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ABSTRACT: Background: The neuronal protein alpha-
synuclein (α-Syn) is crucially involved in Parkinson’s dis-
ease pathophysiology. Intriguingly, torsinA (TA), the protein
causative of DYT1 dystonia, has been found to accumulate
in Lewy bodies and to interact with α-Syn. Both proteins
act as molecular chaperones and control synaptic machin-
ery. Despite such evidence, the role of α-Syn in dystonia
has never been investigated.
Objective: We explored whether α-Syn and N-
ethylmaleimide sensitive fusion attachment protein
receptor proteins (SNAREs), that are known to be modu-
lated by α-Syn, may be involved in DYT1 dystonia synap-
tic dysfunction.
Methods: We used electrophysiological and biochemical
techniques to study synaptic alterations in the dorsal stri-
atum of the Tor1a+/Δgag mouse model of DYT1 dystonia.
Results: In the Tor1a+/Δgag DYT1 mutant mice, we
found a significant reduction of α-Syn levels in whole
striata, mainly involving glutamatergic corticostriatal
terminals. Strikingly, the striatal levels of the vesicular
SNARE VAMP-2, a direct α-Syn interactor, and of the

transmembrane SNARE synaptosome-associated protein
23 (SNAP-23), that promotes glutamate synaptic vesicles
release, were markedly decreased in mutant mice. More-
over, we detected an impairment of miniature gluta-
matergic postsynaptic currents (mEPSCs) recorded from
striatal spiny neurons, in parallel with a decreased asyn-
chronous release obtained by measuring quantal EPSCs
(qEPSCs), which highlight a robust alteration in release
probability. Finally, we also observed a significant reduc-
tion of TA striatal expression in α-Syn null mice.
Conclusions: Our data demonstrate an unprecedented
relationship between TA and α-Syn, and reveal that α-Syn
and SNAREs alterations characterize the synaptic dysfunc-
tion underlying DYT1 dystonia. © 2022 The Authors. Move-
ment Disorders published by Wiley Periodicals LLC on
behalf of International Parkinson Movement Disorder
Society.
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Impairment of the synaptic vesicles machinery and
neurotransmission is a characteristic feature of dif-
ferent movement disorders, including Parkinson’s
disease (PD), dystonia, and parkinsonism with
dystonia.1,2

Alpha-synuclein (α-Syn), a synaptic enriched pro-
tein member of the synucleins family, participates
in the neuropathophysiology of PD.3,4 Besides PD,
its pathological aggregates characterize a wider
group of neurodegenerative disorders defined as syn-
ucleinopathies.3,4 In humans, α-Syn is encoded by
the SNCA gene, located on chromosome 4q21. The
main SNCA transcript gives rise to the production
of a protein of 140 amino acids, which is ubiqui-
tously expressed in the peripheral and central ner-
vous system.4

Although α-Syn functions are not entirely disclosed, it
is known to play a role in maintaining the recycling
pool of synaptic vesicles and modulating the assembly
of soluble N-ethylmaleimide-sensitive factor attachment
protein receptor (SNARE) complex.5,6 In particular,
α-Syn acts as a chaperone to promote SNARE complex
assembly and to limit the trafficking and recycling of
synaptic vesicles, thus controlling neurotransmitter
release also by direct binding to vesicle-associated mem-
brane protein-2 (VAMP-2/synaptobrevin-2).6,7 Con-
versely, the pathological deposition of α-Syn in
insoluble aggregates at synaptic terminals affects
SNARE proteins (SNAREs) distribution in the brain of
PD patients and in experimental synucleinopathy
models exhibiting neurotransmitter release failure.8,9

These findings are of particular interest in the context
of PD and Lewy body (LB) dementia, as in the brains
of the patients affected by these disorders the deposition
of α-Syn aggregates at synaptic sites is several orders of
magnitude higher than the amount of the protein com-
posing LB.10 Despite compelling evidence supporting
the existence of possible overlapping mechanisms in PD
and dystonia,11 the role of α-Syn and SNAREs in the
latter has never been investigated.
Early-onset generalized torsion DYT1 dystonia

(DYT1) is an autosomal dominant movement disorder
caused by a GAG deletion in the TOR1A gene coding
for torsinA (TA).12 Loss of the reciprocal modulation
between the dopaminergic and cholinergic systems and
synaptic plasticity imbalance point to synaptic dysfunc-
tion as a major pathophysiological alteration of DYT1
dystonia.13–15 TA is a member of the AAA+ superfam-
ily of ATPases, which typically act as chaperones in the
endoplasmic reticulum (ER).16 However, the interaction
between TA and snapin supports the hypothesis that
TA may influence synaptic vesicles dynamics in neu-
rons.17,18 Indeed, ΔE-TA overexpression affects vesicle
exocytosis, thus resulting in the accumulation of the
calcium (Ca2+) sensor synaptotagmin I (Syt I) on the
plasma membrane through a mechanism that involves

snapin regulation.17 In this way, TA acts as a chaper-
one at the synapse level affecting synaptic vesicles turn-
over and neurotransmitter release.19 Intriguingly, TA
has been found to accumulate in LB, where it interacts
with α-Syn.20 Moreover, a recent study has shown that
dystonia-related genes may converge in common path-
ways linked to α-Syn and synaptic signaling.21 Consis-
tently, α-Syn null mice exhibit a decrease in striatal
dopamine release as well as in the expression of some
synaptic markers in the striatum, such as Syt and the
dopamine transporter (DAT).22 α-Syn and TA can both
modulate DAT trafficking23–25 and affect corticostriatal
plasticity.14,26,27 The two proteins are detectable in
striatal synapses where α-Syn is mostly localized at
glutamatergic terminals and controls the mobilization
of glutamate from reserve pools.28–31 Finally, TA can
affect synaptic vesicle recycling analogously to α-Syn.17,32–
35 Together, these findings suggest that both TA and
α-Syn play a major role in the control of synaptic
homeostasis.36–38

Here, we investigated the possible occurrence of alter-
ations in α-Syn and SNAREs levels in association with
functional changes in the striatum of the Tor1a+/Δgag

knock-in DYT1 mouse model. Our findings reveal that
Tor1a+/Δgag mice exhibit a specific reduction of α-Syn
levels in glutamatergic striatal terminals in association
with an imbalance of synaptic proteins related to the
SNARE complex. In parallel, we observed a remarkable
decrease of miniature and quantal excitatory postsyn-
aptic currents (mEPSC and qEPSC, respectively)
recorded from striatal spiny projection neurons (SPNs),
in the absence of alterations in GABAergic currents,
indicating a significant impairment in release probabil-
ity. These findings suggest that alterations in α-Syn
expression and SNAREs may cause vesicle recycling
alterations, with an ensuing impact on synaptic activity
and plasticity.

Results
Striatal Levels of α-Syn are Reduced in

Tor1a+/Δgag DYT1 Mouse Model
The loss of the reciprocal modulation between the

dopaminergic and cholinergic systems and cor-
ticostriatal plasticity imbalance suggest that synaptic
dysfunction contributes to the pathophysiology of
DYT1 dystonia.13,14 Western Blot studies and confocal
imaging were performed to analyze the levels of α-Syn
in the dorsal striatum of Tor1a+/Δgag DYT1 mice. In
striatal lysates from mutant mice, we observed signifi-
cantly reduced levels of α-Syn protein compared to
control samples (Fig. 1A; **P < 0.01). In addition, con-
focal analysis showed a significant reduction of α-Syn-
positive signal in mutant mice striatum compared to
control (Fig. 1B; *P < 0.05). Interestingly, this
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downregulation was peculiar for DYT1, since the
striatal levels of α-Syn were unchanged in a different
dystonia model, the GNAL (DYT25) rat model
(Fig. 1C; P > 0.05). DYT1 mice exhibit a decrease of
TA levels of approximately 50% with respect to
wild-type littermates, suggesting that the Δgag is a
loss-of-function mutation.38,39 To evaluate whether

α-Syn could affect TA protein levels, we also assessed
striatal TA levels in α-Syn null mice. Surprisingly, we
found a significant reduction (47%) of striatal TA
level in α-Syn null mice compared to controls
(Fig. 1D; *P < 0.05), suggesting the existence of a
reciprocal modulatory interaction between these two
proteins.

FIG. 1. Striatal levels of alpha-synuclein (α-Syn) are reduced in Tor1a+/Δgag DYT1 dystonia mouse model. (A) Representative Western Blot (WB) show-
ing α-Syn protein level reduction in the dorsal striata from Tor1a+/Δgag mice. The graph shows the quantitative analysis of α-Syn levels normalized to
Tor1a+/+ mice. The amount of α-Syn was quantified relatively to β-actin. Data are presented as mean � SEM (Tor1a+/+ = 1 � 0.05, N = 14;
Tor1a+/Δgag = 0.72 � 0.06, N = 12; **P < 0.01). (B) Representative confocal images showing a reduction in the α-Syn fluorescence signal in the dorsal
striatum of Tor1a+/Δgag and Tor1a+/+ mice (Tor1a+/+ = 3546 � 489 μm2, N = 6; Tor1a+/Δgag = 1837 � 341 μm2, N = 5; *P < 0.05). Scale bar = 20 μm.
(C) Representative WB showing α-Syn protein level unchanged in the dorsal striata from GNAL+/� rat. The graph shows the quantitative analysis of
α-Syn levels normalized to GNAL+/+ rat. The amount of α-Syn was quantified relatively to GAPDH levels. Data are presented as mean � SEM
(GNAL+/+ = 1 � 0.08, N = 9; GNAL+/� = 0.91 � 0.06, N = 9; not significant [NS]) (D) Representative WB showing torsinA (TA) protein level reduction
in the dorsal striata from α-Syn null mice. The graph shows the quantitative analysis of TA. The amount of ΤΑ was quantified relatively to α-tubulin
(C57BL/6J = 1.07 � 0.19, N = 4; C57BL/6JOlaHsd = 0.57 � 0.08, N = 4; *P < 0.05). [Color figure can be viewed at wileyonlinelibrary.com]
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Impaired Protein Expression of SNAREs
Complex in Tor1a+/Δgag Mice

The SNARE complex mediates the fusion between synap-
tic vesicles and the presynaptic terminals. It consists of a
number of proteins including the vesicle-associated SNAREs
(v-SNAREs) VAMP-2 and the target cell-associated
SNAREs (t-SNAREs) syntaxin I and synaptosome-
associated protein 25 kD (SNAP-25) or homologs. SNARE
complex formation is maintained by canonical chaperones
but also by non-classical chaperones such as α-Syn.40 Since
α-Syn may promote SNARE complex assembly through
direct binding to VAMP-25,7 we quantified the expression
of syntaxin-1, VAMP-2, SNAP-25, and its ubiquitously
expressed homolog SNAP-23 in striatal lysates. We found
that the levels of VAMP-2 were significantly reduced in the
lysates from Tor1a+/Δgag mice when compared to Tor1a+/+

samples (Fig. 2; **P < 0.01). In addition, in the lysates from
Tor1a+/Δgag mice we also observed a significant reduction
of SNAP-23 (Fig. 2; **P < 0.01) when compared to
Tor1a+/+ samples, although the (t-SNAREs) syntaxin-1 and
SNAP-25 were unchanged (Fig. 2; P > 0.05).

α-Syn Co-localizes with VGLUT-1 in
Corticostriatal Glutamatergic Terminals

In the striatum, α-Syn is most abundant in excitatory
when compared to inhibitory synapses and co-localizes
mainly with vesicular glutamate transporter-1 (VGLUT-
1), and, to a lesser extent, with VGLUT-2.29,41,42 Thus,
in order to evaluate possible changes of striatal dopami-
nergic, glutamatergic, and GABAergic synaptic termi-
nals, we measured the areas immunopositive for the
specific markers DAT, VGLUT-1, and vesicular
GABA transporter (VGAT), respectively. (Fig. 3A). We
found a significant reduction of DAT- and VGLUT-
1-immunopositive areas (Fig. 3B; *P < 0.05 and
**P < 0.01, respectively), while the VGAT-positive area
was unchanged (Fig. 3B; P > 0.05). Then, we performed
a co-localization analysis of the areas positive for both
α-Syn and the specific immunolabeling for the different
synaptic markers (Fig. 3A). In particular, we assessed the
co-localization rate, which represents the α-Syn immuno-
positive signal (in pixels) overlapping with the immuno-
positive signal of each of the specific markers (DAT,
VGLUT-1, and VGAT). This co-localization rate
was then normalized versus the overall area of
immunopositivity of each of the assessed markers in
order to estimate the amount of α-Syn localized in
DAT-, VGLUT-1-, or VGAT-positive terminals. Interest-
ingly, the co-localization analysis showed a significant
decrease only in the amount of α-Syn localizing within
VGLUT-1-immunopositive corticostriatal terminals in
Tor1a+/Δgag mice when compared to Tor1a+/+ animals
(Fig. 3C; *P < 0.05), while no changes were detected in
the α-Syn within VGAT- and DAT-positive terminals.
This supports the observation that mutant TA-associated

striatal α-Syn decrease mainly involves glutamatergic
terminals.

Glutamatergic mEPSC are Altered in
Tor1a+/Δgag Mice

α-Syn limits the trafficking and recycling of synaptic
vesicles attenuating neurotransmitter release by its inter-
action with VAMP-2.7,43,44 To explore potential differ-
ences in neurotransmitter release induced by a reduced
expression of α-Syn, VAMP-2, and SNAP-23, we per-
formed whole-cell patch-clamp recording experiments
to analyze spontaneous inhibitory (GABA-mediated)
and excitatory (glutamate-mediated) postsynaptic
currents (sIPSCs and sEPSCs, respectively) in SPNs from
both Tor1a+/+ and Tor1a+/Δgag mice. Then, we recorded
the frequency and amplitude of miniature currents
(mIPSC and mEPSC) to evaluate presynaptic vesicle
release. GABAergic sIPSCs and mIPSCs were unchanged
in Tor1a+/Δgag with respect to Tor1a+/+ littermates
(Fig. 4A,B; P > 0.05) in line with our recent observa-
tions.45 In addition, glutamatergic sEPSCs did not differ
between genotypes (Fig. 4C; P > 0.05), as previously
demonstrated.14 However, we found a significant
decrease in the amplitude and frequency of mEPSCs
recorded from Tor1a+/Δgag mice when compared to wild-
type animals (Fig. 4D; *P < 0.05). No changes in kinetic
properties were observed between genotypes (data not
shown; decay time constant: Tor1a+/+ 8.18 � 0.86 ms;
Tor1a+/Δgag 11.10 � 1.52 ms, rise time: Tor1a+/+

3.11 � 0.19 ms; Tor1a+/Δgag 3.50 � 0.26 ms; P > 0.05).
The reduction of mEPSC reflects an impairment of the
vesicular glutamate content that is reminiscent of that
observed in α-Syn knockout (KO) mice.31 Of note, west-
ern blot analysis showed a down-regulation of SNAP-23
which, unlike SNAP-25, is important for the functional
regulation of glutamate receptors.46 Remarkably, these
are pivotal for glutamatergic transmission that is signifi-
cantly reduced in neurons from VGLUT-1 KO mice
where the loss of glutamate presynaptic loading and
release impacts on synaptic vesicle cargoes turnover.47,48

Our electrophysiological results also appear consistent
with our present data showing a reduced α-Syn expres-
sion specifically in the VGLUT-1 terminals. Collectively,
these data are supportive of the possible occurrence of an
altered vesicle turnover, indicative of a dysfunctional pre-
synaptic glutamatergic transmission in DYT1 mice.

Downregulated Asynchronous Release in
Tor1a+/Δgag Mice

The synaptic membrane-fusion machinery is con-
trolled by Syt I, which acts as a calcium (Ca2+) sensor
to regulate exocytosis during synchronous and
asynchronous release.49,50 Remarkably, while the syn-
chronous release relies on the immediately releasable
vesicles pool, asynchronous release can also involve
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recycling and reserve pools, which are regulated by
α-Syn.33,34 In glutamatergic neurons, synchronous
release requires SNAP-25, while SNAP-23 only

supports asynchronous release.51 In addition, gluta-
matergic transmission is reduced in neurons from
VGLUT-1 KO mice, specifically in quantal size.46

FIG. 2. Striatal levels of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in Tor1a+/Δgag DYT1 dystonia mouse
model. Representative Western Blot (WB) showing SNARE proteins level in the dorsal striata of Tor1a+/Δgag and Tor1a+/+ mice. The graphs show the
quantitative analysis of vesicle-associated membrane protein-2 (VAMP-2), synaptosome-associated protein 25 (SNAP-25), SNAP-23, and syntaxin
1 normalized to Tor1a+/+ mice. The amount of proteins were quantified relatively to β-actin. Data are presented as mean � SEM (VAMP-2:
Tor1a+/+ = 1 � 0.05, N = 11; Tor1a+/Δgag = 0.79 � 0.04, N = 11; **P < 0.01; SNAP-25: Tor1a+/+ = 1 � 0.04, N = 15;
Tor1a+/Δgag = 1.02 � 0.05, N = 11; not significant [NS]; SNAP-23: Tor1a+/+ = 1 � 0.04, N = 13; Tor1a+/Δgag = 0.75 � 0.07, N = 14; **P < 0.01;
syntaxin 1: Tor1a+/+ = 1 � 0.04, N = 11; Tor1a+/Δgag = 0.91 � 0.05, N = 10; NS).
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Therefore, in order to corroborate our electrophysio-
logical and biochemical data we investigated
quantal-like events (qEPSCs) evoked after cor-
ticostriatal stimulation in SPNs from Tor1a+/+ and

Tor1a+/Δgag mice following the replacement of extra-
cellular Ca2+ with strontium (Sr2+).
When Sr2+-induced asynchronous release was recorded

in Tor1a+/ΔGAG SPNs, both the frequency and the

FIG. 3. Analysis of alpha-synuclein (α-Syn) co-localization with vesicular GABA transporter (VGAT), vesicular glutamate transporter-1 (VGLUT-1), and
dopamine transporter (DAT) in the striatum of Tor1a+/Δgag and Tor1a+/+ mice. (A) Representative double-immunofluorescence confocal images show
the co-labeling of α-Syn with GABAergic marker, glutamatergic marker, and dopaminergic marker: VGAT, VGLUT-1, and DAT, respectively. Scale
bar = 20 μm. (B) Graphs show the immunopositive area of VGAT, VGLUT-1, and DAT (VGAT: Tor1a+/+ = 4310 � 807 μm2, N = 6;
Tor1a+/Δgag = 3497 � 723 μm2, N = 7; VGLUT-1: Tor1a+/+ = 9008 � 1531 μm2, N = 6; Tor1a+/Δgag = 3454 � 856 μm2, N = 7; **P < 0.01; DAT:
Tor1a+/+ = 6861 � 379 μm2, N = 6; Tor1a+/Δgag = 4593 � 816 μm2, N = 7; *P < 0.05). (C) Histograms show the co-localization area between α-Syn
and the respective synaptic marker VGAT, VGLUT-1, and DAT terminals normalized versus the overall amount of the VGAT-, VGLUT-1-, or DAT-
immunopositive area, respectively (VGAT: Tor1a+/+ = 37.25 � 13.53 μm2, N = 6; Tor1a+/Δgag = 29.28 � 8.16 μm2, N = 7; not significant [NS];
VGLUT-1: Tor1a+/+ = 8.62 � 2.47 μm2, N = 6; Tor1a+/Δgag = 2.75 � 5.87 μm2, N = 7; *P < 0.05; DAT: Tor1a+/+ = 65.97 � 20.1 μm2, N = 6;
Tor1a+/Δgag = 85.68 � 24.2 μm2, N = 7; NS). [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 4. Legend on next page.
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amplitude of qEPSCs were significantly decreased com-
pared to Tor1a+/+ neurons (Fig. 5A,B; ****P < 0.0001).
Interestingly, our confocal analysis in the dorsal striatum
from mutant mice showed a significant increase of the
immunostaining of Syt I (Fig. S1A; **P < 0.01). Accord-
ingly, the quantification Syt I levels revealed a significant
increase in the Tor1a+/Δgag striatum compared to
Tor1a+/+ mice (Fig. S1B; *P < 0.05). The observation that
Syt I governs the synaptic vesicle endocytosis time-course
by delaying the kinetics of vesicle retrieval in response to
increasing Ca2+ levels52 supports the hypothesis that the
increase of Syt I plays a role in the onset of asynchronous
release deficits by affecting synaptic vesicles turnover.
Indeed, the increase of Syt I may induce the formation of
Syt I oligomers, which control asynchronous neurotrans-
mitter release.52 Our findings are also consistent with pre-
vious evidence in DYT1 cell models showing that mutant
TA overexpression promotes Syt I accumulation on the
plasma membrane through the reduction of synaptic vesi-
cle turnover.17,18

Collectively, these data suggest that DΥΤ1 mutant
mice exhibit a deficit in asynchronous glutamate
release, which reflects a robust dysfunction of synaptic
vesicle turnover.

Methods
Rodent Models and Experimental Design

Studies were carried out in adult (P60-P90) mice and
rats: knock-in Tor1a+/Δgag mice heterozygous for ΔE-
torsinA,53 in rats heterozygous for GNAL54 and α-Syn
null mice, carrying a spontaneous deletion of α-Syn
gene (Harlan Olac, Bicester, UK) and their respective
wild-type littermates (C57BL/6 for mice; Sprague
Dawley for rats). Animal breeding and handling
were performed in accordance with the guidelines
for the use of animals in biomedical research provided
by the European Union’s directives and Italian
laws (2010/63EU, D.lgs. 26/2014;86/609/CEE, D.Lgs
116/1992). Genotyping was performed as previously
described.55,56 Each observation was obtained from an
independent biological sample. For electrophysiology,
each cell was recorded from a different brain slice. All

data were obtained from at least three animals in inde-
pendent experiments. Biological replicates are represen-
ted with ‘N’ for number of animals and ‘n’ for number
of cells.

Slice Preparation and Electrophysiological
Recordings

Mice were euthanized by cervical dislocation and the
brain quickly removed from the skull. Electrophysiolog-
ical patch-clamp recordings were performed from indi-
vidual SPN in striatal coronal slices, prepared as
previously described.45 SPNs were visualized using
standard infrared differential interference contrast (IR-
DIC) microscopy and identified based on their mor-
phology and electrophysiological properties. Electro-
physiological signals were detected using Multiclamp
700B and AxoPatch 200 amplifiers (Molecular Devices)
using borosilicate glass pipettes pulled on a P-97 Puller
(Sutter Instruments). The electrodes were filled with
cesium (Cs) + internal solution (in mM: 120 CsMeSO3,
15 CsCl, 8 NaCl, 10 TEA-Cl, 10 HEPES, 0.2 EGTA,
2 Mg-ATP, and 0.3 Na-GTP; pH 7.3 adjusted with
CsOH; 300 mOsm). For whole-cell recordings of gluta-
matergic sEPSCs, SPNs were clamped at HP = –70 mV
in the presence of the GABAA receptor antagonist PTX
(50 μM). For GABAergic sIPSCs, were recorded at
HP = +10 mV in MK801 (30 μM) and CNQX
(10 μM) to block NMDA receptors (NMDARs) and
AMPA receptors (AMPARs), respectively. Both
mEPSCs and mIPSCs were measured by adding 1 μM
TTX. Quantal events (qEPSC) were recorded after each
stimulus (6 pulses delivered once every 10 s at 0.1 Hz
for cortical stimulation) and external Ca2+ was rep-
laced with Sr2+ (2 mM) as previously described.13,57

Western Blot
Western blot of striatal lysates was performed as previ-

ously described.39 Striata were homogenized in cold
buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1%
Triton X-100, 0.25% Na deoxycholate, 5 mM MgCl2,
0.1% SDS, 1 mM EDTA, and 1% protease inhibitor
cocktail (Sigma-Aldrich). Samples were sonicated and
kept on ice for 1 hr. Then, crude lysates were centrifuged

FIG. 4. Miniature excitatory (glutamatergic) postsynaptic currents (mEPSCs) were altered in Tor1a+/Δgag mice. (A) Representative cumulative distribution
curves and spontaneous inhibitory postsynaptic currents (sIPSCs) recordings in MK-801 and CNQX from spiny projection neurons (SPNs) of Tor1a+/+

and Tor1a+/Δgag mice. HP: +10 mV. The summary plots show no significant difference in sIPSC frequency (Tor1a+/+ 1.24 � 0.10 Hz, n = 10; Tor1-
a+/Δgag 1.31 � 0.16 Hz, n = 13; not significant [NS]) and amplitude (Tor1a+/+ 18.70 � 0.97 pA, n = 10; Tor1a+/Δgag 19.94 � 1.6 pA, n = 13; NS). (B)
Representative cumulative distributions curves and miniature inhibitory postsynaptic currents (mIPSCs) recordings in MK-801 and CNQX plus TTX from
Tor1a+/+ and Tor1a+/Δgag SPNs. The summary plots show no significant difference in mIPSCs frequency (Tor1a+/+ 0.77 � 0.07 Hz, n = 10; Tor1a+/Δgag

0.83 � 0.09 Hz, n = 13; NS) and amplitude (Tor1a+/+ 16.42 � 0.96 pA, n = 10; Tor1a+/Δgag 16.75 � 1.0 pA, n = 13; NS). (C) Representative cumulative
distribution curves and spontaneous excitatory postsynaptic currents (sEPSCs) recordings in PTX from SPNs of Tor1a+/+ and Tor1a+/Δgag mice. HP: –
70 mV. The summary plots show no significant difference in sEPSC frequency (Tor1a+/+ 2.47 � 0.26 Hz, n = 12; Tor1a+/Δgag 1.88 � 0.26 Hz, n = 14;
NS) and amplitude (Tor1a+/+ 12.79 � 0.85 pA, n = 12; Tor1a+/Δgag 11.31 � 0.50 pA, n = 14; NS). (D) Representative cumulative distribution curves and
mEPSCs recordings in PTX plus TTX from Tor1a+/+ and Tor1a+/Δgag SPNs. The summary plots show significant difference in mEPSCs frequency
(Tor1a+/+ 1.97 � 0.21 Hz, n = 12; Tor1a+/Δgag 1.34 � 0.17 Hz, n = 14; *P < 0.05) and amplitude (Tor1a+/+ 12.77 � 0.83 Hz, n = 12; Tor1a+/Δgag

10.48 � 0.44 Hz, n = 14; *P < 0.05). [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 5. Legend on next page.
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(13,000 rpm, 15 min, 4�C), the supernatant collected,
and protein quantified with Bradford assay (Bio-Rad).
Protein extracts (5–10 μg) were loaded with NuPAGE
LDS sample buffer (Invitrogen, Life Technologies) con-
taining DTT. Samples were denatured (95�C, 5 min) and
loaded onto 10%–12% SDS–PAGE gels. Gels were blot-
ted onto 0.45-lm polyvinylidene fluoride (PVDF) mem-
branes. The following primary antibodies were used:
rabbit (rb) anti-α-Syn 1:1000 (D37A6; Cell-Signaling);
rb anti-TA 1:500 (ab34540; Abcam); mouse (ms) anti-
SNAP-25 1:8000 (ab66066; Abcam); rb anti-SNAP-23
1:5000 (pab0057-0; Covalab); ms anti-VAMP-2
1:10000 (104–211; Synaptic System); ms anti-syntaxin 1
1:20000 (110–011; Synaptic System); rb anti-Syt I 1:500
(ab131551; Abcam) overnight (ON) at 4�C; ms anti-
β-actin (A5441; Sigma-Aldrich); ms anti-β-tubulin
(T4026; Sigma-Aldrich); rb-anti-GAPDH (2118S; Cell-
Signaling) 30–60 min at room temperature (RT). Anti-
ms and anti-rb horseradish peroxidase (HRP)-conjugated
secondary antibodies were used (GE Healthcare). Immu-
nodetection was performed by ECL reagent
(GE Healthcare) and the signal was detected using
iBright CL1000 instrument (Thermo Fisher). Quantifica-
tion was achieved by ImageJ software (NIH).

Immunohistochemistry and Confocal Analysis
Mice were anaesthetized by intraperitoneal (i.p.)

injection of chloral hydrate (400 mg/kg) (Sigma-
Aldrich) and perfused transcardially by using a 4%
paraformaldehyde (PFA). After 4 hr of post-fixation in
4% PFA, brains were incubated in a solution of
phosphate-buffered saline (PBS) with high salt concen-
tration (NaOH 200 mM, NaH2PO4 245 mM, NaCl
0.9%) containing 18% sucrose for at least 24 hr, then
25 μm coronal sections were cut with a cryostat (Leica
Biosystems) and stored in 60% glycerol. After
permeabilization in 20% methanol and 0.3% Triton
X-100 in PBS 0.1 M, the free floating sections were
incubated for 1 hr at RT in blocking solution (2% v/v
Normal Goat Serum (NGS), 3% w/v Bovine Serum
Albumin (BSA), 0.3% Triton X-100 in PBS 0.1 M),
and then with the primary antibody diluted in blocking
solution ON at 4�C. The following primary antibodies
were used: ms anti-α-Syn 1:1000 (610,787; Beckton
Dickson); rb anti-VGAT (131-002; SySy), rb anti-

VGLUT-1 (135-302; SySy), rat anti-DAT (sc-32258)
goat-anti-DARP-32 (AF6259; R&D System), and rb-
anti Syt I (ab131551; Abcam). The following day, sec-
tions were washed with 0.3% Triton X-100 PBS 0.1 M
and incubated with the fluorochrome-conjugated sec-
ondary antibody in 0.3% Triton X-100 PBS 0.1 M plus
1 mg/ml BSA for 1 hr at RT. The following secondary
antibodies were used: goat anti-rb AlexaFluor 488, goat
anti-ms Cy3, and anti-rat Cy3 (Jackson Immuno-
research). After three washes in 0.3% Triton X-100
PBS 0.1 M, sections were incubated for 2 hr at RT with
the second primary antibody, followed by incubation
for 1 hr at RT with the appropriate secondary anti-
body. Nuclei were stained with Topro-3 (Thermo
Fisher). Then, slices were mounted onto glass slides
using Vectashield (Vector Laboratories) and analyzed
by confocal microscopy. The slides were observed using
an LSM 880 Zeiss confocal laser microscope with the
laser set on λ = 405–488–543–633 nm and the height
of the sections scanning = 1 μm. Images (512 � 512
pixels) were then reconstructed using ZEISS ZEN Imag-
ing Software (Carl Zeiss).

Image Analysis of Striatal Immunopositive Area
The acquisition parameters during confocal imaging

were maintained constant for all the images acquired.
The optical density of the striatal positive area from
digitized images acquired by confocal microscopy were
examined by a researcher blind to the experimental
conditions using FIJI Software. Five sections from each
mouse were analyzed by examining an average of
10 fields per section. The threshold setup for FIJI was
fixed between 30 and 150. The area of co-localization
between α-Syn-immunolabeling and DAT-, VGAT-, or
VGLUT-1-positive signal was quantified using Zen soft-
ware (Carl Zeiss). The co-localization rate was
then normalized on the total DAT-, VGAT-, or
VGLUT-1-positive area for each field, respectively,
in order to estimate the percentage amount of α-Syn-
immunoreactivity within each specific synaptic
terminal.

Quantification and Statistical Analysis
Data analysis was performed with MiniAnalysis 6.0,

ImageJ (NIH), and Prism5.3 (GraphPad). Data are

FIG. 5. Downregulated glutamatergic asynchronous release in Tor1a+/Δgag mice. (A) Top: Graphs summarize the change induced by strontium 2 mM in
the frequency and amplitude of quantal excitatory postsynaptic currents (qEPSCs) evoked after corticostriatal stimulation in both strains. Values are
expressed as percentages of control pre-strontium (frequency Tor1a+/+ = 132.7 � 12.6 Hz, n = 7, N = 7; Tor1a+/Δgag = 49.19 � 3.99 Hz, n = 7,
N = 4; t-test ****P < 0.0001; amplitude Tor1a+/+ = 108.1 � 6.71 pA, n = 7, N = 7; Tor1a+/Δgag = 90.68 � 3.18 pA, n = 7, N = 4; t-test *P < 0.05). Bot-
tom: boxplots reporting frequency and amplitude changes of the qEPSC in both strains. (B) Representative traces showing the Sr2+-induced asynchro-
nous qEPSCs evoked after corticostriatal stimulation in Tor1a+/+ (n = 7) and Tor1a+/Δgag (n = 7) mice. (C). Schematic model of synaptic dysfunction in
DYT1 dystonia. Left: normal glutamatergic transmission. Right: loss of asynchronous glutamatergic release. In DYT1 the mutant torsinA (TA) induce an
increase of synaptotagmin I (Syt I) level, a downregulation of alpha-synuclein (α-Syn), vesicle-associated membrane protein-2 (VAMP-2), synaptosome-
associated protein 23 (SNAP-23), and vesicular glutamate transporter-1 (VGLUT-1) with a consequent impairment of vesicles turnover and asynchro-
nous glutamatergic release. [Color figure can be viewed at wileyonlinelibrary.com]
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reported as mean � SEM. Statistical significance was
evaluated as indicated in the text, and two-tailed
unpaired or paired Student’s test (t-test) was used for
two-sample comparison. Normality tests were used to
assess Gaussian distribution. Statistical tests were two-
tailed, the confidence interval was 95%, and the alpha-
level used to determine significance was set at P < 0.05.

Discussion

The present results support the existence of an inter-
play between TA and α-Syn in synaptic homeostasis that
is particularly relevant for glutamate neurotransmission.
In particular, our findings show that α-Syn is down-
regulated in the striatum of mutant Tor1a+/Δgag mice but
not in a distinct dystonia model, the DYT25 GNAL rat
model. A further clue to the α-Syn–TA relationship is
provided by our biochemical experiments on α-Syn null
mice, indicating a significant down-regulation of
TA. Our data also suggest that TA loss of function might
alter synaptic machinery stability by inducing an increase
in the Ca2+ sensor Syt I, and a decrease in α-Syn and
SNAREs thereby affecting the glutamate release process.
It has been shown that TA down-regulation induces

persistence of Syt I on plasma membrane suggesting
that the DYT1 mutation compromises synaptic vesicle
recycling.17,18 Many studies point to a crucial role for
Syt I in promoting the synchronous release coupling
Ca2+ to SNARE-mediated fusion mechanism, but also
in suppressing the asynchronous release, especially
upon oligomer formation.58,59 We found high levels of
Syt I in striatum from mutant mice, which may be sup-
portive of Syt I oligomers, whose formation is relevant
for the kinetics of synaptic vesicle recycling during
asynchronous release,52 and that also appears in line
with the increase of plasma membrane Syt I observed in
DYT1 cell models.17 While Syt I deletion induces an
increase in asynchronous neurotransmitter release, its
increase can negatively impact on this process.60 Con-
sistently, we found that in Tor1a+/Δgag mice, Sr2+,
which normally stimulates the asynchronous release
with a consequent increase in events,61 reduced
qEPSCs, thus confirming an impairment of asynchro-
nous synaptic release. This finding, in parallel to the
increase in Syt I, suggests that TA mutation impairs
glutamatergic synaptic vesicles turnover, which in turn
affects asynchronous glutamate release, a process
governing the recovery of neuronal excitability follow-
ing post-spike hyperpolarization.62

We showed a significant reduction of the v-SNAREs
member VAMP-2, which is the direct interactor of
α-Syn.7 Moreover, we also found a significant decrease
of SNAP-23, which, unlike SNAP-25, is more impor-
tant for the functional regulation of the glutamate
receptors and in modulating asynchronous release.46,51

Our present findings are in agreement with a proposed
modulatory role of α-Syn on glutamatergic synaptic
activity, in line with evidence supporting it regulating
presynaptic mobilization of reserve pools of vesicles at
glutamatergic terminals.31,63 Consistently, we found
that in the Tor1a+/Δgag mice α-Syn was reduced at
VGLUT-1-positive terminals, whereas GABAergic
transmission was normal.
Our confocal imaging data demonstrate a diffuse

reduction of VGLUT-1 and DAT signals, in accordance
with previous evidence on DYT1 experimental
models.64–66 Indeed, Ip and co-workers, showed that
Tor1a� mice exhibit a reduction of striatal DAT level
as well as DAT binding decrease after sciatic nerve
crush.67 This appears consistent with the fact that DAT
is an α-Syn interactor and that TA can affect DAT
expression.25,67 Of note, VGLUT-1 plays a key role in
controlling cargo protein recovery, including VAMP-2,
but not Syt I, and is essential for ensuring the quantal
efficiency of glutamatergic transmission.48,68 Therefore,
the VGLUT-1 reduction in DYT1 mice does not appear
to contradict the observed Syt I accumulation. Interest-
ingly, the relevance of VGLUT-1 in cargo protein
recovery may suggest that its decrease could also under-
lie the reduction of both α-Syn and SNAREs. This not-
withstanding, it has been shown that unlike other
synaptic vesicle-associated proteins such as SNAREs or
synapsin, which rapidly recluster synaptic terminals co-
localizing with VGLUT-1 in the post-depolarization
recovery phase, α-Syn dissociates from synaptic vesicle
membranes after their fusion and exhibits a different
and slower recovery.71 Therefore, it appears unlikely
that a VGLUT-1 reduction-associated lowering of cargo
protein recovery could be the basis of the observed
α-Syn decrease at glutamatergic terminals, though we
do not exclude the possibility that by affecting quantal
synaptic efficiency47 it could blunt qEPSC.
Overall, our results highlight the existence of a strong

relationship between TA, α-Syn, and SNAREs in the con-
trol of glutamate release. In particular, they indicate that
TA mutations affect striatal glutamatergic transmission
mainly by impinging on asynchronous release. This phe-
nomenon may very well be driven by the reduction of
α-Syn and SNAREs occurring in parallel to Syt I increase
(Fig. 5C). Our findings further support the notion that
different pathways may converge to cause basal ganglia
synaptic abnormalities as a main determinant in the path-
ophysiology of dystonia.21,70,71 Furthermore, this evi-
dence envisages a pivotal involvement of alterations of
α-Syn, SNAREs, and related synaptic vesicle-associated
protein in the molecular underpinnings of synaptic imbal-
ance in DYT1 dystonia warranting further investigation.
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