
ORIGINAL RESEARCH
published: 04 June 2020

doi: 10.3389/fchem.2020.00428

Frontiers in Chemistry | www.frontiersin.org 1 June 2020 | Volume 8 | Article 428

Edited by:

Weihua Chen,

Zhengzhou University, China

Reviewed by:

Liwei Mi,

Zhongyuan University of

Technology, China

Xifei Li,

Xi’an University of Technology, China

Yufeng Zhao,

Shanghai University, China

*Correspondence:

Tianjing Wu

twu@xtu.edu.cn

Yong Liu

yonliu@csu.edu.cn

Specialty section:

This article was submitted to

Electrochemistry,

a section of the journal

Frontiers in Chemistry

Received: 07 February 2020

Accepted: 23 April 2020

Published: 04 June 2020

Citation:

Jing M, Wu T, Zhou Y, Li X and Liu Y

(2020) Nitrogen-Doped Graphene via

In-situ Alternating Voltage

Electrochemical Exfoliation for

Supercapacitor Application.

Front. Chem. 8:428.

doi: 10.3389/fchem.2020.00428

Nitrogen-Doped Graphene via In-situ
Alternating Voltage Electrochemical
Exfoliation for Supercapacitor
Application
Mingjun Jing 1,2, Tianjing Wu 1,2*, Yazheng Zhou 2, Xilong Li 2 and Yong Liu 1*

1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China, 2Department of Chemistry,

Xiangtan University, Xiangtan, China

Doping heteroatom, an effective way to enhance the electrochemical performances of

graphene, has received wide attention, especially related to nitrogen. Alternating voltage

electrochemical exfoliation, as a low cost and green electrochemical approach, has been

developed to construct in-situ N-doped graphene (N-Gh) material. The N-Gh presents

a much higher capacity than that of pure graphene prepared via the same method,

which might be attributed to the introduction of nitrogen, which has much more effects

and a disordered structure. As-prepared N-Gh exhibits a low O/C ratio that is helpful

in maintaining high electrical conductivity. And the effects and disorder structure are

also conductive to reduce the overlaps of graphene layers. A symmetric supercapacitor

assembled with N-Gh electrodes displays a satisfactory rate behavior and long cycling

stability (92.3% retention after 5,000 cycles).

Keywords: N-doped graphene, alternating voltage, electrochemical exfoliation, electrochemical performances,

supercapacitors

INTRODUCTION

Graphene exhibits exceptional electronic conductive ability and carrier mobility due to its unique
quantum Hall effect on a honeycomb sp2 carbon lattice. Because of this, it became one of the
most significant candidate materials for next-generation electronic and energy storage devices
(Novoselov et al., 2004; Low et al., 2013; Gong et al., 2016). It is important to note that heteroatom-
doped graphene might be better applied to supercapacitors through creating defects or embedding
impurities. Among the various kinds of heteroatom-doped graphene materials, N atom is a general
nominee because of its atomic size similarity to the carbon atom and unique valence electrons
that generate a stable covalent bonds structure with adjacent C atoms (Low et al., 2013; Chaban
and Prezhdo, 2015; Xu et al., 2018). Meanwhile, nitrogen atoms in N-doped graphene materials
could become a redox active center, which might induce pseudocapacitance to increase the specific
capacitance of materials (Luo et al., 2013; Yang et al., 2016). Hence, N-doped graphene or N-doped
graphene-based composite materials are getting more and more attention.

In situ doping can be favorable for the formation of homogeneous doping (Qu et al., 2010; Yang
et al., 2016). Some approaches have been developed to construct N-doped graphene. For example,
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N-graphene has been obtained via the chemical vapor deposition
(CVD) method using a nitrogen-containing mixed gas
(Bulusheva et al., 2017; Bu et al., 2018). Additionally, N-
graphene also can be formed through the segregation growth
approach (Zhang et al., 2011). However, most of these methods
usually require expensive devices, multistep transfer processes,
or result in a low yield. At present, developing a green and low
cost method to prepare mass production of N-doped graphene is
still a major challenge.

There are several methods for graphene preparation, such as
chemical vapor deposition (Suk et al., 2011), epitaxial growth
(YangW. et al., 2013), mechanical exfoliation (Yi and Shen, 2015),
chemical exfoliation (Liu and Wang, 2011), electrochemical
exfoliation (Yang et al., 2015; Bakunin et al., 2019), and so on. It
is worth noting that electrochemical exfoliation has been deemed
a useful technique in producing high-quality graphene on a large
scale owing to it being environmentally friendly, low cost, and
requiring only simple operations (Low et al., 2013; Ejigu et al.,
2019). Two electrochemical types, cathodic and anodic methods,
have been mainly performed in electrochemical exfoliation with
graphite as a working electrode. On the one hand, cathodic
exfoliation with the graphite material as a cathode usually takes
place in organic solvents (Yang Y. et al., 2013; Taheri Najafabadi
and Gyenge, 2015). This process typically needs some intercalates
cations from the electrolyte, such as alkylammonium salts, ionic
liquids, molten salts, and so on. On the other hand, anodic
exfoliation is typically carried out in aqueous electrolytes with
graphite as an anode (Parvez et al., 2014). The main issue of this
method is the requirement of a high positive voltage (about a
few tens of volts) in the electrochemical process, which might
induce structural degradation and oxidation of the carbon lattice.
Recently, a novel alternating voltage electrochemical exfoliation
approach has been applied to prepare few-layer graphene flakes
in aqueous electrolytes (Jing et al., 2015). Compared with the
direct voltage exfoliation, the degree of oxidation of the carbon
lattice can be reduced in the alternative redox process. And the
two graphite electrodes are used as working electrodes during the
alternating voltage process, which is conducive to improving the
exfoliation efficiency.

Electrolyte solution is one of the key factors in all types
of electrochemical exfoliation methods. Li salts as cathodic
exfoliation electrolyte organic solution can release Li+ ions that
are reversibly intercalated into the inner spacing of graphite
(Low et al., 2013). Aqueous H2SO4 solution as anodic exfoliation
electrolyte system can produce oxygen radicals (O·) and hydroxyl
(OH·) to open boundaries, which is helpful in facilitating SO2−

4
intercalation, and then releasing SO2 to expand the interlayer
distance of graphite (Yang et al., 2015). Inorganic salts aqueous
solutions (such as (NH4)2SO4) as anodic exfoliation electrolyte
system shows a similar electrochemical mechanism in H2SO4

solution, except for the existence of OH− ions at the edge sites
and grain boundaries (Zabihi et al., 2019). Aqueous NaOH/H2O2

solution has also been utilized during anodic electrochemical
exfoliation, which could generate OH− and O2−

2 intercalation
ions and appears to result in NaOH-induced electrochemical
reduction of the oxygen functional groups of graphene (Rao et al.,
2014). In addition, a range of reductive agents [such as sodium

borohydride, (2,2,6,6-tetramethylpiperidin-1-yl]oxyl, ascorbic
acid, and so on) as additives in electrolyte solution can improve
the atomic ratio of C/O and control the exfoliation process (Rao
et al., 2014). All these previous studies further indicate that the
composition of electrolyte solution could mainly influence the
functional groups, defects, atomic ratio of C/O, and yield of
graphene. Based on the above analysis, in-situ nitrogen doping
approaches might be achieved via adding nitrogen compounds
into electrolyte solution during the electrochemical exfoliation
of graphite. At present, few nitrogen compounds as additives
(protic ionic liquid ethylammonium nitrate, ammonia, and
natural biocompatible glycine) have been discussed to produce
N-doped graphene in an anodic electrochemical exfoliation
process (Usachov et al., 2011; Wang et al., 2012). But the related
research is still poor, especially utilizing an alternating voltage
electrochemical technique.

In this study, the alternating voltage electrochemical
technique has been successfully applied to in-situ construct N-
doped graphene (N-Gh) on a large scale by adding ammonium
chloride salt to NaOH aqueous solution. Compared with
as-prepared pure graphene (Gh) utilizing the same process,
the N-Gh sample presents a larger size and much more
effects. And the electrochemical properties of N-Gh have been
investigated in three-electrode and two-electrode systems. The
N-Gh sample reveals a satisfactory rate behavior and long
cycling stability.

EXPERIMENTAL SECTION

Synthesis of N-Doped Graphene Electrode
Material
Alternating voltage electrochemical exfoliation was fabricated
with a two-electrode system utilizing two graphite rods as
working electrodes. N-doped graphene (N-Gh) was prepared
in 3M NaOH and 3M NH4Cl mixed aqueous solution.
Both graphite rods were exfoliated via 5.0 V alternating
voltage (50Hz, YK-BP81005 regulator transformer) for
5 h. Then the as-exfoliated substrate was separated, and
further washed using distilled water until the pH value
was close to 7. At last, the N-Gh sample was obtained
via the freeze-dried method. Pure graphene (Gh) was
also put in 3M NaOH aqueous solution under the same
preparation conditions.

Materials Characterization
The phase character of materials was studied via the X-
ray diffractometer (XRD, Rigaku D/max 2550 VB+) from
10 to 80o at 5

◦

min−1 with Cu Kα radiation. The raman
spectra of the as-prepared products were collected using
a Raman spectrometer (HORIBA Labram HR Evolution).
The morphology of the as-obtained materials were explored
through scanning electron microscopy (SEM, JSM-6510LV)
and transmission electron microscopy (TEM, JEM-2100F).
Furthermore, the atomic arrangement was studied utilizing
high-resolution transmission electron microscopy (HRTEM,
JEM-2100F). Then, FT–IR spectrophotometer (AVTATAR,
370) was applied to test the surface functional groups
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SCHEME 1 | The electrochemical formation of pure Gh and N-Gh samples.

FIGURE 1 | (A,B) SEM images of pure Gh. (C,D) SEM images of N-Gh sample.

of materials using KBr as a reference. Thermogravimetric
analysis (TGA, NETZSCH STA449F3) from 25 to 900

◦

C
was utilized to measure the thermostability of materials
with a heating rate of 5

◦

C min−1 in air. Moreover, X-ray

photoelectron Spectroscopy (XPS, ESCALab250) was tested
to analyze the surface chemical composition of the as-
obtained samples with C1s photoelectron peak at 284.6 eV as
the reference.
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FIGURE 2 | (A,B) TEM images of the pure Gh and N-Gh samples. (C,D) HRTEM images of pure Gh and N-Gh samples.

Electrochemical Measurement
Active materials, super P, and polyvinylidene fluoride (PVDF)
were mixed in N-methyl-2-pyrrolidone (NMP) with a mass
ratio of 80:10:10 to form a coating slurry. Then, the as-
obtained slurry was pressed onto a round nickel foam
current collector. Finally, the electrodes with a loading
mass of about 1.5mg cm−2 were formed through drying
at 50

◦

C in a vacuum overnight and pressing under a
10 MPa pressure. A classic three-electrode electrochemical
test system was utilized to investigate the electrochemical
characteristics of the as-prepared materials. This test system
was composed of a working electrode, platinum foil counter
electrode, and Hg/HgO reference electrode. It is worth
noting that the working electrodes should be soaked in 2M
KOH aqueous solution for 12 h before the electrochemical
test. Moreover, the symmetric supercapacitor was equipped
with two as-prepared working electrodes using 2M KOH
as an electrolyte solution and a glassy fibrous material as
a separator. And the related calculation for the symmetric
supercapacitor is based on the total mass of active material.
Cyclic voltammetry (CV) curves were measured on MULTI
AUTOLAB M204 (MAC90086) at various scanning rates.
Electrochemical impedance measurements (EIS) were tested on
a CHI 660B electrochemical working station with the frequency
range between 100 and 0.01Hz. Galvanostatic discharge/charge
files were investigated at room temperature on Land CT2001A
battery cycler.

RESULTS AND DISCUSSION

The Electrochemical Exfoliation via
Alternating Voltage
The electrochemical processes of the as-prepared Gh and N-Gh
materials via alternating voltage electrochemical exfoliation have
been displayed in Scheme 1. On the basis of previous reports
(Wang et al., 2014; Jing et al., 2015), the surface of graphite
electrodes were alternately oxidized and reduced during the
electrochemical process of alternating voltage. Meanwhile, some
cations and anions in the electrolyte solution can intercalate
the layers of graphite to accelerate stripping speed. In detail,
some defects and oxygen-containing functional groups on the
surface of the graphite electrode have been induced during the
anodic process. Then, some oxidized graphite was reduced via
a cathodic reaction. In NaOH solution, the Na+ and OH− can
intercalate into the graphite layers. Certain amounts of hydrogen
gas can be produced during the electrochemical process, which
would promote the exfoliation rate of graphite. For the N-Gh
sample, the addition of NH+

4 and Cl− ions might be conducive to
exfoliate the graphite electrode throughmuchmore intercalation.
Moreover, the Cl− ions might be transformed into ClO− or Cl2
during the electrochemical anodic process (Munuera et al., 2017).
The related oxidation-reduction of NH+

4 also took place during
alternate anodic and cathodic reactions, which could generate
C-NH2, -C-NH-C, and C-N-C2 functional groups. With the
introduction of NH4Cl in the NaOH solution, the exfoliation
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FIGURE 3 | (A) XRD patterns of pure Gh and N-Gh samples. (B) Raman spectra of pure Gh and N-Gh samples. (C) FT-IR spectra of pure Gh and N-Gh samples. (D)

TG curves of pure Gh and N-Gh samples.

rate can be effectively enhanced via alternating the voltage
electrochemical process.

The Microstructure, Morphology, and
Composition of Samples
The SEM has been utilized to analyze the morphologies of the
as-prepared Gh and N-Gh, which is shown in Figure 1. As
displayed in Figures 1A,B, the pure Gh sample presents thin
flakes with various sizes (0.5–5 µm2). In Figures 1C,D, the N-
Gh displays porous thin sheets. It can also be seen that the
size of N-Gh is much larger than that of pure Gh. Further, the
characterization of the morphology has been measured using
TEM, as shown in Figures 2A,C. These results reveal that the
exfoliated Gh and N-Gh flakes typically feature some overlapping
regions. Additionally, the HRTEM image of Gh (in Figure 2B)
presents lattice spacing of 0.337 nm, corresponding to (002) plane
of graphene (Yang et al., 2014). In Figure 2C, a few defect-free
and disorder domains can also be found in the as-obtained pure
Gh. While the N-Gh sample exhibits a much more disordered
structure and obvious pore structure in Figure 2D. The N-Gh
prepared by alternating voltage exfoliation presents with a larger
size and more defects than those of pure graphene, which might
be due to the fast stripping and N doping processes.

Figure 3A presents the XRD powder pattern of pure Gh
and N-Gh. The sharp peak of pure Gh at 26.4◦ is indexed
as (002) crystal plane of graphene (JCPDS Card no.41-1487).
This sharp peak illustrates that the Gh maintains a high degree

of crystallization and electrical conductivity (Xu et al., 2015).
According to the results of contrasting the curves of pure Gh
and N-Gh, the peak intensity of the N-Gh sample is obviously
weaker, which is consistent with the HRTEM conclusion. The
order/disorder structures and defects characterization of the as-
obtained materials have been further analyzed through Raman
measurement, which is displayed in Figure 3B. The presence
of G band at 1,577 cm−1 is related to E2g symmetry phonon
mode, corresponding to ordered in-plane sp2 carbon atoms
(Wang et al., 2017). The D band and D’ shoulder band are at
about 1,321 and 1,621 cm−1, respectively, which belong to the
disorder in the carbon hexagons and edge carbons (Deng et al.,
2011). Moreover, the I2D/IG and ID/IG values of samples can
typically reflect the number of layers and the degree of disorder
structure, respectively (Soin et al., 2017). The I2D/IG values of
pure Gh and N-Gh are 61.9 and 62.7%, respectively, which could
illustrate that the flakes of both samples have only a few layers.
The ID/IG value of N-Gh is 0.71, which is higher than that of
pure Gh (0.57). This result again reveals that much more defects
and disorder structure appear during the exfoliation process for
N-Gh samples.

Furthermore, the surface functional groups of the as-obtained
pure Gh and N-Gh have been detected via FT-IR spectrum
analysis, as is displayed in Figure 3C. The large peaks at 3,432
cm−1 are related to O-H bending from H2O (Wang X. et al.,
2018). The weak peaks from 1,639 to 1,579 cm−1 can be indexed
to sp2-hybridized C=C stretching in plane vibrations, which
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FIGURE 4 | XPS analysis of N-Gh material: (A) Full spectrum, (B) C 1 s spectrum, (C) O 1s spectrum, (D) N 1 s spectrum.

FIGURE 5 | (A) The CV files of pure Gh and N-Gh samples at a 10mV s−1 based on a three-electrode system. (B) The CV curves of the as-prepared N-Gh under

various scan rates from 5 to 100mV s−1 based on a three-electrode system.

reveals the presence of the π-conjugation structure (Wang X.
et al., 2018; Lee et al., 2019). The weak peaks from 1,383 to
1,308 cm−1 correspond to oxygen-containing functional groups
(C-O, C-OH, C-O-C) which illustrate the existence of a few
hydroxyl/phenolic/alkoxy groups on the surface of the exfoliated
Gh and N-Gh samples (Lee et al., 2019). A small peak at 728
cm−1 might correspond to C-N stretching (Islam et al., 2016),
which indicates that N can be successfully doped in-situ during
alternating voltage electrochemical exfoliation. In Figure 3D, the

mass loss from 25 to 300
◦

C of N-Gh might be mainly resulted
from adsorbed water and coordinated water (Chen et al., 2020).
Compared to the pure Gh, the TGA curve of N-Gh with the
temperature from 300 to 700◦C displays a quick downward trend,
which illustrates the existence of muchmore defects and disorder
structure in the as-obtained N-Gh sample (Xu et al., 2015).

The XPS spectra of N-Gh are displayed in Figure 4. As
shown in Figure 4A, the C, O, and N elements all lie in the as-
prepared N-Gh sample. The N atom content is 4.5% and the O/C
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FIGURE 6 | (A) Galvanostatic charge-discharge files and (B) Specific capacities of the as-prepared N-Gh at various current densities from 1 to 20A g−1 based on a

three-electrode system. (C) Impedance spectroscopy plots of Gh and N-Gh in a three-electrode system (The inset is a larger version of the impedance spectroscopy

plots). (D) Cycling stability of N-Gh at 2A g−1 based on a three-electrode system.

atom ratio in this sample is 0.09. Further, a dominant peak at
284.6 eV is shown in the high-resolution XPS spectrum of C 1s
(Figure 4B), which is assigned to graphitic C=C species, and the
other two weak peaks at 285.5 eV and 286.4 eV correspond to
sp3 carbons (C-OH/C-NH2) and oxygen carbons (C-O-C/C=O),
respectively (Wang et al., 2014). The O 1s spectrum presents
two peaks at 532.1 and 533.7 eV in Figure 4C, which are related
to O=C and O-C, respectively (Hou et al., 2015; Bulusheva
et al., 2017). A few oxygen-containing functional groups in the
N-Gh sample could be helpful to relieve overlapping. The N
1s spectrum (in Figure 4D) has been fitted into four peaks at
399.3 eV, 400.5 eV, 401.7 eV, and 402.9 eV, which are assigned to
pyridinic nitrogen (19.8%), pyrrolic nitrogen (54.2%), graphite
nitrogen (11.9%), and C-NH2 (14.1%), respectively (Lee et al.,
2014; Hong et al., 2019). These results again confirm that N has
been successfully doped in N-Gh, which might contribute to the
improvement of electrochemical performances.

The Electrochemical Properties of Samples
Based on a Three-Electrode System
The electrochemical performances of pure Gh and N-Gh samples
have been firstly explored using CV tests in 2M KOH electrolyte
solution with the voltage range from−1.0 to 0V based on a three-
electrode system, which is shown in Figure 5A. It can be clearly
seen that pure Gh and N-Gh samples display rectangular CV

curves, suggesting obvious electric double-layer storage behaviors
(Munuera et al., 2017). The curve area of N-Gh is much larger
than that of the pure Gh sample, which indicates the doping of
N can obviously improve the specific capacity. Furthermore, the
CV measurements of N-Gh based on increased scan rates from 5
to 100mV s−1 have been studied, as is revealed in Figure 5B. The
intensities of CV files increased with the increased scan rates, yet
the shapes of curves remained broadly stable (Zhu et al., 2018;
Tang et al., 2019). This result reveals that N-Gh might present
good electrochemical reversibility.

Then, the charge-discharge files of the as-prepared N-Gh
electrode in 2M KOH electrolyte solution at various current
densities are displayed in Figure 6A. Based on the specific
capacitance formula (Cs = It/m1V, F g−1) (Wang Y. et al., 2018;
Wei et al., 2019), the specific capacitances of N-Gh electrode

at the current densities of 1, 2, 5, 10, 15, and 20A g−1 are

143.6, 129.1, 114.2, 103.2, 96.5, and 91.5 F g−1, respectively, with
high coulombic efficiency around 100%, which is displayed in
Figure 6B. Compared with the specific capacitance at 1A g−1,
the capacity retention rate is up to 63.7% even at 20A g−1. This
high rate behavior might be related to the existence defects and
doping N in the N-Gh sample. Moreover, the EIS curves of pure
Gh and N-Gh electrodes in 2M KOH aqueous solution at their
open voltages are shown in Figure 6C. Both samples present
very small semicircles in the high frequency and high slope in
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FIGURE 7 | (A) The CV files of N-Gh at various scan rates from 5 to 100mV s−1 based on a two-electrode system. (B) Galvanostatic charge-discharge files of

N-Gh//N-Gh with the current densities range from 1 to 20A g−1. (C) Ragone plots of N-Gh//N-Gh. (D) Cycling stability of N-Gh//N-Gh at 0.5 A g−1.

the low frequency region, suggesting the pure Gh and N-Gh
electrodes display high electrical conductivity and ion diffusion.
The cycling stability of N-Gh electrodes have been investigated,
which is displayed in Figure 6D. After 3,000 charge/discharge
cycles in KOH aqueous solution, the specific capacity retention
of N-Gh is up to 93.1% at a current density of 2A g−1. All these
improved electrochemical performances could be derived from
the structure of N-Gh sample with N doping, which has few
effects and a disordered structure.

The Electrochemical Performances of
N-Gh Based on a Two-Electrode System
To better study the electrochemical capacity performances of
the as-obtained N-Gh, the symmetric supercapacitor has been
fabricated with two N-Gh electrodes. Figure 7A displays the
CV curves of N-Gh//N-Gh symmetric supercapacitor under
the potential voltage from 0 to 1V at different scan rates. It
can be clearly seen that the shape of files stays the same as
the scan rate increases (from 5 to 100mV s−1), indicating
the N-Gh//N-Gh symmetric supercapacitor might display good
electrochemical reversibility. The charge/discharge files of N-
Gh//N-Gh symmetric supercapacitor at the current densities
between 0.5 and 10A g−1 are revealed in Figure 7B. The charge
curves and discharge curves are almost symmetrical, revealing
high columbic efficiency. Additionally, the specific capacities of
the N-Gh//N-Gh symmetric supercapacitor have been calculated

on the discharge files on the basis of the total mass of negative
and positive electrode slices, as shown in Figure 7C. The specific
capacities of the symmetric supercapacitor are 34.2, 31.2, 29.4,
26.7, and 24.2 F g−1 at current densities of 0.5, 1, 2, 5, and
10A g−1, respectively. The energy density of this symmetric
supercapacitor is 4.76Wh kg−1 at a power density of 500W kg−1,
and the retention ratio is up to 68.7% at the power density of
10,000W kg−1. Compared with some other N doped carbon-
based materials (in Figure 7C) (Chang et al., 2013; Kang et al.,
2013; Balaji et al., 2018; Du et al., 2018), the energy density
and rate behavior of N-Gh//N-Gh is satisfactory. The cycling
stability has been also investigated in Figure 7D, presenting with
92.3% retention of N-Gh//N-Gh initial specific capacity after
5000 cycles. The perfect rate behavior and cycling stability of the
N-Gh//N-Gh symmetric supercapacitor further illustrates the as-
prepared N-Gh might be a promising material for various kinds
of composites in supercapacitors.

CONCLUSION

In summary, the N-Gh sample has been prepared through an
in-situ alternating voltage electrochemical exfoliation technique
with the introduction of NH4Cl in to NaOH aqueous solution.
The N chemical states in the N-Gh sample mainly present
pyrrolic nitrogen. Compared with the as-obtained pure Gh
sample, the N-Gh shows a larger size, much more effects, and
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a disordered structure. Additionally, the related electrochemical
behaviors have been investigated in a three-electrode aqueous
solution system, indicating that N-Gh displays a much higher
specific capacity than that of pure Gh. Moreover, it also displays
a good cycling stability and high rate behavior with 63.7% of
the capacity retention rate even at a current density of 20A
g−1. All these good electrochemical characteristics of N-Gh
could be ascribed to the doping N, the existence of effects, and
disorder structure, which is conducive to producing faradaic
pseudocapacitance and reducing overlapping layers of graphene.
The results of the symmetric supercapacitor fabricated with
two N-Gh electrodes further illustrate the satisfactory cycling
stability with 92.3% retention of N-Gh//N-Gh initial specific
capacity after 5,000 cycles. These insights illustrate that the N-
Gh sample prepared via an in-situ alternating voltage approach
could have promising applications to construct composites for
enhanced supercapacitors.
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