves to go away from the sheepdog. 
When they are separated, motility is conserved but directionality is lost. (D) Lateral line primordium. Front cells are mesenchymal while back 
cells are epithelial. Homogenous Cxcl12 distribution is transiently and locally converted into a gradient by the back cells. Front cells sense 
this gradient. This works as horse-drawn carriage. The driver in the carriage (back cells) is responsible for steering while horses (front cells) 
follow available instructions and pull the whole structure. When the two are separated, horses remain motile but lose directionality while the 
carriage is immobile.

protrusion on both cell populations63. However, neural crest cells 
are more motile and systematically fill the gap. This difference in 
motility biases the direction of movement such that neural crest 
cells progressively repel placodes to advance ventrally. The two 
populations migrate in a coordinated manner with placodes at the 
front and neural crest cells at the back displaying a chase-and-run 
(attraction-repulsion) behaviour63. Contrary to the CAF-cancer cell 
situation, in this case neural crest cells are the cells that set the 
directionality to the group and the directional migration of placo-
dal cells is not initiated by cells present at the front of the placode 
population. It is the transient, repeated, physical contacts between 
neural crest cells and placodes, occurring at the back of the pla-
code population, that consistently inhibit the formation of lasting 
protrusions by back placodal cells. This mechanism establishes 
a front-rear polarity across the placodal group and sustains their 
ventral-ward directional movement. At the single level, the impor-
tance of the back (or rear) for the emergence and stabilization of  
polarity is well known and has been discussed elsewhere in the 
context of collective cell migration4,64. The heterotypic neural crest/ 
placode relationship works similarly to a sheepdog (neural crest) 
and cattle (placodes) situation (Figure 1C).

Overall, data on epithelial cells show that directional collective 
migration can occur in groups where (i) traction forces and matrix 
remodelling capabilities are shared among migratory cells even 
when a morphologically distinct tip cell is present (epithelial fin-
gers, vessels sprouting, border cells), (ii) front cells do not display 
extensive protrusive or matrix remodelling capabilities (mammary 
gland), and (iii) specific events take place at the rear rather than at 
the front of the population (placodes).

Mesenchymal models of collective cell migration
The main models for the analysis of collective migration in  
mesenchymal cells are the neural crest and the lateral line  
primordium populations. Neural crest cells are a highly migra-
tory population that emerges from the dorsal neuroepithelium and  
colonizes the entire developing embryo65.

Cephalic neural crest cells from Xenopus and fish embryos  
polarize according to their contact with other cells and the cell-
free space through contact inhibition of locomotion (CIL), which 
is mediated by homophilic cadherin contacts66,67. In an unbiased  
environment, CIL promotes the radial dispersion of cells. This is  
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simply because cells facing the cell-free interface do not  
experience CIL all around their cell membrane. Cells polarize 
accordingly, forming a protrusion towards the cell-free space and 
move away from the main group. In vivo, this mechanism is rein-
forced by confinement68 and the chemoattractant CXCL12 that 
positively biases the protrusion lifetime69. In vitro, cells at the 
front of the group at any given time present larger and more stable  
protrusion than the rest of the cells. Yet their actual impact on the 
direction of followers has not been established. Indeed, the com-
bination of cell cooperation via adhesion69, paracrine signalling70  
and confinement68 is sufficient to promote directional movement in 
the absence of chemotaxis9,68.

Experiments in chick embryos combining transcriptomic analysis 
and computational modelling support the importance of cell-cell 
contact for neural crest migration71–73 but bring into play differ-
ent roles for cells at distinct positions of the group74–77. A small 
number of specialized trailblazer cells at the migration front, pre-
senting a stable and characteristic transcriptomic signature, would 
be the only cells that respond to a gradient of the chemoattractant  
VEGF. Accordingly, trailblazers direct the movement of  
follower cells directly in contact with them. These followers in turn 
contact cells further back, forming chains of directionally migrat-
ing cells. The gradient of VEGF would be sculpted by the neural 
crest population as a consequence of the different response to  
VEGF of front and back cells. While trailblazers could bind and 
respond to VEGF, follower cells can only bind and consume the 
factor, acting as a sink78. While this is an interesting proposition, 
the existence of a VEGF gradient remains speculative. In addition, 
the importance of the transcriptomic differences observed for the 
migratory behaviour of cephalic chick neural crest has not been 
functionally tested.

A different analysis using in vivo tracking of cephalic neural  
crest in chick and fish embryos revealed that the relative posi-
tion of cells within the group is not stable during migration79. 
Cells intermingle every time they move the equivalent of one cell 
diameter (about every 50 minutes), and only 5% of the cells retain 
the front position throughout migration. Furthermore, the migra-
tion of the group is not altered by the total ablation of front cells.  
Together, these observations show that all cells in the group have 
the capability to imbue directionality and that cells occupy the front 
positions only transiently. One possibility for such quick adapta-
tion would be via the selective presentation of CXCR4 at the cell 
surface. CXCR4, the main receptor of CXCL12, could localize 
at the cell membrane in a cell-cell adhesion–dependent manner  
downstream of CIL. The activity of the exocyst complex is influ-
enced by cadherin junctions80, and cytoplasmic pools of CXCR4 
are driven to the plasma membrane by this pathway in human 
cancer cells81. Therefore, as soon as a cell reaches the migration  
front and acquires a free edge, differential endocytosis would 
enrich the guidance receptor CXCR4 at the front of the cell. This  
mechanism would explain the seemingly immediate acquisition of 
leader traits as it does not require transcriptional or translational 
delays. In such a case, the characteristic trailblazer transcriptomic 
signature would be the consequence, and not the cause, of leading 
edge incorporation.

Alternatively, cells at the front of the cephalic neural crest  
population may not represent a subgroup of specialized cells. 
Leader/trailblazer identity would not exist as such. Interest-
ingly, CXCR4 mRNA is detected in the whole population 
in a salt-and-pepper manner in chick82,83, fish84, mouse82 and  
Xenopus69 embryos. Thus, CXCL12-responding cells are expected 
to be found throughout the migrating group. In silico data,  
previously discussed, indicate that chemotaxing cells within a 
migrating group can influence the directionality of their neighbours 
if a functional mechanical connection exists (that is, CIL for neural 
crest)10. Thus, CXCL12 signalling could very well bias migration 
by acting only on CXCR4-positive cells that are scattered within 
the population. In this case, there would be no need for a spe-
cialized group of front cells or a fancy (and speculative) contact- 
dependent endocytosis of CXCR4. Similarly to the widespread 
expression of CXCR4, numerous proteolytic enzymes from the 
MMP and ADAM families (that is, MMP2/8/9/14/15/17 and 
ADAM9/10/13/19) are expressed throughout the cephalic neural 
crest population in chick85–88, mouse89, fish90–92 and Xenopus93–98. 
This strongly suggests that proteolytic capabilities are shared 
among cephalic neural crest cells and might further explain why 
specific ablation of front cells did not impair migration.

In the trunk of fish embryos, neural crest cells migrate as a single 
file of loosely interacting cells. Leader cells at the front of the group 
are a permanent population and the only cells capable of defining 
the directionality of the group—traits that define them as leaders. 
Moreover, leader and follower identities are established before 
initiation of migration and are not exchangeable during migra-
tion79. The molecular pathways controlling identity specification 
and maintenance of trunk fish neural crest leader cells remain to 
be unveiled, but it is tempting to make analogies with epithelial 
sheets and sprouting angiogenesis where the Notch pathway plays 
a pivotal role.

The posterior lateral line primordium is a 150-micrometre-long  
heterogeneous migratory population composed in its two front 
thirds of mesenchymal cells while its rear third is epithelial. This 
structure migrates along the antero-posterior axis during late  
phases of fish and amphibian development to deposit mechano-
sensitive organs, the neuromasts99. The front mesenchymal cells 
are motile and display polarized and highly protrusive activity 
at the front of each cell. The rear cells are deposited as epithelial  
rosettes and are barely motile. The front and rear subpopulations 
are generated via Wnt/FGF-dependent communication between 
cells at the onset of migration99. Directionality of migration in this 
system is set by a gradient of the chemokine CXCL12100. It has 
been shown that CXCL12 is homogeneously expressed along the 
antero-posterior axis and that the formation of a gradient results 
from different expression of CXCL12 receptors in front and 
rear populations. CXCR4 is found in all cells, whereas CXCR7  
expression is restricted to epithelial rear cells100–103. CXCR4 is 
responsible for the chemotactic response to CXCL12, a capacity 
of all cells in the population101. CXCR7, on the other hand, acts 
as a decoy receptor that internalizes CXCL12 at the rear of the  
group104. In this way, the differential localization and activity of 
these receptors are responsible for a self-generated local gradient 
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of CXCL12 that spans the whole migratory group and creates the 
directional bias101,102. Removing rear cells by laser ablation105, or 
inhibiting CXCR7 expression103, is sufficient to block directional 
migration even if protrusive activity and CXCR4 expression are 
not affected in front cells. Interestingly, CXCR7 expression is 
restricted to rear cells in a CXCR4-dependent manner, such that 
CXCR4 knockdown leads to widespread expression of CXCR7 
through the primordium, lack of gradient formation and misguided 
migration103. Similar to the migration of cranial placodes, here it 
is a specific event (local epithelialization and restricted CXCR7  
expression) occurring at the back of the migrating group that is 
responsible for steering the whole population in the right direction. 
The lateral line primordium functions as a horse-drawn carriage 
(Figure 1D) in which a non-mobile rear end sets the course of an 
otherwise non-directional mobile group.

Conclusions
The current nomenclature of leader and follower cells ties the  
position of a cell to its function. Moreover, it implies that front  
cells represent a particular subgroup of cells that guide the  
population by exploring the local environment, finding the path, 
remodelling the matrix and exerting significant traction force. In 
the meantime, followers are deemed passive cells mostly defined  
by their inability to generate their own migratory path.

However, the discussed experimental data and in silico simula-
tions show that (i) the proposed characteristics of leader cells  
(pathfinding, traction force, matrix remodelling) are not sys-
tematically associated with front cells, (ii) directional collective  
migration can emerge from homogenous cell populations subjected 
to external information (gradients, confinement), and (iii) when 
specialized cells are present these are not necessarily organized 
as a specific subgroup or positioned at the leading edge. In this  
context, we think that the leader cell terminology should be  
simplified and restricted to a specific subset of cases. Leaders are 
defined as front cells that imbue directionality to the entire group. 
They may do so in various non-exclusive ways such as displaying 
an intense protrusive activity, specifically expressing a guidance 
receptor. The particular mechanism may differ depending on the 
population studied and the local environment in which migration 
takes place.

In order to have a term that could apply to all situations, we  
propose to name the cells that set the overall directionality of a  
collectively migrating group: steering cells. To steer means 
“to guide in a particular direction or manner”; we think it is an  
appropriately ample term that does not imply how the guidance 
is achieved and that does not associate it with a particular loca-
tion. That is a general term based solely on a cell’s function that 
does not overlap and therefore can be used in combination with 
purely topological terms such as front and rear (or back). Steer-
ing cells may be at the front or not. They may be motile or not. 
Therefore, when studying what controls directionality, one should 
(i) experimentally test whether the population is homogenous (Are 
all cells required for directionality? Are some subgroups required 
and others dispensable?), (ii) explore the mechanisms at play  
(external gradient, paracrine communication, physical contact, and 
confinement) and (iii) define which cells respond to what signals.

This concept of steering cells does not preclude the possibility 
of complex systems where some cells scattered throughout the  
population might chemotax while a subset of front cells could 
exhibit proteolytic activities, for instance. There may be several 
categories of steering cells within a collective.
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