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Background: Determining discharge disposition after total joint arthroplasty (TJA) has been a challenge.
Advances in machine learning (ML) have produced computer models that learn by example to generate
predictions on future events. We hypothesized a trained ML algorithm’s diagnostic accuracy will be
better than that of current predictive tools to predict discharge disposition after primary TJA.
Methods: This study was a retrospective cohort study from a single, tertiary referral center for primary
TJA. We trained and validated an artificial neural network (ANN) based on 4368 distinct surgical en-
counters between 1/1/2013 and 6/28/2016. The ANN’s ability to identify discharge disposition was then
tested on 1452 distinct surgical encounters between 1/3/17 and 11/30/17.
Results: The area under the curve and accuracy achieved during model validation were 0.973 and 91.7%,
respectively, with 25% of patients being discharged to skilled nursing facilities (SNFs). Within our testing
data set, 6.7% of patients went to SNFs. The performance in the testing set included an area under the
curve of 0.804, accuracy of 61.3%, sensitivity of 28.9%, and specificity of 93.8%.
Conclusions: This is the first prediction tool using an electronic medical recordeintegrated ANN to
predict discharge disposition after TJA based on locally generated data. Dramatically reduced numbers of
patients discharged to SNFs due to implementation of a bundled payment model lead to poor recall in
the testing model. This model serves as a proof of concept for developing an ML prediction tool using a
relatively small data set and subsequent integration into the electronic medical record.
© 2020 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee
Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction

American health care is currently being transformed from a
system focused on quantity to one concentrated on valueddefined
as health outcomes achieved per dollar spent [1]. With this para-
digm shift, a greater percentage of the financial risk is being
transferred to health-care systems as part of new innovative pay-
ment models. One such example is the Centers for Medicare &
Medicaid Services’ Bundle Payments for Care Improvement
truction, Department of Or-
edical Center, 601 Elmwood

585 341 0544.
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by-nc-nd/4.0/).
initiative [2]. Bundled reimbursement models provide a fixed
payment for an episode of care (eg, total joint arthroplasty [TJA])
regardless of the resources used. Furthermore, certain reimburse-
ment models being considered penalize providers for a hospital
readmission [2]. Bundled payments are becoming more common
across payers for TJAs [3], so the need to ensure high-quality care at
the lowest possible cost has never been greater.

Health-care systems would benefit from understanding which
patients are more likely to require a larger amount of resources.
Skilled nursing facilities (SNFs) are one example of a high-cost
intervention for TJAs. Prior research has demonstrated that pa-
tients discharged to an SNF after TJA have increased odds of read-
mission [4]. In addition, in many bundled arrangements, the use of
SNFs postoperatively for patients undergoing TJA cause the health-
sociation of Hip and Knee Surgeons. This is an open access article under the CC BY-
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care system to exceed the predetermined bundled episode of care
threshold dollar amount [5]. Therefore, reducing the number of
patients undergoing TJA who are discharged to SNFs may decrease
health-care costs, thereby leading to an increased overall value.

Although traditional statistical approaches are valued in
evidence-basedmedicine, the application of machine learning (ML)
to clinical orthopaedic care may improve the identification of pat-
terns within complex data sets. For example, recent work by Nav-
arro et al showed that an ML algorithm using the New York State
administrative database could accurately predict length of stay and
costs before primary total knee arthroplasty (TKA) [6].

Previous studies have all used large administrative databases
working off the premise that these large administrative data sets
are necessary to leverage the power of ML. However, previous au-
thors outside of orthopaedics were able to show that prioritizing
small amounts of recent (accurate) data is more effective than using
larger amounts of older data toward future clinical predictions [7].
We sought to explore these concepts in TJA to see if an ML algo-
rithm could be trained on local hospital-level data to accurately
predict the discharge disposition of patients undergoing TJA and
integrate such a prediction tool into our electronic medical record
(EMR). Our hypothesis was that using hospital data generated from
clinically relevant local practice patterns would accurately predict
discharge disposition after primary TJA.

Material and methods

The study was approved by the University of Rochester Insti-
tutional Review Board.

Data sources and study population

Local data were collected through the electronic health record
retrospectively, which encompasses 2 hospitals within the same
health system: a large level one academic center and a smaller
communityhospital. Datawere collected through an SQLqueryof the
Epic Clarity database. Patients were included in our cohort based on
Current Procedural Terminology (CPT) billing codes for primary total
hip arthroplasty (THA) (CPT 27130) or primary TKA (CPT 27447).
Missing variableswere replacedwithnull values and includedwithin
our cohort. Exclusion criteria were limited to incomplete or absence
of variables necessary to train the ML algorithm.

For our training and validation cohort, we collected data on
patients who had undergone surgery between 1/1/2013 and 6/28/
2016. A total of 4370 distinct surgical encounters were identified
from 3887 unique patients. Our testing cohort was based on data
from patients who had undergone surgeries between 1/1/2017 and
11/30/2017. During this series, we identified 1467 distinct surgical
Table 1
Demographic distribution of training, validation, and testing cohorts.

Joint (#) Training cohort Valida

TKA (936) THA (755) TKA (

Age (years) 69 (42-90) 67 (20-90) 69 (47
Gender (% male) 35.58% 40.66 35.2
Race % white 89.64% 90.20% 85.2
Race % black 7.80% 8.21% 10%
Race % other 2.56% 1.59% 4.7
Ethnicity (% Hispanic) 1.50% 1.59% 1.1
Height (inches) 65 (54-78.5) 66 (54-78) 65 (55
Weight (oz) 3040 (1392-5392) 2864 (1360-5600) 3128
Previous SNF admission (% yes) 37.67% 25.03% 36.4
Laterality (% right) 14.85% 15.23% 15.2
Laterality (% left) 12.39% 16.03% 14.7
% Lives alone (% yes) 10.35% 10.20% 7.6
encounters within 1395 unique patients, with some patients
receiving more than one TJA.

Developing the ML algorithm

The model we used was a fully connected feed-forward artificial
neural network (ANN)with a single 100-node hidden layer. An ANN
works by taking the input variables, multiplying them by weights
(amount of impact), and using a nonlinear function to scale this
informationwithin a range. This process occurs at each nodewithin
the neural network to optimize its ability to determine the output
variable. The model was trained on Microsoft Azure Machine
Learning Studio [8].

Initial selection of variables to be examined was determined
through literature review and careful consideration, which led to a
set of 38 variables for the model (Appendix). Once we had this
initial set, we refined the predictive power of each variable. We
sequentially retrained the model, excluding one variable at a time.
If the predictive value of the model improved or did not change
with the removal of that variable, we knew that the variable was
not important. We then removed all nonimportant variables from
our model. Eleven variables were ultimately selected based on
predictive power: age, race, ethnicity, height, weight, gender, pre-
vious SNF admission, solitary living arrangement (lives alone),
laterality of the procedure, the procedure performed (THA or TKA),
and whether or not the procedure was performed using the ante-
rior approach (THA only) (Table 1).

The outcome for our model was the patient’s discharge dispo-
sition, which was converted into a binary variable with 1 being a
discharge to an SNF and 0 being a discharge elsewhere. The training
data set discharge to the SNF rate was 25%. This class imbalance is
highly undesirable for ML as it has the potential to lead to a biased
model. Therefore, to control this potential bias, we randomly
selected one-third of our data that had an outcome of 0 (else-
where), combined that with all the data that had an outcome of 1
(SNF discharge), and used this as our effective training data set [9].

To allow for both training and validation of our training model,
we randomly split our effective data set into 2 data sets, where 80%
of our effective data went into the training set and 20% were
assigned into a validation set.

Evaluating the algorithm

Weevaluated our algorithmusing 2metricsdoverall accuracy and
area under the receiver operating curve (ROC). Accuracy is the ratio of
correct predictions to thewhole pool of subjects. Area under the curve
(AUC) is commonly used in classification analysis, including ML, to
evaluate how well a model predicts classes. It is computed by
tion cohort Testing cohort

170) THA (180) TKA (615) THA (837)

-88) 66.5 (30-90) 69 (47-90) 65 (21-90)
9% 35.00% 43.25% 46.12%
9% 92.78% 90.89% 92.59%

5.56% 6.99% 6.45%
1% 1.66% 2.12% 0.96%
8% 1.11% 1.30% 0.84%
.5-77) 65.98 (57-75) 65.98 (57-77) 66.5 (54-77)
(1760-5168) 2848 (1504-4843.2) 3200 (1712-5040) 2928 (1456-5288)
7% 21.67% 7.48% 4.78%
9% 15.00% 52.52% 54.84%
1% 12.22% 47.15% 44.44%
5% 10.00% 6.99% 7.65%



Figure 1. EMR-integrated discharge dashboard.

Figure 2. Balanced ROC curvedthe rate of true positives (true discharges to home) vs
false-positive rates (algorithmically selected SNF discharge patients who were in fact
discharged home).
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evaluating the ROC and is calculated to predict the probability that the
algorithmwill rank a randomly chosen positive example greater than
a randomly chosen negative example. As models provide a greater
probability of fulfilling this prediction, the ROC approaches 1 [10].
Generally, an ROC of greater than 0.70 suggests a strong model [10].

We evaluated our algorithm on 2 separate sets of data. Initially,
we used the validation set to evaluate our model throughout the
training phase where we developed the model and tuned the
model architecture and hyperparameters. Thereafter, we applied
the ANN to our testing set, consisting of the 2017 data, to evaluate
the generalizability of our model. The model was only evaluated on
the testing set after it had been successfully trained and validated
with the validation set.

Integration into the EMR

After developing our model, we integrated it directly into the
Epic EMR. Within the chart of each patient who underwent TJA, we
created a new button labeled “joint analytics.” When this button
was pressed by the provider, it would automatically pull the
necessary data from the patient chart. It would then deidentify
these data and send them to a cloud service on which our model
was running. Our model would process these data and send the
results back to the chart. We would then graphically display the
model results directly within the patient chart for the provider. We
also displayed the values of all 11 data points usedwithin themodel
so the provider could see the variables used in the analysis. In
addition, we allowed providers to change the value of these vari-
ables and rerun our model. We felt this was quite useful for inter-
vention planning, as both the provider and patient would be able to
immediately see the projected results of any intervention. When
the provider changed a variable, it would not affect the value of the
corresponding field within the patient’s chart, but only the value
that the model sees; thus, the patient chart would remain unaf-
fected. An example of this would be if the provider wanted to see
what the patient’s outcomewould look like if they had assistance at
home. For this, they would change the variable “lives alone” from
0 to 1, rerun the model, and see how their SNF admission risk
changes (Fig. 1).



Table 2
Risk Assessment and Prediction Tool.

Item Value Score

Age group(y) 50-65 2
66-75 1
>75 0

Gender Male 2
Female 1

Ambulation (block ¼ 200 m) Two blocks or more 2
1-2 blocks 1
Housebound 0

Walking aids None 2
Single-point stick 1
Crutches/frame 0

Use of community support
(home help, home nurse,
meals on wheels)

None or 1 per week 1
Two or more per week 0

Postoperative caregiver Yes 3
No 0
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Results

Our training and validation cohort included a total of 4368
distinct surgical encounters identified from 3886 unique patients
who underwent surgery between 1/1/2013 and 6/30/2016. The
testing cohort, which included patients who had undergone sur-
gery between 1/1/2017 and 11/30/2017, identified 1385 unique
patients with 1452 distinct surgical encounters.

The AUCwe achieved when validating our model was 0.973. The
overall accuracy within the validation cohort was 91.7%. The testing
cohort demonstrated similar prediction power with an overall AUC
of 0.819 and an overall accuracy of 91%. Of note, however, only 6.7%
of patients discharged to SNFs within our testing data set compared
with 25% SNF discharge in the training and validation cohorts.
Because of the change in practice pattern due to implementation of
a bundled payment model and resultant imbalance, we reanalyzed
our testing cohort after selecting an equal number of SNF to non-
SNF discharged patients. When testing the model with this
revised data set, we found an AUC of 0.804 with an accuracy of
61.3% (Fig. 2). Under the balanced testing set, the model achieved
28.9% sensitivity, accurately predicting 28 of 97 patients who went
to an SNF, and 93.8% specificity.
Discussion

An accurate method to predict outcomes in real time after TJA is
currently lacking. Prediction tools integrated into commercially
available EMRs are currently unavailable. The existence of such
tools would assist physician-patient interactions and help
Table 3
Summary of recent studies with discharge prediction tools.

Study lead author Discharge tool Cohort Accuracy

The present study ANN Retrospective Institutional 91.7% in the valid
61.3% in the testi

Ramkumar et al. [19] ANN NISdtraining 69.4% in validatio
OMEdvalidation 64.4% in testing c

Gholson et al. [12] ACS-NSQIP Retrospective multicenter n/a
Menendez et al. [11] AM-PAC Retrospective institutional n/a
Dibra et al. [15] RAPT Retrospective institutional 88%, however 52

intermediate risk
Hansen et al. [16] RAPT Prospective institutional 78%, however 65

intermediate risk
Slover et al. [17] RAPT Prospective institutional n/a; however, 28

and 76% interme
discharge to hom

NIS, Nationwide Inpatient Sample; OME, orthopaedic minimal data set episode of care.
members of the arthroplasty support team (eg, nurse navigators)
better target at-risk patients. Identification of such patients may
help patient optimization efforts and cost-saving measures,
depending on the identified risk factor. In this proof-of-concept
study, the risk factor identified was discharge to an SNF. To our
knowledge, this is the first use of artificial intelligence on local data
with a prediction tool built into the EMR. The validated model
performed with excellent combined sensitivity and specificity as
well as excellent accuracy with an ROC and accuracy of 0.973 and
91.7%, respectively. However, owing to the change in practice pat-
terns, specifically bundle-driven decreased SNF utilization over the
study period, our model performed poorly in our testing cohort
with a resulting 31% sensitivity and 95.6% specificity.

Previous authors have studied various discharge prediction
tools derived from several different sources. Menendez et al.
investigated an Activity Measure for Post-Acute Care “6-Click”
model and found an AUC of 0.78 [11]. Gholson et al. created a
discharge prediction tool using the American College of Surgeons
National Surgical Quality Improvement Program database with an
AUC of 0.70 [12]. While the work evaluated the ability of the Na-
tional Surgical Quality Improvement Program data to generate a
discharge prediction tool, the authors acknowledged the study
lacked validation of their model [12]. Probably the most cited
discharge prediction tool in TJA is the Risk Assessment and Pre-
diction Tool (RAPT) (Table 2) [13-18]. The RAPT has been applied
prospectively with intermediate success within the literature,
including within the setting of the bundled care for TJA [16,17].
Overall, current discharge prediction tools, including the RAPT, are
better at predicting who will discharge home compared with who
will discharge to an SNF or an SNF equivalent.

The most recent and analogous study to this study was per-
formed by Ramkumar et al [19]. The authors trained an ANN using
the Nationwide Inpatient Sample database and externally validated
it using a local prospective institutional database (Orthopaedic
Minimal Data Set Episode of Care). The authors found the model
performance in the training cohort of 76.1% and 69.4% in the AUC
and accuracy, respectively. After external validation of their model
with a local prospective database, the AUC and accuracy were 69.2%
and 64.4%, respectively. The model in the present study trained on
local institutional data performed similar to the model of Ramku-
mar et al [19] trained on Nationwide Inpatient Sample data in their
respective validation cohorts (Table 3). This is an interesting finding
because it is commonly accepted that to optimize ML performance,
more data are thought to be better. However, this may not be true if
the data do not accurately reflect local or current practice patterns.
The locality of data may, but does not completely, explain impor-
tant differences between these 2 studies. Other factors include how
the primary outcome variable was defined. In our study, the
AUC % Of cohort discharge to SNFs

ation cohort 0.97 in the validation cohort 25% in the training cohort
ng cohort 0.80 in the testing cohort 6.7% in the testing cohort
n cohort 0.76 in the validation cohort 45.6%
ohort 0.69 in the testing cohort 47.1%

0.70 (not validated) n/a
0.78 39%

.2-78.7% in
patients

n/a 14%

.2% in
patients

n/a 15%

% of high-risk
diate-risk patients
e

n/a 29.5%
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primary outcome of interest was “SNF” or “not-SNF,”whereas in the
study by Ramkumar et al., it was “home” or “not home.” We
included all patients receiving primary TJA, whereas Ramkumar
et al. included only patients with Medicare older than 65 years.
Probably, the most important differences between the studies were
the variables used to train the ANN. Ramkumar et al. included
variables related to the admission (the type of admission and day of
the week) and patient (age, gender, ethnicity, race, all patient
refined risk of mortality and severity of illness, etc.). It is possible
that the differences in variable selection between the 2 studies
ultimately reflect the availability of variables within an adminis-
trative database vs local data. However, given the results of our
model, smaller amounts of highly accurate data can likely work as
well, if not better, than attempting to create a prediction tool based
on broad national data.

Predictive models, especially those assuming a static rela-
tionship between the input (eg, patient factors) and output
variables (eg, discharge to SNF), are subject to poor and
degrading performance. Changes in underlying data occur
because of changing practice patterns, changes in the popula-
tion, or the complex nature of the health-care environment. In
ML, these unexpected changes are referred to as concept drift
[20-22]. This was shown by Chen et al. who looked at an ML
algorithm trained to predict and then recommend future clin-
ical orders based on EMR data [7]. They concluded that priori-
tizing small amounts of recent data (current) is more effective
than using larger amounts of older data toward future clinical
predictions [7]. For this reason, we tested our model on a
temporally adjacent data set. As practice patterns change, an ML
model would need to be periodically refit and updated to avoid
the inevitable concept drift of changes in practice patterns, be it
systemic or local. Concept drift is the single best explanation for
the low sensitivity, and high sensitivity of our model in the
testing cohort was the relatively low SNF utilization rate in our
testing cohort. Our institution adopted bundle payments for TJA
around the year 2014. The subsequent years saw SNF utilization
drop from 25% to 6.7%. This change in practice pattern occurred
during the years that were used to train the algorithm (2013-
2016) and therefore would directly impact the model’s accuracy
on any testing cohort with such low SNF utilization. For
example, if the model would have predicted that every single
patient in our cohort would discharge to home, it would still
maintain a high accuracy of 93.3%. The validation phase in our
study showed a much higher accuracy (91.7%) and AUC (0.973)
than the testing phase, likely reflecting the higher historical SNF
usage during the model’s training years.

There are limitations to our study. Institutional practices are an
important variable in predicting patient discharge, and these were
noted to be in flux during the training of the ANN [23,24]. Although
the exclusive use of local data optimized our results, it almost
certainly limits the generalizability of our tool. However, the lack of
generalizability should be an expectation and not necessarily a
limitation when dealing with ML predictions involving practice
patterns.

Conclusions

This is the first prediction tool using an EMR-integrated ANN to
preoperatively predict the likelihood a patient will be discharged to
an SNF after TJA based exclusively on locally generated data. Our
model is a proof of concept to preoperatively counsel patients and
define expectations for patients, families, clinicians, surgeons, and
hospitals regarding postoperative care after arthroplasty. Future
studies will further refine the ANN and evaluate the effect of cur-
rent practice patterns on discharge prediction models.
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Appendix
Initial variables chosen for model development.

Medical record number Comorbidities
Service date Asthma
Service location (hospital in system) Atrial fibrillation
Gender Coronary artery disease
Address Congestive heart failure
City Chronic obstructive pulmonary

disease
State Diabetes
Zip code Hypertension
Length of stay Obesity
Ethnic group Chronic kidney disease
Race Depression
Lives alone Osteoporosis
Height Chronic liver disease
Weight Sickle cell
Previous skilled nursing facility

admission
Hyperlipidemia

Previous surgery
Age
Insurance 1
Insurance 2
Diagnosis code 1
Diagnosis code 2
Diagnosis code 3
Provider
Procedure
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