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Abstract

Performing a BOLD functional MRI (fMRI) acquisition during breath-hold (BH) tasks is a 

non-invasive, robust method to estimate cerebrovascular reactivity (CVR). However, movement 

and breathing-related artefacts caused by the BH can substantially hinder CVR estimates due to 

their high temporal collinearity with the effect of interest, and attention has to be paid when 

choosing which analysis model should be applied to the data. In this study, we evaluate the 

performance of multiple analysis strategies based on lagged general linear models applied on 

multi-echo BOLD fMRI data, acquired in ten subjects performing a BH task during ten sessions, 

to obtain subject-specific CVR and haemodynamic lag estimates. The evaluated approaches range 

from conventional regression models, i.e. including drifts and motion timecourses as nuisance 

regressors, applied on single-echo or optimally-combined data, to more complex models including 

regressors obtained from multi-echo independent component analysis with different grades of 

orthogonalization in order to preserve the effect of interest, i.e. the CVR. We compare these 

models in terms of their ability to make signal intensity changes independent from motion, 

as well as the reliability as measured by voxelwise intraclass correlation coefficients of both 

CVR and lag maps over time. Our results reveal that a conservative independent component 

analysis model applied on the optimally-combined multi-echo fMRI signal offers the largest 

reduction of motion-related effects in the signal, while yielding reliable CVR amplitude and 
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lag estimates, although a conventional regression model applied on the optimally-combined data 

results in similar estimates. This work demonstrates the usefulness of multi-echo based fMRI 

acquisitions and independent component analysis denoising for precision mapping of CVR in 

single subjects based on BH paradigms, fostering its potential as a clinically-viable neuroimaging 

tool for individual patients. It also proves that the way in which data-driven regressors should be 

incorporated in the analysis model is not straight-forward due to their complex interaction with the 

BH-induced BOLD response.
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1. Introduction

Cerebrovascular reactivity (CVR) is a physiological response of the cerebral vessels 

to vasodilatory or vasoconstrictive stimuli. Mapping of the CVR response provides an 

important indicator of cerebrovascular health. In recent years, functional magnetic resonance 

imaging (fMRI), either based on the blood oxygenation level-dependant (BOLD) contrast, 

arterial spin labelling, or a mixture of both, has demonstrated its effectiveness to assess 

CVR. As a result, its use is spreading into clinical practice, where its potential as a 

diagnostic measure is being ascertained in different diseases, spanning from vascular 

diseases (Hartkamp et al., 2017; Markus and Cullinane, 2001; Webster et al., 1995; Ziyeh 

et al., 2005), to stroke and aphasia (Krainik et al., 2005; Van Oers et al., 2018), brain 

tumors (Fierstra et al., 2018; Zacà et al., 2014), neurodegenerative diseases (Camargo et 

al., 2015; Glodzik et al., 2013; Marshall et al., 2014), hypertension (Iadecola and Davisson, 

2008; Leoni et al., 2011; Tchistiakova et al., 2014), lifestyle habits (Friedman et al., 2008; 

Gonzales et al., 2014), sleep apnoea (Buterbaugh et al., 2015; Prilipko et al., 2014), and 

traumatic brain injury or concussions (Churchill et al., 2020; Markus and Cullinane, 2001).

CVR measurements are obtained by evoking a vasodilatory response during imaging. This 

is typically done by injecting intravenous acetazolamide, or by exposing the subject to 

gas challenges with computerised dynamic deployment of CO2 and O2 (Liu et al., 2018). 

However, acetazolamide is an invasive technique not indicated for vulnerable subjects (e.g. 

elderly or children), while gas challenges require dedicated setups and can also cause 

discomfort in some subjects, which might potentially bias CVR measurement (Urback et 

al., 2017). Alternatively, CO2 changes in the blood due to breathing tasks, such as paced 

deep breathing or breath-hold (BH) tasks (Bright et al., 2009; Kastrup et al., 1998; Pinto 

et al., 2021), can elicit a CVR response that is equivalent to that of inhaled CO2 (Kastrup 

et al., 2001; Tancredi and Hoge, 2013). A BH task can be successfully implemented in 

young children and elderly subjects (Handwerker et al., 2007; Thomason et al., 2005), and 

it is a robust measurement even if subjects are not able to hold their breath for as long 

as instructed (Bright and Murphy, 2013a). Moreover, BH-induced CVR is reliable across 

different sessions, both in the short (same day) and long term (Peng et al., 2019), in terms 

of spatial reliability (i.e. comparing variability of voxels across multiple sessions in one 

Moia et al. Page 2

Neuroimage. Author manuscript; available in PMC 2021 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subject) and general reliability (i.e. average CVR value across sessions and within subjects) 

(Lipp et al., 2015; Magon et al., 2009). Both short and long term reliability of BH-induced 

CVR were found to be comparable to that of other non-invasive means of estimating CVR, 

such as resting state fMRI (Liu et al., 2017), inhaled gas challenges (Dengel et al., 2017; 

Evanoff et al., 2020; Leung et al., 2016), Fourier modelling of a BH task (Pinto et al., 2016), 

and a paced deep breathing task (Sousa et al., 2014).

However, BOLD fMRI data exhibit signal variation arising from different sources, most 

of which corresponds to hardware-related artefacts and drifts, head motion, confounding 

physiological fluctuations, and other sources of noise (Bianciardi et al., 2009; Jorge et al., 

2013). It is important that the signal variance associated with these confounding signals 

is accounted for and minimized during preprocessing or data analyses (Caballero-Gaudes 

and Reynolds, 2017; Liu, 2016). Head motion is a particularly problematic source of 

noise for task-based fMRI experiments, mainly in block designs (Johnstone et al., 2006) 

and in particular experimental paradigms, such as in overt speech production (Barch et 

al., 1999; Soltysik and Hyde, 2006; Xu et al., 2014). This concern with task-induced 

movement artefacts extends to respiration tasks: the experimental design is similar to that of 

block designs, but the amount of motion associated with paced breathing, deep breaths, or 

“recovery” breaths following a BH task can be very prominent and concur with the pattern 

of the task. Moreover, respiration can perturb the B0 field due to the change of air in the 

lungs (Raj et al., 2001) and introduce aliasing artefacts or pseudo-movement effects in the 

signal (Gratton et al., 2020; Pais-Roldán et al., 2018; Power et al., 2019).

There are different ways to account for motion effects on task-based fMRI data analysis. For 

instance, such effects can be reduced during acquisition by implementing an event-related 

task paradigm (Birn et al., 1999, 2004). However, in a BH task the periods of apnoea are 

typically between 10 and 20 s in duration to achieve a robust and repro-ducible vasodilatory 

response (Bright and Murphy, 2013a; Magon et al., 2009), and are not readily adapted 

to a brief event-related design. The most straight-forward approach is then to include 

the realignment parameters, as well as their derivatives and non-linear expansions, in the 

analysis model to account for part of the motion-related variance of the signal (Friston et 

al., 1996). In addition, fMRI data decomposition, for example with Principal Component 

Analysis or Independent Component Analysis (ICA), can be used to identify and remove 

components that are mostly related to motion or other sources of noise (Behzadi et al., 2007; 

Griffanti et al., 2014; Muschelli et al., 2014; Pruim et al., 2015a, 2015b; Salimi-Khorshidi et 

al., 2011).

Alternatively, noise in fMRI can be reduced by using multi-echo (ME) acquisitions that 

sample the data at multiple successive echo times (TE). A weighted combination of the 

multiple echoes (Poser et al., 2006; Posse et al., 1999) can smear out random noise 

and enhance the sensitivity to the BOLD contrast. Compared with single-echo data, this 

optimal combination can improve the mapping of neuronal activity at 3T (Fernandez et al., 

2017) and 7T (Puckett et al., 2018). Optimal combination of multiple echo volumes can 

also improve BH-induced CVR mapping sensitivity, specificity, repeatability and reliability 

(Cohen and Wang, 2019).
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Furthermore, assuming a monoexponential decay model, the voxelwise fMRI signal (in 

terms of signal percentage change) can be disentangled into BOLD-related fluctuations that 

depend linearly on the echo time (TE), and non-BOLD fluctuations related to changes in 

the net magnetization (Kundu et al., 2012). This can be used for denoising purposes. For 

example, in a dual-echo acquisition with a sufficiently short first TE, the first echo signal 

mainly captures changes in the net magnetization. It is then possible to perform nuisance 

regression from the second echo signal acquired at a longer TE with appropriate BOLD 

contrast (Bright and Murphy, 2013b). Collecting more echoes opens up the possibility of 

applying ICA and classifying independent components into BOLD-related or noise, an 

approach known as multi-echo independent component analysis (ME-ICA) (Kundu et al., 

2013, 2012, 2017). Compared to single-echo data denoising, ME-ICA can improve the 

mapping of task-induced activation (Amemiya et al., 2019; DuPre et al., 2016; Evans et 

al., 2015; Gonzalez-Castillo et al., 2016; Lombardo et al., 2016). It also outperforms single­

echo ICA-based denoising of resting-state fMRI data (Dipasquale et al., 2017), which is 

particularly beneficial to obtain more reliable functional connectivity mapping in individual 

subjects (Lynch et al., 2020) and in brain regions with reduced signal-to-noise ratio, such 

as the basal forebrain (Markello et al., 2018). Furthermore, ME-ICA also enhances the 

deconvolution of neuronal-related signal changes (Caballero-Gaudes et al., 2019).

However, up to now, the operation of ME-ICA has not been evaluated thoroughly in 

experimental paradigms with unavoidable task-correlated artefacts. Under such scenarios, 

one open question is how to obtain the right trade-off between removing as much noise as 

possible while saving the signal of interest (Bright and Murphy, 2015; Griffanti et al., 2014). 

In this study, we acquire ME-fMRI data during a BH task in 10 subjects acquired weekly, 

i.e. adopting a similar framework to precision functional mapping experiments (Gordon 

et al., 2017; Greene et al., 2020; Laumann et al., 2015; Lynch et al., 2020; Lynch and 

Liston, 2020; Marek et al., 2018), and assess the efficiency of different nuisance regression 

models to remove artefacts that are highly correlated with the effect of interest, i.e. the CVR 

response. In particular, we compare traditional nuisance regression approaches, applied to 

single- or multi-echo data, and three different ME-ICA denoising approaches ranging from 

aggressive to conservative. For each denoising strategy, we assess the correlation of the 

cleaned signal with measures of motion, and evaluate the amplitude and lag of the CVR 

signal response in terms of their physiological interpretability and inter-session reliability.

2. Material and methods

2.1. Participants

Ten healthy subjects with no record of psychiatric or neurological disorders (5F, age range 

24–40 y at the start of the study) underwent ten MRI sessions in a 3T Siemens PrismaFit 

scanner with a 64-channel head coil. Each session took place one week apart, on the same 

day of the week and at the same time of the day.

All participants had to meet several further requirements, i.e. being non-smokers and refrain 

from smoking for the whole duration of the experiment, and not suffering from respiratory 

or cardiac health issues. They were also instructed to refrain from consuming caffeinated 
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drinks for two hours before the session. Informed consent was obtained before each session, 

and the study was approved by the local ethics committee.

2.2. Data acquisition and MRI session

Within the MRI session, subjects performed a BH task while T2*-weighted ME-fMRI 

data was acquired with the simultaneous multislice (a.k.a. multiband, MB) gradient-echo 

planar imaging sequence provided by the Centre for Magnetic Resonance Research (CMRR, 

Minnesota) (Moeller et al., 2010; Setsompop et al., 2012) with the following parameters: 

340 scans, TR = 1.5 s, TEs = 10.6/28.69/46.78/64.87/82.96 ms, flip angle = 70°, MB 

acceleration factor = 4, GRAPPA = 2 with gradient-echo reference scan, 52 slices with 

interleaved acquisition, Partial Fourier = 6/8, FoV = 211 × 211 mm2, voxel size = 2.4 × 2.4 

× 3 mm3, Phase Encoding = AP, bandwidth = 2470 Hz/px, LeakBlock kernel reconstruction 

(Cauley et al., 2014) and SENSE coil combination (Sotiropoulos et al., 2013). Single-band 

reference (SBRef) images were also acquired for each TE. The BH task was preceded by 64 

min of ME-fMRI scanning, consisting of three task-based and four 10-minute resting state 

acquisitions, which are not part of the current study. The BH task always followed a resting 

state run. A pair of spin echo echo planar images (EPI) with opposite phase-encoding (AP 

or PA) directions and identical volume layout (TR = 2920 ms, TE = 28.6 ms, flip angle 

= 70°) were also acquired before each functional run in order to estimate field distortions, 

similarly to the Human Connectome Project protocol (Glasser et al., 2016). A T1-weighted 

MP2RAGE image (Marques et al., 2009) (TR = 5 s, TE = 2.98 ms, TI1 = 700 ms, TI2 = 2.5 

s, flip angle 1 = 4°, flip angle 2 = 5°, GRAPPA = 3, 176 slices, FoV read = 256 mm, voxel 

size = 1 × 1 × 1 mm3, TA = 662 s) and a T2-weighted Turbo Spin Echo image (Hennig et al., 

1986) (TR = 3.39 s, TE = 389 ms, GRAPPA = 2, 176 slices, FoV read = 256 mm, voxel size 

= 1 × 1 × 1 mm3, TA = 300 s) were also collected at the end and at the beginning of each 

MRI session, respectively.

During the fMRI acquisition runs exhaled CO2 and O2 levels were monitored and recorded 

using a nasal cannula (Intersurgical) with an ADInstruments ML206 gas analyser unit 

and transferred to a BIOPAC MP150 physiological monitoring system where scan triggers 

were simultaneously recorded. Photoplethismography and respiration effort data were also 

measured via the BIOPAC system, but these physiological signals were not used in the 

current study. All signals were sampled at 10 kHz. The physiological recordings started 

before and lasted longer than the ME-fMRI data recording to enable the shifting of 

physiological regressors.

2.3. Breath-hold task

Following Bright and Murphy (2013a), the BH paradigm consisted of eight repetitions of 

a BH trial composed of four paced breathing cycles of 6 s each, an apnoea (BH) of 20 s, 

an exhalation of 3 s, and 11 s of “recovery” breathing (unpaced) (i.e. total trial duration 

of 58 s) (Fig. 1). The BH paradigm was padded with a 15 s resting period to ensure that 

shifted physiological regressors would always match the BH paradigm period. Subjects were 

instructed prior to scanning about the importance of the exhalations preceding and following 

the apnoea (Pinto et al., 2021). Without these exhalations providing CO2 measurements, 

the change in systemic CO2 levels achieved by each BH cannot be robustly estimated; as a 
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result, CVR (%BOLD/mmHg CO2 change) cannot be estimated quantitatively. Participants 

were instructed textually throughout the task through a mirror screen located in the head 

coil.

2.4. MRI data preprocessing

The DICOM files of the MRI data were transformed into nifti files with dcm2nii (Li et 

al., 2016) and formatted into Brain Imaging Data Structure (Gorgolewski et al., 2016) with 

heudiconv (Halchenko et al., 2019).

MRI data were minimally preprocessed with custom scripts based mainly in FSL (Jenkinson 

et al., 2012), AFNI (Cox, 1996), and ANTs (Tustison et al., 2014). In brief, the T2-weighted 

image was skull-stripped and co-registered to the MP2RAGE image along with the brain 

mask. The latter was applied to the MP2RAGE image, that was then segmented into grey 

matter (GM), white matter (WM) and cerebrospinal fluid tissues (Avants et al., 2011). The 

MP2RAGE image was normalised to an asymmetric version of the MNI152 6th generation 

template at 1 mm resolution (Grabner et al., 2006), while the T2-weighted volume was 

co-registered to the skull-stripped single-band reference image (SBRef) of the first echo. 

The first 10 volumes of the functional data were discarded to allow the signal to achieve 

a steady state of magnetisation. Image realignment to the SBRef was computed on the 

first echo, and the estimated rigid-body spatial transformation was then applied to all other 

echoes (Jenkinson et al., 2002; Jenkinson and Smith, 2001). A brain mask obtained from the 

SBRef volume was applied to all the echoes. The different echo timeseries were optimally 

combined (OC) voxelwise by weighting each timeseries contribution by its T2* value (Posse 

et al., 1999). Next, ME-ICA decomposition was performed on each run independently with 

tedana (DuPre et al., 2019) using the minimum description length criterion for estimation 

of the number of components (Harris, 1978; Li et al., 2016). The independent components 

(ICs) were then manually classified by SM and CCG into two categories (rejected or 

accepted components) based on temporal, spatial, spectral and TE-dependence features of 

each component (Griffanti et al., 2017). The manual classifications are available in the 

data repository. A distortion field correction was performed on the OC volume with Topup 

(Andersson et al., 2003), using the pair of spin-echo EPI images with reversed phase 

encoding acquired before the ME-EPI acquisition (Glasser et al., 2016). Finally, the BOLD 

timeseries was converted in signal percentage change. For comparison, the dataset acquired 

at the second echo time (TE2 = 28.6 ms) was used as a surrogate for standard single-echo 

(SE) acquisitions. This volume followed the same preprocessing steps as the OC volume, 

except for the optimal combination and the ICA decomposition.

2.5. CO2 trace processing and CVR estimation

The files exported from the AcqKnowledge software were transformed and formatted into 

BIDS with phys2bids (The phys2bids developers et al., 2019).

The CO2 timecourse was processed using custom scripts in Python 3.6.7. Briefly, the CO2 

timecourse was downsampled to 40 Hz to reduce computational costs. The end-tidal peaks 

were automatically and manually individuated. The amplitude envelope was obtained by 

linearly interpolating between the end-tidal peaks and it was then demeaned and convolved 
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with a canonical HRF to obtain the PETCO2hrf trace. In order to account for measurement 

delay, the PETCO2hrf trace was shifted to maximise the cross-correlation with the average 

timecourse of an eroded version of the GM mask (bulk shift) (Yezhuvath et al., 2009). This 

step was performed on both OC and the SE data (see Supplementary figure 1).

A lagged general linear model (GLM) approach was adopted in this study for CVR 

estimation (Moia, Stickland, et al., 2020) in order to model temporal offsets between the 

PETCO2 recording and the CVR response across voxels that occur due to measurement and 

physiological delays (Donahue et al., 2016; Geranmayeh et al., 2015; Murphy et al., 2011; 

Sousa et al., 2014; Tong et al., 2011). Sixty shifted versions of the PETCO2hrf trace were 

created, ranging between ±9 s from the bulk shift, with a shift increment of 0.3 s (fine shift). 

This temporal range was based on previous literature, which rarely reports haemodynamic 

lags over ±8 s in healthy individuals (Bright et al., 2009; Donahue et al., 2016; Sousa et 

al., 2014). For each shift, a lagged GLM was defined with a design matrix comprised of 

the shifted PETCO2hrf timecourse as the regressor of interest, and different combinations of 

nuisance regressors (see below) in order to examine their efficiency in modelling artefactual 

signals of the voxel timeseries that might degrade CVR estimates. The simultaneous fitting 

of the nuisance regressors and the regressor of interest (i.e. the shifted PETCO2hrf trace) is 

preferable, rather than denoising via nuisance regression prior to the analysis (Jo et al., 2013; 

Lindquist et al., 2019; Moia et al., 2020).

Five different modelling strategies were evaluated, varying which nuisance regressors were 

included in the design matrix or how they were derived from ME-ICA:

1. A lagged GLM model on the SE data where the design matrix includes the 

motion parameters and their temporal derivatives (denoted as Mot), Legendre 

polynomials of up to the fourth order (denoted as Poly), together with the 

PETCO2hrf trace (SE-MPR):

Y SE = PETCO2ℎrf + Mot + Poly + n (1)

2. The same model applied on the OC data (OC-MPR):

Y OC = PETCO2ℎrf + Mot + Poly + n (2)

3. An aggressive model applied on the OC data (ME-AGG) in which the design 

matrix also includes the timecourses of the ME-ICA rejected components 

(denoted as ICrej) added to the design matrix of the lagged GLM, orthogonalised 

with respect to the motion parameters, their temporal derivatives, and Legendre 

polynomials of up to the fourth order. This orthogonalisation step was performed 

to maintain a low Variance Inflation Factor in this model, and thus not bias the 

CVR estimation, without altering the relative variance explained by the original 

nuisance regressors and the regressor of interest (Mumford et al., 2015):

Y OC = PETCO2ℎrf + Mot + Poly + ICrej ⊥ (Mot, Poly) + n (3)
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4. A moderate model applied on the OC data (ME-MOD) in which the timecourses 

of the ME-ICA rejected components are also orthogonalised with respect to the 

PETCO2hrf trace (i.e. the regressor of interest describing the CVR response):

Y OC = PETCO2ℎrf + Mot + Poly + ICrej ⊥ PETCO2ℎrf, Mot, Poly + n (4)

5. A conservative model applied on the OC data (ME-CON) in which the timeseries 

of the ME-ICA rejected components are orthogonalised with respect to the 

PETCO2hrf trace and the ME-ICA accepted components (denoted as ICacc):

Y OC = PETCO2ℎrf + Mot + Poly
+ ICrej ⊥ PETCO2ℎrf, ICacc, Mot, Poly + n (5)

In the models above, YSE and YOC are the SE and OC voxel timeseries respectively and n 
denotes the random noise.

For each modelling strategy and each of the sixty shifted PETCO2hrf traces, the 

corresponding lagged GLM was fitted via orthogonal least squares using AFNI. Then, 

for each voxel, the beta coefficient (i.e. weight) of the best fine-shifted PETCO2hrf trace, 

corresponding to the lagged GLM model with maximum coefficient of determination 

(R2), was selected. Finally, the beta coefficients expressed in BOLD signal percentage 

change over Volts (BOLDSPC/V) were rescaled to be expressed in BOLD percentage over 

millimetres of mercury (%BOLD/mmHg) as indicated by the gas analyser manufacturer.1

In this way, a lag-optimised CVR map and a t-value map were obtained, together with the 

associated lag map representing the voxelwise delay from the bulk shift, for each analysis 

pipeline. To account for sixty comparisons computed in the lagged GLM approach (one 

per regressor), the CVR and lag maps were thresholded at p<0.05 adjusted with the Šidák 

correction (Bright et al., 2017; Šidák, 1967), and the voxels that were not statistically 

significant were excluded. The maps were further thresholded on the basis of the lag: those 

voxels in which the optimal lag was at or adjacent to the boundary (i.e. |lag | ≥ 8.7 s) were 

considered not truly optimised and not readily physiologically plausible in healthy subjects 

and therefore masked in all maps (Moia et al., 2020).

2.6. Evaluation of motion removal across denoising strategies

For each type of lagged GLM analysis, 4-D volumes representing the modelled noise 

variance were reconstructed by multiplying the optimised beta coefficient maps of the 

nuisance regressors by their time-series using 3dSynthesize in AFNI. Then, they were 

subtracted from the OC or the SE data to obtain five different denoised datasets. DVARS, the 

root of the spatial mean square of the first derivative of the signal (Smyser et al., 2010), was 

computed on each denoised dataset as:

1https://www.adinstruments.com/support/knowledge-base/it-possible-measure-expired-gasses-partial-pressure-mmhg-rather­
percentage. The adopted formula was CO2[mmHg] = (Patm − Pvap)[mmHg] ⋅ 10 ⋅ CO2[V]/100[V], 
where CO2 [V] is the original CO2 timeseries, Patm is the atmospheric pressure in the laboratory at the moment of acquisition, and 
Pvap is the water vapour pressure associated with expired air. The values of Patm = 759 and Pvap = 47 were used for all the sessions.

Moia et al. Page 8

Neuroimage. Author manuscript; available in PMC 2021 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.adinstruments.com/support/knowledge-base/it-possible-measure-expired-gasses-partial-pressure-mmhg-rather-percentage
https://www.adinstruments.com/support/knowledge-base/it-possible-measure-expired-gasses-partial-pressure-mmhg-rather-percentage


DVARSt = It(x) − It − 1(x) 2 , (6)

where It(x) is the image intensity of voxel x and at time t and 〈〉 indicates the spatial 

average over the whole brain. These DVARS timeseries were compared with the Framewise 

Displacement (FD) time courses (Power et al., 2012), computed using the realignment 

parameters estimated during preprocessing using the fsl_motion_outliers tool as:

FDt = |Δdx| + Δdy + |Δdz| + Δα + Δβ + Δγ , (7)

where t denotes the time, dx, dy, dz are the translational displacements along the three axes, 

α, β, γ are the rotational displacements of pitch, yaw, and roll, and Δdx = dx,t−1 − dx,t (and 

similarly for the other parameters). DVARS was also computed on the SE volume before 

preprocessing (SE-PRE) to serve as a reference, as its relationship with FD should be at its 

maximum prior to the effects of motion being removed.

In order to test the moderating effect of each analysis on the relationship between DVARS 

and FD, a Linear Mixed Effects (LME) model was set up using the lme4 and lmer packages 

(Bates et al., 2015; Kuznetsova et al., 2017) in R (R Core Team, 2020), computing the 

p value with Satterthwaite’s method (Satterthwaite, 1946), and accounting for the random 

effect of subject and session. The model was formulated as following in R equation notation:

DVARS FD * model + 1 subject + 1 session (8)

Then, the same model was also used to assess differences in motion removal between pairs 

of denoising strategies. The results were thresholded at p = 0.05 corrected with the Šidák 

correction (Šidák, 1967).

In order to visualise the CVR responses to a BH trial, the average timeseries within GM 

was extracted from each denoised dataset from each model SE-MPR, OC-MPR, ME-AGG, 

ME-MOD, ME-CON, as well as from SE-PRE. These timeseries were transformed to 

BOLD percentage signal change, then the response to individual BH trials from each session 

were extracted using the timing of the third paced breathing cycle as a reference onset, 

and averaged together for each subject. The DVARS and FD timeseries followed the same 

process, except that the FD time-series were not expressed in percentage.

Finally, the amount of BH trials necessary to achieve a robust estimation of the BH response 

was computed for each denoising approach. The Manhattan distance from a pool of a 

gradually increasing number of trials to the average BOLD response over all BH trials 

(across the ten sessions, 80 trials in total) was also computed for each analysis model and 

subject.

2.7. Comparison of CVR and lag estimation and reliability across denoising strategies

For each denoising strategy, the average CVR and lag values across the significant voxels in 

GM and WM was computed for all subjects and all sessions, in addition to the amount of 

statistically significant voxels in the thresholded CVR maps.
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In order to compare the results of the different denoising strategies, the thresholded CVR 

and lag maps of each session were normalised with a nearest neighbour interpolation to 

the MNI152 template (Grabner et al., 2006). Then, a LME model was computed voxelwise 

using 3dLMEr (Chen et al., 2013), considering the effect of subjects and sessions as random 

effects. The model was formulated as following in R equation notation:

X model + 1 subject + 1 session (9)

where X represents either the CVR or the lag value of each voxel. The same model was used 

to perform pairwise comparisons between the different strategies.

After normalising the t-value maps, the normalised CVR and lag maps were used to 

compute the intraclass correlation coefficient (ICC). ICC was computed voxelwise using 

a regularized multilevel mixed effect model in 3dICC (AFNI) in order to take into account 

the standard error of CVR and lag for each session in the ICC estimation (Chen et al., 2018). 

ICC assesses the reliability of a metric by comparing the intersubject, intrasubject, and total 

variability of that metric, which is equivalent to:

ICC(2, 1) ≃ ρ2 = MSsubj − MSn
k
n MSsess − MSn + MSsubj + (k − 1)MSn

(10)

where MSsubj, MSsess, and MSn are the mean squares of the effects of subjects, sessions, and 

residuals respectively, k = 10 is the number of sessions, and n = 7 the number of subjects 

(Chen et al., 2018; Mcgraw and Wong, 1996; Shrout and Fleiss, 1979). ICC(2,1) was chosen 

since both subjects and sessions were considered random effects. High ICC scores indicate 

high reliability, where the intrasubject variability is lower than the intersubject variability. 

Note that, since 3dICC uses the t-statistic map associated with the estimation of the CVR, 

CVR and lag maps used in this computation were thresholded only on the basis of the lag 

and not on the basis of the t-statistic.

3. Results

Three subjects were excluded due poor performance of the BH task in part of the sessions, 

mainly due to inadequate execution of the exhalations preceding and following the apnoea 

that prevented accurate determination of the PETCO2hrf traces. These traces are shown in 

red in Fig. 2 that plots the PetCO2hrf trace for all subjects and sessions. Hence, only the 

seven subjects that had all ten session were used for subsequent analyses (4F, age 25–40y).

3.1. Evaluation of motion removal across denoising strategies

Fig. 3 a illustrates the relationship between FD and DVARS in the raw data (SE-PRE) and 

after removing the reconstructed noise of each analysis model from the SE or OC volume 

for a representative subject; each point represents a timepoint and each line represents the 

linear regression between both timeseries in one session. The corresponding figures for 

the remaining subjects are available as Supplementary Material (Supplementary figure 2). 

Fig. 3b shows the same plot considering all the subjects and sessions. The modulating 

effect of the denoising approaches on the relation between DVARS and FD was tested 
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with a LME model that was found to be significant (F(6,161,181) = 34,597, p<0.001). To 

further investigate the significant differences between analysis strategies, Table 1 reports the 

results of the same LME model considering pairwise combinations of all of the denoising 

approaches. From both Fig. 3 and Table 1, it can be seen that the optimal combination 

(OC-MPR) of ME data reduces DVARS compared to single-echo (SE-MPR). Although a 

similar relationship is observed between DVARS and FD in both approaches, OC-MPR 

significantly reduces the impact of FD compared to SE-MPR (β=715.10, CI95 [710.17, 

720.04], p<0.001). This relationship is even more mitigated in the moderate (ME-MOD) 

(β=145.40, CI95 [141.92, 148.88], p<0.001) and conservative (ME-CON) (β=146.69, CI95 

[143.05, 150.33], p<0.001) denoising approaches, which show similar modulatory effects on 

it. Note that this similarity is common, but not the same for all the subjects; for instance, 

ME-MOD showed larger reduction of motion related effects than ME-CON for two subjects 

(subject 003 and 007), while the opposite pattern was clearly observed in two other subjects 

(subject 004 and 009), and there was no apparent difference in the remaining subjects (see 

Supplementary figure 2). Considering all subjects and all sessions together, the difference 

between the ME-MOD and ME-CON approaches is statistically not significant (β=1.29, 

CI95 [−0.70, 3.27], p>0.5). Compared to OC-MPR, both ME-MOD and ME-CON reduce the 

impact of FD on DVARS (β=130.84, CI95 [127.89, 133.79], p<0.001 and β=132.13, CI95 

[128.99, 135.27], p<0.001 respectively). The aggressive strategy (ME-AGG) is the most 

successful in reducing motion-related effects described by FD on DVARS of all approaches.

Fig. 4 a plots the average percentage DVARS (left column) and average GM percentage 

BOLD response (central column) of all the BH trials across all of the sessions of a 

representative subject. The FD trace features a clear peak right after the end of the apnoea 

(highlighted in grey), likely associated with large head movement caused by the recovery 

breaths following the apnoea period. The percentage DVARS curves of the SE-PRE, SE­

MPR and OC-MPR denoised timeseries reflect this peak in FD, which is absent in the ME­

ICA based denoising timeseries, indicating a strong influence of movement on the signal 

intensity changes. All DVARS curves present a peak at a later time (between timepoints 25 

and 30) that, as DVARS is akin to the first derivative of the BOLD signal changes, may 

agree with the return to the baseline seen in the BOLD response. The percentage BOLD 

signal change curves feature a delayed peak compared to the FD trace, reflecting a delayed 

CVR response compared to instantaneous head movements associated with respiration. 

However, they also feature a modulation in the BOLD signal change in correspondence with 

the peak in the FD trace, with the exception of ME-MOD and ME-AGG. The flattened 

DVARS and BOLD responses seen for ME-AGG indicate that the inclusion of the ME-ICA 

rejected components substantially removes part of the true CVR response, compared with 

the OC-MPR time courses. The average percentage DVARS and percentage BOLD response 

of the other subjects can be found in the Supplementary Material (Supplementary figure 3).

Fig. 4 b plots the Manhattan distance between the average of N trials and the average of all 

80 BH trials as N increases from 1 to 80. ME-AGG tends to be more similar to the total 

average compared to all the other timeseries. For most of the subjects, SE-MPR, OC-MPR 

and ME-MOD have a similar behaviour and need more trials than SE-PRE, ME-CON and 

ME-AGG to converge to the total average. Note that the convergence to the analysis-specific 

‘ground truth’ BH response is not monotonic and fluctuates across trials of the same session 
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and across sessions, indicating that the convergence does not depend only on the number 

of BH trials, but also on their quality and possible physiological variability in the CVR 

response across trials and sessions.

3.2. Cerebrovascular reactivity and lag maps

Fig. 5 and 6 show CVR and lag maps respectively, for all analysis strategies and all 

sessions of a representative subject (subject 002). The CVR and lag maps of other subjects 

are available in the Supplementary Material (Supplementary figure 4 and 5). The CVR 

maps were masked to exclude the voxels that were not statistically significant or whose 

lag is at the boundary of the explored range and might not have been truly optimised or 

physiologically plausible. Across all subjects, SE-MPR features more spatial variation and 

speckled noise in CVR and lag estimates of voxels within the same brain region compared 

to ME approaches like OC-MPR or ME-CON. In general, the ME-AGG and ME-MOD 

approaches do not yield CVR maps with as much clear distinction between brain tissues or 

delineation of the cortical folding and subcortical structures (e.g. see putamen and caudate 

nucleus) as obtained with the OC-MPR and ME-CON models. Amongst the ICA-based 

approaches, the adoption of an aggressive (ME-AGG) or moderate (ME-MOD) modelling 

strategy results in lag maps without anatomically defined patterns, as well as a higher rate 

of voxels with a lag estimation that is not within physiologically plausible range, and in 

CVR maps with lower responses and fewer significant voxels. ME-AGG also produces 

CVR maps with a higher percentage of negative values than any other analysis model, 

and a reduced CVR response in voxels near the posterior part of the superior sagittal and 

transverse sinuses.

Fig. 7 shows the distribution of the average values of CVR, lag, and the percentage of 

significant voxels for all subjects and sessions, and across all denoising strategies after 

thresholding. Considering the summaries within GM, although SE-MPR shows higher 

average CVR compared to the other approaches, it also features lower percentage of 

significant voxels compared to OC-MPR, ME-MOD and ME-CON. ME-AGG shows the 

lowest CVR value of all strategies, the most variable average of lag values, as well as the 

lowest percentage of significant voxels. ME-MOD features a lower percentage of significant 

voxels than SE-MPR, OC-MPR, and ME-CON. The same considerations can be extended 

to the WM. Table 2 reports the subject average CVR, lag, and the percentage of significant 

voxels across all denoising strategies after thresholding for GM only. The same table for 

WM can be found in the Supplementary Material (Supplementary table 1). For all models, 

the average CVR in the GM in the group and in each subject are comparable or higher than 

the BH-induced CVR (in%BOLD/mmHg) reported in previous literature (cfr. Bright et al., 

2011; Bright and Murphy, 2013a; Lipp et al., 2015; Pinto et al., 2016).

3.3. Comparison of CVR and lag estimation and reliability across denoising strategies

Fig. 8 shows the results of comparing the CVR and lag maps across all of the denoising 

strategies. The top row shows the thresholded χ score of the contrast between SE-MPR 

and all other denoising strategies, while the other maps depict the pairwise comparison 

between all of the denoising strategies. Amongst the most interesting comparisons, all of the 

strategies based on ME have lower CVR and an anticipated response in areas vascularised 

Moia et al. Page 12

Neuroimage. Author manuscript; available in PMC 2021 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by big vessels (indicated by an arrow in the figure), where the blood transit time is usually 

faster compared to the rest of the brain. This could indicate that the response shown in 

SE-MPR could be overestimated due to the misestimation of its lag. Compared to SE-MPR, 

ME-MOD shows lower CVR and a delayed response in subcortical areas, while OC-MPR 

and ME-CON show higher CVR and an anticipated response in the insula, frontal, and 

parietal areas. OC-MPR shows no statistically significant differences with ME-CON, but a 

general higher CVR and an anticipated response compared to ME-MOD and ME-AGG, with 

the exception of the cerebellum, where it shows a delayed response. This difference could 

be related to the different local impact of motion artefacts, especially on the cerebellum. 

Between the three approaches based on ME-ICA, ME-AGG features generally lower CVR 

compared to the other two, and a generally anticipated response compared to ME-MOD and 

a delayed response to ME-CON.

In order to assess the reliability of each model, we also computed voxelwise ICC(2,1) maps 

for both CVR and haemodynamic lag. Fig. 9 depicts the ICC(2,1) maps for all analysis 

strategies for both CVR and lag maps, as well as their distributions. High ICC scores 

indicate that the intra-subject variability is lower than the inter-subject variability, hence 

the estimations of CVR or haemodynamic lag can be considered consistent across sessions. 

Conversely, low ICC scores indicate that the inter-subject variability is low compared to 

the intra-subject variability, hence the estimations of CVR and haemodynamic lag cannot 

be considered consistent across sessions. Following the classification given by (Cicchetti, 

2001), an ICC score lower than 0.4 is considered poor, lower than 0.6 fair, lower than 0.75 

good, and equal or higher than 0.75 excellent.

In terms of whole brain CVR reliability, the ME-CON demonstrated excellent reliability 

(spatial average across the whole brain of 0.86 ± 0.16) as well as the highest ICC values 

amongst all methods tested, closely followed by the OC-MPR (excellent, 0.85 ± 0.16), 

SE-MPR (excellent, 0.81 ± 0.19), and ME-MOD (excellent, 0.79 ± 0.19), while ME-AGG 

had a fair reliability (0.46 ± 0.22). If only voxels in GM are considered, the ICC of all 

approaches increases slightly (0.88 ± 0.14, 0.87 ± 0.15, 0.85 ± 0.17, 0.82 ± 0.17, and 0.49 ± 

0.22 for ME-CON, OC-MPR, SE-MPR, ME-MOD, and ME-AGG respectively). Despite the 

average fair reliability observed for ME-AGG, it can be observed that this approach exhibits 

a considerable number of voxels with poor reliability (ICC below 0.4). These voxels are 

mostly located in white matter, which also exhibit lower ICC values in the other analyses. 

In terms of whole-brain lag reliability, OC-MPR performed the best (good reliability, 0.67 

± 0.21), closely followed by ME-CON (good reliability, 0.66 ± 0.21). SE-MPR, ME-MOD, 

and ME-AGG demonstrated fair lag reliability (0.6 ± 0.22 and 0.42 ± 0.19, 0.41 ± 0.20, 

respectively). Considering only GM voxels, the reliability of all the approaches increases 

minimally (0.68 ± 0.21, 0.67 ± 0.21, 0.61 ± 0.21, 0.43 ± 0.19, 0.42 ± 0.20, for OC-MPR, 

ME-CON, SE-MPR, ME-MOD, and ME-AGG respectively). The reliability of CVR lag 

estimates was lower than that of CVR amplitude estimates, even though certain cortical 

regions, such as the visual and motor cortices, also show excellent ICC values for the OC­

MPR and ME-CON denoising approaches. Interestingly, it can be observed that ME-MOD 

offers excellent ICC values for the CVR response amplitude in grey matter voxels, whereas 

they are poor for the lag estimates.
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4. Discussion

In this study, we compared five different analysis strategies based on a lagged GLM model 

(Moia, Stickland, et al., 2020) to simultaneously remove motion-related effects and non­

BOLD artefacts in the BOLD fMRI signal while estimating CVR and haemodynamic lag 

in order to identify the best modelling approach for BH paradigms in which prominent 

task-correlated artefacts coexist with the effect of interest. The lagged GLM model adopted 

in this study is similar to other models for CVR estimation that take into account local 

variations in the haemodynamic lag (Donahue et al., 2016; Geranmayeh et al., 2015; 

Murphy et al., 2011; Sousa et al., 2014; Tong et al., 2011). The main difference with 

such models is that, in this lagged GLM approach, after a first bulk shift that matches 

the average GM response with the PETCO2hrf regressor, the denoising and the voxelwise 

optimised response estimation take place simultaneously. This ensures that the interaction 

between regressors is properly taken into account and that the degrees of freedom of the 

model are properly estimated in the computation of the statistics. Amongst all possible 

modelling strategies, the five presented here were included in our analysis for different 

reasons. The optimal combination of ME fMRI data, with subsequent motion and Legendre 

polynomial regression (MPR), was expected to remove more noise and improve reliability of 

the CVR estimation due to its increased BOLD sensitivity compared to MPR on single-echo 

data, which is the standard approach for BH CVR estimation (Cohen and Wang, 2019). 

However, while optimal combination of ME volumes alone can partially reduce the noise 

present in the data, it still cannot remove motion artefacts, as illustrated in Fig. 3, in which 

SE-MPR and OC-MPR exhibit the same dependence of signal changes (DVARS) with 

motion (FD). For this reason, we further adopted three different ME-ICA based approaches, 

ranging from a conservative to an aggressive motion removal. ICA-based approaches are 

known to outperform traditional MPR in typical denoising fMRI data, possibly because they 

can identify and separate artefactual sources in the data in a data-driven and non-linear 

manner (Griffanti et al., 2014; Pruim et al., 2015a, 2015b; Salimi-Khorshidi et al., 2014). 

We did not apply ICA to single-echo data because it has already been demonstrated that 

ICA-based denoising applied to OC data outperforms ICA denoising applied to single-echo 

data (Dipasquale et al., 2017) and the ICs estimated from OC data might not have matched 

the ICs obtained from single-echo data, making such comparison less straightforward than 

the one based on MPR.

Spatial ICA decomposition is applied to fMRI data more often than temporal ICA 

decomposition, as the latter requires many more samples in time than normally available. 

Having many sessions for each subject, temporal ICA could have been leveraged in this 

study. In fact, temporal ICA could be more appropriate than spatial ICA to estimate a 

proper decomposition of timeseries sources (Smith et al., 2012), improving the modelling 

of temporal noise (Glasser et al., 2018), and potentially leading to better disentanglement 

of noise from CVR effects. However, we decided to apply spatial ICA in order to maintain 

the independence of each session, both to simulate a more common denoising approach to 

fMRI data, and to be able to capture session-specific noise contributions that could have 

been missed otherwise. Further studies could compare temporal and spatial ICA denoising 

for CVR mapping when many temporal samples have been collected in the same session, 
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for instance reducing the TR by acquiring fewer echoes. Here, our decision to acquire five 

echoes, instead of conventional multi-echo protocols with three or four echoes, was made to 

facilitate and improve the classification of the ICs based on their TE-dependence (Kundu et 

al., 2013).

The choice of comparing different levels of orthogonalisation of only the ICA-based 

nuisance regressors compared to regressors of interest might seem in contrast with previous 

literature, that suggests that orthogonalisation of collinear confounding factors could lead to 

misinterpreted results (Mumford et al., 2015). Our results clearly demonstrated that using 

the original (e.g., non orthogonalised) rejected ICs as nuisance regressors in the analysis 

(ME-AGG) removes the CVR effect of interest (see Figs. 4, 5, 6 and 9). To decide which 

regressors should be orthogonalised, and with respect to what, we considered the different 

origin of the nuisance regressors. While Legendre polynomials and motion parameters 

can be considered adequate models of noise sources in the data, intrinsic data-driven 

regressors may well contain variance related to the effect of interest, especially as spatial 

ICA was adopted and because of the high collinearity between the PETCO2hrf, motion, 

physiological adaptations to vascular dilation (e.g. cerebrospinal fluid flows), or changes in 

the magnetisation related to breathing (Raj et al., 2001). In these scenarios, it becomes more 

important to understand how to properly implement ICA denoising in order to preserve the 

effect of interest. For these reasons, three different ICA-based approaches were selected, 

from an aggressive strategy to a conservative approach, to assess if they preserved the BOLD 

effects related to the CVR response happening at different lags.

As hypothesized, all of the ME-based solutions outperformed the SE-MPR model in their 

ability to account for the effect of motion, summarized in terms of FD, on the fMRI 

signal intensity changes, described in terms of DVARS (see Fig. 3). Furthermore, all of 

the ICA-based strategies outperformed traditional MPR, and within ICA-based strategies, 

the aggressive one (ME-AGG) showed the best performance to remove these motion­

related effects in the signal. However, observing the average DVARS and BOLD response 

timecourses (Fig. 4) and the CVR and lag maps (Figs. 5 and 6) it becomes evident how 

the aggressive and moderate approaches result in lower estimates of CVR responses, even 

compared to the SE-MPR approach. Similarly, these two approaches result in the estimated 

haemodynamic lag hitting the boundaries of a physiologically plausible lag range in healthy 

adults. The substantial reduction in the CVR estimates in the aggressive approach (Figs. 4 

and 5) occurs because the effect of interest can also be explained as a linear combination 

of the timecourses of rejected ICs related to motion, vascular effects or large susceptibility 

changes due to chest expansions and contractions while performing the BH task (Caballero­

Gaudes and Reynolds, 2017; Griffanti et al., 2017). As for the moderate approach, the 

lower estimates of CVR could be due to the fact that orthogonalising data-driven nuisance 

regressors with respect to the PETCO2hrf trace per sé is not sufficient to save all the variance 

associated to real CVR. The PETCO2 trace can only be estimated during exhalations, hence 

it is unable to capture local dynamic signal changes that are captured by ICs timeseries. 

Furthermore, CVR has a sigmoidal non-linear relation with the PETCO2hrf trace (Bhogal 

et al., 2014), and the local BH-induced BOLD response has a complex shape, in terms of 

response amplitude and temporal delays, due to multiple physiological factors (Magon et al., 

2009) that must be accounted for in order to improve its estimation. Our results illustrate 
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that these local complexities might be adequately captured by the linear combination of the 

accepted ICs timecourses, and not removing this variance from the rejected ICs when they 

are included as nuisance regressors in the model is detrimental (as observed with the ME­

MOD and ME-AGG approaches). In other words, only a conservative approach (ME-CON) 

that preserves the BOLD variance associated with local CVR responses performs well, while 

also reducing motion-related effects more than conventional MPR models.

To further explore the benefit of different modelling strategies, we assessed the reliability 

of the resulting CVR and haemodynamic lag maps over the course of two and a half 

months (ten sessions) using ICC(2,1). To our knowledge, this was the first time that CVR 

reliability was tested over the course of ten sessions in individual subjects, and the first 

time that intersession haemodynamic lag reliability was tested. The ME-CON and OC-MPR 

strategies featured the greatest reliability for CVR and lag estimation, while the ME-AGG 

and ME-MOD approaches produced lower reliability values than even the simple SE-MPR 

model.

The lag maps are computed as the temporal offset related to the bulk shift, which is obtained 

by aligning the average GM BOLD response with the PETCO2hrf trace. If the bulk shift 

computation is misestimated this would create a systematic bias in the estimated lag maps, 

potentially reducing the apparent intersession reliability. While the CVR reliability should 

not be affected by this issue, due to the use of a lagged GLM approach that can overcome 

bulk shift misestimation (see session 4 of subject 007 in Supplementary figure 4 and 5), the 

true lag map reliability might be higher than reported here.

Regarding CVR reliability, the whole-brain average reliability of SE-MPR was comparable 

to long-term reliability (days or weeks apart) found in previous studies of CVR induced 

by BH (Peng et al., 2019), by paced deep breathing (Sousa et al., 2014), or by gas 

challenges (Leung et al., 2016), and higher than that reported in other studies on BH induced 

CVR estimated with a non-lagged optimized PETCO2hrf trace (Lipp et al., 2015) or with 

Fourier modelling (Pinto et al., 2016), and by gas challenges (Dengel et al., 2017; Evanoff 

et al., 2020). Consequently, the reliability of CVR estimates obtained with the optimal 

combination dataset and conservative ME-ICA modelling approaches were found higher 

than those previously reported in the literature. However, all strategies produced a reliability 

that was lower than the short-term (within-session) reliability reported in BH induced CVR 

(Peng et al., 2019), resting state based CVR (P. Liu et al., 2017), and gas challenge induced 

CVR (Leung et al., 2016), although lower intersession reliability in gas challenges has also 

been reported (Dengel et al., 2017; Evanoff et al., 2020). Note that the reliability observed 

in this study seems to be globally higher and spatially less variable than that reported 

in previous studies (Lipp et al., 2015; Sousa et al., 2014). However, discrepancies in the 

reliability measurements might be related to the different methods used to compute the CVR 

maps and the ICC score itself.

Using ICC to test reliability has the drawback that higher scores might be related to 

the presence of residual task-correlated motion effects that artificially stabilise the CVR 

estimation and reduce intra-subject variability compared to intersubject variability. In fact, 

recent studies have shown that individuals have particular movement patterns during fMRI 
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sessions that may be a stable characteristic of a person (Bolton et al., 2020) related to 

stable physical characteristics, such as body mass index (Ekhtiari et al., 2019) and could 

even be a heritable characteristic (Couvy-Duchesne et al., 2014; Hodgson et al., 2017). If 

subjects have similar motion patterns across the 10 repeated sessions, fMRI responses might 

appear more similar than they truly are, and the ICC might be inflated by such effects. 

Moreover, higher spatial reliability does not necessarily mean higher accuracy: a denoising 

strategy might be systematically misestimating CVR or haemodynamic lag. The fact that 

both optimal combination with traditional nuisance regression and the conservative ME­

ICA denoising approaches resulted in similar CVR and lag spatial patterns and exhibited 

higher reliability than the single-echo model, while at the same time reduced the apparent 

effect of motion on the data variance, suggests that such drawbacks are mitigated in our 

data. However, further studies could compare different BH analysis strategies with a CVR 

estimation based on an independent computerised gas delivery protocol.

Another possibility would be to assess CVR in resting state fMRI, either measuring resting 

fluctuations in exhaled CO2 levels (Golestani et al., 2016; Lipp et al., 2015), or by using 

a band of the power spectrum of the global signal as a regressor of interest (Liu et al., 

2017, 2020). Such method might be more robust to motion collinearity, as the amount 

of movement in each breath is less pronounced and not consistently time-locked to the 

paradigm cues. At the same time, the lower amplitude of intrinsic CO2 fluctuations relative 

to BH CO2 change might also make this approach more susceptible to general motion 

effects and other sources of variance (e.g. neural or artefactual) unrelated to CO2. Moreover, 

previous work has shown that the optimal temporal shift between BOLD and PETCO2 is 

hard to reliably identify in resting state data alone, in contrast to BH datasets where the 

temporal shift can be reliably identified (Bright et al., 2017; Stickland et al., 2021). Current 

resting state fMRI methods for CVR mapping may therefore be inappropriate to use with 

the lagged GLM approach that we have applied here. Either way, the analyses presented 

in this study can be easily implemented in other CVR assessment pipelines to mitigate the 

dependence of the response on motion. Beyond BH-based CVR studies, similar conclusions 

might be applicable to other experimental paradigms that present high collinearity between 

the expected task induced activity and artefactual sources, such as in overt speech production 

with long trial durations (Birn et al., 1999, 2004; Gracco et al., 2005), and that aim to use 

(ME-) ICA-based nuisance regressors as part of the model.

Note that MPR and ICA denoising are not the only viable options to reduce motion effects 

on fMRI and BH-induced CVR in particular: advanced setups can be used to reduce motion 

during the acquisition itself. For instance, subject specific moulded head casts can be used 

to reduce head motion (Power et al., 2019). Mounting an MRI compatible camera or tracker 

in the scanner enables prospective motion correction techniques (Faraji-Dana et al., 2016; 

Maziero et al., 2020; Parkes et al., 2018; Schulz et al., 2014; Zaitsev et al., 2017) or 

concurrent field monitoring enables the dynamic correction of field distortions dynamically 

(Vannesjo et al., 2015; Wilm et al., 2015) in order to effectively reduce effects of motion 

and magnetic field susceptibility changes. However, such advanced setups are not always 

available.
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A limitation of this study is that the results are influenced by the manual classification 

of the ICA components performed by two of the authors. Despite being based on the 

automatic classification made by tedana (DuPre et al., 2019), we adopted a manual approach 

because often multiple ICs clearly exhibiting CVR-related timeseries and spatial maps were 

misclassified as noise. This manual classification was made with a cautious approach: 

if an IC seemed to be temporally and spatially related to the CVR response, it was 

accepted. Manual classification is still considered the gold standard for the classification 

of ICA components when performed by experts, despite the introduction of automatic 

classification algorithms (Griffanti et al., 2017), calling for further improvements in the 

automatic classification of (ME-)ICA components for BH tasks.

Another limitation is the lack of a CO2 automated delivery protocol. The choice not to 

include one was driven by the necessity to reduce the discomfort of the participants during 

the imaging sessions, however further studies should compare denoised CVR maps to a 

CVR estimation based on independent computerised gas delivery protocols. This would also 

help estimating the accuracy of the denoised results on top of the reliability analysis featured 

in the present study.

Moreover, despite the fact that a BH task can be a valid alternative to gas delivery protocols 

for CVR estimation and its easy implementation, not all the subjects in this study could 

perform the task during all of the sessions. In total, 86% of the sessions were completed 

successfully by the subjects, although three subjects had to be excluded due to poor 

performance or non-compliance to the task in a subset of the sessions (four in two subjects 

and six in the third, see Fig. 2).

Finally, it is worth noticing that the adoption of ME imaging requires an increase in TR 

or a decrease in the spatial resolution. A way to cope for this issue is the adoption of 

simultaneous multislice (a.k.a. multi-band) acquisition, and despite the fact that this choice 

might introduce additional slice-leaking artefacts, a ME-ICA based denoising approach can 

successfully deal with their removal (Olafsson et al., 2015). Note that in this study we 

adopted one of the echo volumes as an approximation of a SE acquisition. Further studies 

could evaluate if this solution improves the estimation of CVR compared to SE imaging with 

higher spatial or temporal resolution.

Conclusion

Breath Holding (BH) is a non-invasive, robust way to estimate cerebrovascular reactivity 

(CVR). However, due to the task-correlated movement introduced by the BH task, attention 

has to be paid when choosing an appropriate modelling strategy to remove movement­

related effects while preserving the effect of interest (PETCO2). We compared different 

multi-echo (ME) independent component analysis (ICA) based denoising strategies to 

the standard data acquisition and analysis procedure, i.e. single-echo motion parameters 

regression. We found that a conservative ICA-based approach, but not an aggressive 

or moderate ICA approach, best removes motion-related effects while obtaining reliable 

CVR and lag responses, although a simple optimal combination of ME data with motion 

parameters regression provides similar CVR and lag estimations, and both ME-based 

approaches offer improvements in reliability compared with single-echo data acquisition.
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Fig. 1. 
Schematic of Breath-Hold trial. Apnoea was preceded and followed by exhalations.
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Fig. 2. 
PETCO2hrf trace for all subjects and all sessions. Rejected sessions are plotted in red. 

Rejection was based on having less than three proper PETCO2 increases after breathholds or 

having more PETCO2 decreases than increases after breathholds. Note that the first session 

of subject 10 was lost due to a software malfunction during acquisition.
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Fig. 3. 
Unthresholded CVR map obtained with the different lagged-GLM analysis for all of 

the sessions of a representative subject (subject 002). The maps are not thresholded for 

statistical significance, but the voxels with lag that is higher than 8.4 (or lower than 

−8.4) seconds are removed (see text). Note the low CVR response in ME-AGG, depicting 

numerous voxels with a negative values, as well as the increased amount of masked 

voxels in SE-MPR, ME-AGG and ME-MOD due to high lag value (see text). SE-MPR: 

single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; 

ME-CON: conservative. The CVR maps of other subjects are available in the Supplementary 

Material. The thresholded version of this figure is available at https://zenodo.org/record/

4739486.
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Fig. 4. 
(A) Average GM %DVARS and %BOLD response of all BH trials across ten sessions for the 

same representative subject. The apnoea period is highlighted in grey. Each transparent line 

is a trial, the solid line is the average across all the trials. (B) Manhattan distance between 

the average of N trials and the average of all 80 BH trials as N increases from 1 to 80 

for each subject. Each vertical line divides the number of trials in each session. SE-PRE: 

raw data; SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME­

MOD: moderate; ME-CON: conservative. The average %DVARS and %BOLD response of 

the other subjects can be found in the Supplementary Material (Supplementary figure 2).
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Fig. 5. 
Thresholded CVR map obtained with the different lagged-GLM analysis for all the sessions 

of a representative subject (subject 002). Note the low CVR response in ME-AGG, depicting 

numerous voxels with a negative values, as well as the increased amount of masked 

voxels in SE-MPR, ME-AGG and ME-MOD. SE-MPR: single-echo; OC-MPR: optimally 

combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative. The CVR 

maps of other subjects are available in the Supplementary Material.

Moia et al. Page 33

Neuroimage. Author manuscript; available in PMC 2021 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Unthresholded lag map obtained with the different lagged-GLM analysis, for all the sessions 

of a representative subject (same as Fig. 5). These lag maps represent the delay between the 

best shifted version of the PETCO2hrf trace and the bulk shift (i.e. the best match between 

average grey matter signal and PETCO2hrf trace). The scale from −5 to + 5 represents earlier 

to later haemodynamic responses. Note the lack of anatomically informative patterns in 

ME-MOD and ME-AGG. SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: 

aggressive; ME-MOD: moderate; ME-CON: conservative. The lag maps of other subjects 

are available in the Supplementary Material.
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Fig. 7. 
Average values of CVR, lag, and percentage of significant voxels, for voxels in the grey and 

white matter tissues separately, for all denoising strategies. The dots correspond to a singular 

session of a singular subject considered an outlier in the distribution. Note that all maps 

were thresholded before plotting. SE-MPR: single-echo; OC-MPR: optimally combined; 

ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative.
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Fig. 8. 
Top row: Thresholded χ value of the LME model used for the comparison of CVR 

and lag maps across all denoising strategies. Other rows: pairwise comparison between 

denoising strategies. Arrows indicate areas vascularised by big vessels. SE-MPR: single­

echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME­

CON: conservative.
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Fig. 9. 
ICC(2,1) maps of CVR (left) and haemodynamic lag (right) for each analysis pipeline. The 

maps are thresholded at 0.4 since scores lower than it indicate poor reliability. A high ICC 

score indicates that the inter-subject variability is higher than the intra-session variability, 

while a low ICC score suggest that the variability across sessions is the same as the one 

across subjects. Following the classification given by Cicchetti (2001), an ICC score lower 

than 0.4 is considered poor, lower than 0.6 fair, lower than 0.75 good, and equal or higher 

than 0.75 excellent. The bottom rows depict the whole brain distribution of ICC scores 

across voxels. Note how OC-MPR and ME-CON have generally higher ICC scores than the 

other approaches, and are very similar to each other, while ME-AGG has the lowest ICC 

scores for both CVR and lag maps. SE-MPR: single-echo; OC-MPR: optimally combined; 

ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative. The distribution of 

ICC scores across grey matter voxels only is available in the Supplementary Material 

(Supplementary figure 6).
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