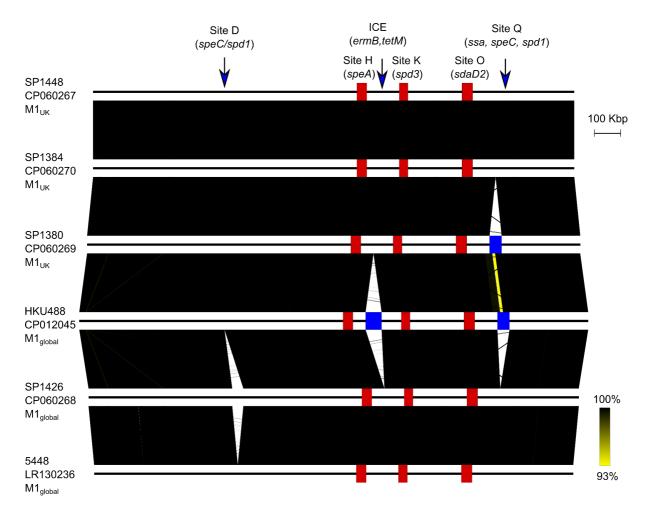
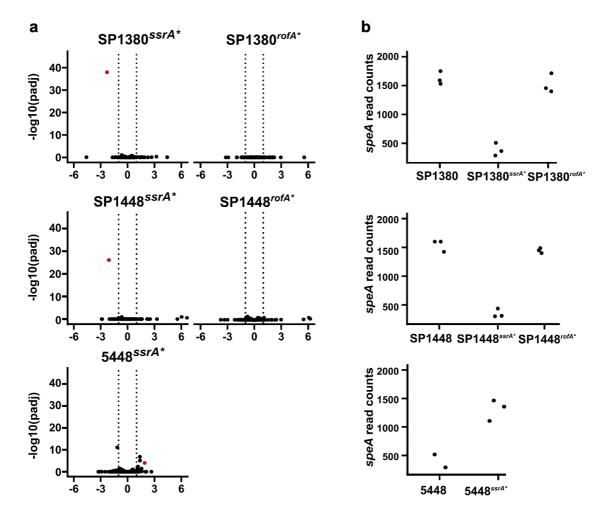

Supplementary Information

Detection of $\it Streptococcus\ pyogenes\ M1_{UK}$ in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA

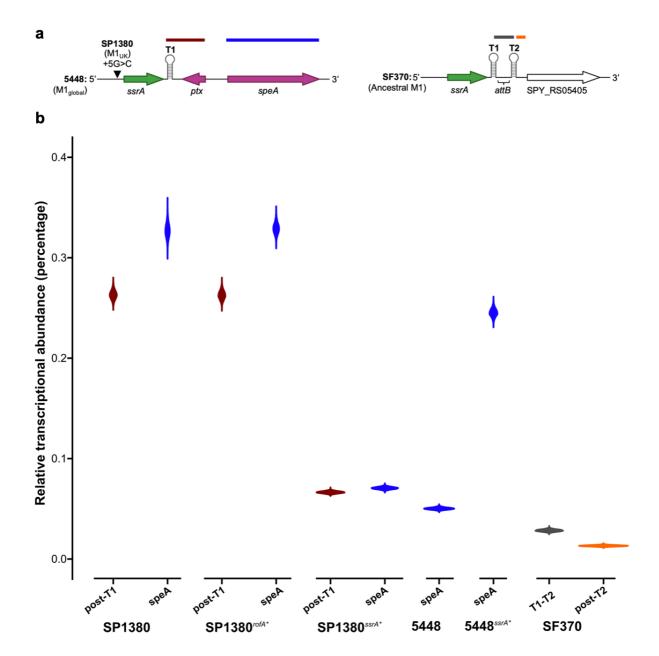
Davies et al.


Supplementary Figures

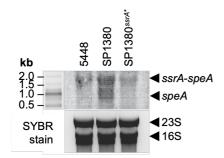

Supplementary Figure 1. Genomic features of the Australian M1_{UK} strain SP1380. (a)

Genome ring of the 1,833,075 bp SP1380 genome showing GC plot, position of prophage elements (red blocks), and location of coding sequences (blue). Name, associated virulence gene and chromosomal integration site of prophage elements¹ are annotated. (**b**) Comparative BlastN alignment of 3 M1 *S. pyogenes* complete genome sequences 5448 (M1_{global}); SP1380 (M1_{UK}) and HKU488 (M1_{global}) with location of mobile genetic elements and associated chromosomal integration site annotated. In blue are the elements not shared by all 3 strains. GenBank accession numbers are indicated under strain name. Pairwise nucleotide sequence identity is shown (key represents the BlastN percentage). The Australian M1_{UK} strain SP1380

has acquired a prophage carrying the virulence repertoire *ssa*, *speC* and *spd1* (termed φSP1380.vir) similar to that carried by the scarlet fever outbreak strain from Hong Kong φHKU488.vir (refer to Figure 1c).


Supplementary Figure 2. Whole genome alignment of new Australian M1_{global} (SP1426) and M1_{UK} (SP1448, SP1380, SP1384) genome sequences to reference genomes from other geographical locations (5448, USA, M1_{global}; HKU488, Hong Kong, M1_{global}). Coloured blocks dictate location of mobile genetic elements (red, refer to elements common across the 6 reference genomes; blue, variably carried elements). Key represents nucleotide homology. Relative position of prophage chromosomal 'sites' and Integrative Conjugative Element [ICE] location and their associated virulence or antimicrobial resistance genes) are annotated above the genome alignments. GenBank accession numbers and associated M1 genotype for each reference genome is provided under each strain name. Figure was generated using EasyFig v2.2.2.

Supplementary Figure 3. Differential gene expression profile of Australian M1_{UK} strains SP1380 and SP1448 *ssrA* and *rofA* isogenic mutants and the M1_{global} strain 5448 *ssrA* mutant. For M1_{UK} genotypes (SP1380 and SP1448), isogenic mutants refer to reversion of *ssrA* and *rofA* SNPs to M1_{global}-like, while 5448 **srA** refers to +5G>C mutation in the 5'-leader sequence of the *ssrA* gene (M1_{UK}-like). All experiments represent biological triplicates with the exception of 5448 which represents a biological duplicate due to sequence contamination.


(a) Volcano plot of differentially expressed genes from mid log-phase cultures relative to parental wildtype strains, determined using a two-sided Wald tests with Benjamini Hochberg correction for multiple comparison from the DESeq2 package. X-axis refers to log2 of relative fold-change and y-axis indicates log10 Benjamini-Hochberg adjusted p-value. Red dot refers to differential expression of the *speA* gene. Dotted lines refer to cut-off's applied for differential relative fold change (≥2 fold change). (b) Normalized *speA* read counts of Australian M1_{UK}

strains SP1380, SP1448 and ssrA and rofA isogenic mutants and the M1_{global} strain 5448 and isogenic mutant 5448ssrA*. In all three genetic backgrounds, alteration of a single SNP (+5G>C) in the 5'-leader sequence of ssrA altered speA gene expression.

Supplementary Figure 4. Variation in the level of *ssrA* transcriptional read-through across different M1 *S. pyogenes* genetic backgrounds and associated isogenic mutants. (a) Schematic representation of *ssrA* genomic region within M1_{global} (5448), M1_{UK} (SP1380) and SF370 (ancestral M1 genotype - lacking *speA*-containing prophage). Two predicted Rhoindependent transcriptional terminators of *ssrA* are annotated (T1 and T2) with the location of T2 disrupted by presence of *speA* prophage in modern M1_{global} and M1_{UK} genotypes. Coloured bars above each schematic refer to regions used to define transcriptional read depth coverage in (b). (b) Violin plot of relative *ssrA* transcriptional read-through in different M1 genomic

transcriptional read-through is defined as mean read coverage at genomic regions immediately downstream of proposed *ssrA* transcriptional terminators. Genomic regions are defined per genome: SP1380 post-T1 to region before low G/C region [refer to Figure 3a] (1,006,939 - 1,007,531 bp), SP1380 *speA* open reading frame (1,007,498 - 1,008,253 bp), SP1380 *ssrA* open reading frame (1,006,592 - 1,006,938 bp); 5448 *ssrA* open reading frame (855,001 - 855,348 bp); 5448 *speA* open reading frame (853,686 - 854,441 bp); SF370 between terminators T1-T2 (1,065,434 - 1,065,588 bp); SF370 post-T2 to downstream gene promoter (1,065,589 - 1,065,674 bp); SF370 *ssrA* open reading frame (1,065,025 - 1,065,372 bp). A read-through distribution is determined by mean coverage of genomic regions, normalized to read coverage of *ssrA* open reading frame, sampled randomly 10,000 times. These data indicate a 4 to 5-fold difference in relative transcriptional read-through past the *ssrA*-T1 and into the *speA* gene in M1 *S. pyogenes* strains containing the +5G-C SNP in the leader of *ssrA* (a signature of the M1_{UK} genotype).

Supplementary Figure 5. Northern blot of total RNA from M1 *S. pyogenes* **strains probed for** *speA* **defined using a 43-mer anti-sense oligonucleotide** (*Supplementary Table 3*). Arrows indicate possible mono- (~0.8 kb) and bicistronic (~1.8 kb) *speA* transcripts. SYBR stained 23S and 16S rRNA were used as an RNA loading control.

Supplementary Tables

Supplementary Table 1. List of molecular markers that differentiate the $M1_{UK}$ genotype compared to the ancestral $M1_{global}$ genotype.

Position	Locus Tag	Gene	Protein Change	Product	Ref	Alt
76208 ^{\$}	Spy0065	adk	Glu151	adenylate kinase	AAAG	A
115646#	Spy0106	rofA	Asp491Asn	transcriptional regulator	C	T
116162+#	Spy0106	rofA	MetPhe318 IleVal	transcriptional regulator	AC	CA
250832#	Spy0243	-	Asn248Asn	ABC transporter-associated protein	T	C
343279\$	intergenic	-	-	exoA, lctO	TA	T
513254	Spy0525	-	Ala116Ser	galactose-6-phosphate-Isomerase lacB subunit	G	T
528360#	intergenic	asnS	-	ATP-binding protein	A	T
563631#	Spy0566	sagE	Ala52Thr	streptolysin synthesis	G	A
613633	Spy0609	дасН	Leu300Pro	phosphoglycerol transferase	T	C
626494	Spy0623	-	Leu35Leu	methyltransferase	G	A
661707#	Spy0656	trmD	Ala44Thr	tRNA (guanine-N(1)-)- methyltransferase	G	A
730823	Spy0727	recJ	Ala336Val	single-stranded-DNA-specific exonuclease	С	T
784467#	Spy0779	-	Val147Val	putative membrane spanning protein	T	C
819098#	Spy0825	murB	Ala82Thr	UDP-N-acetylenolpyruvoylglucosamine reductase	G	A

923079#	Spy0933	-	Ala101Val	putative NADH-dependent flavin oxidoreductase	G	A
942633#	Spy0951	pstB	His123Asn	phosphate transport ATP-binding protein	G	T
983438#	intergenic	-	-	5' transcriptional leader of <i>ssrA</i> (transfer-messenger RNA)	G	С
1082253	Spy1108	metK2	Ala221Thr	S-adenosylmethionine synthetase	C	T
1238124	Spy1282	msrA	Ala32Val	peptide methionine sulfoxide reductase	G	A
1238673	Spy1283	tlpA	Ala71Val	thiol:disulfide interchange protein	G	A
1251193#	Spy1293	-	Ser135Leu	hypothetical protein	G	A
1294671\$	intergenic	-	-	comFA, Xaa-Pro dipeptidase	CT	C
1373176#	Spy1400	-	Met66Ile	PTS system, galactose-specific IIB component	С	A
1407497	Spy1439	-	Gly290Glu	portal protein	C	T
1446116	Spy1490	-	Thr231Thr	3-oxoacyl-[acyl-carrier protein] reductase	С	T
1535209#	intergenic	-	-	upstream of <i>glA</i> (<i>glpF.2</i>) putative glycerol uptake facilitator protein, universal stress protein	A	G
1630160#\$	intergenic	polC	-	polC, proS	СТ	C
1702540#	Spy1741	gldA	Trp175*	glycerol dehydrogenase	C	T
1734749	Spy1772	-	Ala61Thr	glutamate formiminotransferase	G	A
1828734#	Spy1860	-	Gly71Arg	putative membrane spanning protein	G	A

Footnotes:

Position, Locus Tag, Product annotations are relative to MGAS5005 reference genome (GenBank CP000017.2)

Molecular events associated with the evolutionary intermediate M1 population (M1_{inter})

+ Defined as 2 separate SNPs by Lynskey et al².

Acronyms: Ref, Reference; Alt, Alternate

\$ additional small deletion events identified in this study that are M1_{UK} lineage defining

* Refers to a SNP resulting in a frameshift in the gldA gene resulting in a premature stop codon.

Supplementary Table 2. Social distancing measures introduced in Queensland across 2020 and 2021 to combat the COVID-19 pandemic effectively suppressed other respiratory infections such as pertussis and influenza³, but with relatively less impact on scarlet fever and *S. pyogenes* invasive disease case numbers. While useful for monitoring trends, this hospital emergency department admission data will only account for a relatively small proportion of cases such as scarlet fever, as most patients are likely to be managed within primary care settings.

	Yearly Hospital Presentations					
Year	2017	2018	2019	2020	2021	
Pertussis	1343	1763	1765	490	99	
Influenza	56616	15705	68151	6047	296	
Scarlet fever	480	445	429	296	388	
invasive S. pyogenes	381	354	340	279	279	

Supplementary Table 3. Bacterial strains, plasmids and primers used for experimental analyses in this study.

Bacterial strains	Description	Reference/ Source
E. coli		
MC1061	Laboratory cloning strain	4
TOP10	Laboratory cloning strain	Invitrogen
S. pyogenes		
SF370	Ancestral M1 strain	5
5448	Invasive M1 _{global} isolate	6
HKU488	Scarlet feverM1 _{global} isolate (Hong Kong)	7
SP1380	Scarlet fever Ml _{UK} isolate (Australia)	This study
SP1384	Scarlet fever M1 _{UK} isolate (Australia)	This study
SP1426	Scarlet fever M1 _{global} isolate (Australia)	This study
SP1448	Invasive M1 _{UK} isolate (Australia)	This study
5448 ^{ssr.4*}	5448 isogenic mutant strain containing the M1 $_{\rm UK}$ intergenic G to C (position 983438 $^{\#}$) SNP upstream of $ssrA$	This study
5448 ^{T1-GC>CG}	5448 isogenic mutant strain containing GC to CG (positions 983845 and 983852*) SNPs in the T1 terminator stem structure	This study
SP1380 ^{rofA*}	SP1380 isogenic mutant strain containing three $rofA$ repaired (M1 _{global} -like) SNPs T to C (position 115646 [#]) and CA to AC (position 116162 [#])	This study
SP1380 ^{ssrA*}	SP1380 isogenic mutant strain containing the repaired (M1 _{global} -like) intergenic C to G (position 983438 [#]) SNP upstream of <i>ssrA</i>	This study
SP1380 ⁷²	SP1380 isogenic mutant strain containing the T2 terminator sequence from SF370 between <i>ssrA</i> and <i>speA</i> (SF370-like)	This study

SP1448 ^{rofA*}	SP1448 isogenic mutant strain containing three $rofA$ repaired (M1 _{global} -like) SNPs T to C (position 115646 [#]) and CA to AC (position 116162 [#])	This study	
SP1448 ^{ssrA*}	SP1448 isogenic mutant strain containing the repaired (M1 _{global} -like) intergenic C to G (position 983438 [#]) SNP upstream of <i>ssrA</i>		
Plasmids			
pLZts	Temperature-sensitive shuttle plasmid, spectinomycin ^R	8	
pLZts-ssrA*_M1 _{UK}	pLZts construct containing the M1 _{UK} intergenic G to C (position $983438^{\#}$) SNP upstream of $ssrA$	This study	
pLZts-ssrA*_M1 _{global}	pLZts construct containing the repaired (M1 $_{global}$ -like) intergenic C to G (position 983438 $^{\#}$) SNP upstream of $ssrA$	This study	
pLZts-rofA*_M1global	pLZts construct containing three <i>rofA</i> repaired (M1 _{global} -like) SNPs T to C (position 115646 [#]) and CA to AC (position 116162 [#])	This study	
pLZts-ssrAT2_M1	pLZts construct containing the T2 terminator sequence from SF370 between <i>ssrA</i> and <i>speA</i> (SF370-like)	This study	
pLZts- ssrAT1_GC>CG	pLZts construct containing GC to CG (positions 983845 and 983852*) SNPs in the T1 terminator stem structure	This study	
Primers	Sequence 5'-3'		
Primers for cloning			
Primers for cloning SNPs_rofA_F	GTCGTCAGACTGATGGGCCCTTCTTTAAATTAAAGCAATA AACTTG		
, c			
SNPs_rofA_F	AACTTG		
SNPs_rofA_F SNPs_rofA_R	AACTTG CATAACCTGAAGGAAGATCTGCTCTGATTCGGTTAAGTAG		
SNPs_rofA_F SNPs_rofA_R SNP_ssrA_F	AACTTG CATAACCTGAAGGAAGATCTGCTCTGATTCGGTTAAGTAG TGATGGGCCCTCTCCAAACGCCTTTCATAC		
SNPs_rofA_R SNP_ssrA_F SNP_ssrA_R	AACTTG CATAACCTGAAGGAAGATCTGCTCTGATTCGGTTAAGTAG TGATGGGCCCTCTCCAAACGCCTTTCATAC AGGAAGATCTCACCAATATTACTAACAATGAAAAAATAG GTCGTCAGACTGATGGGCCCGTACCAATTAGTGCAATAAT		
SNPs_rofA_F SNPs_rofA_R SNP_ssrA_F SNP_ssrA_R 5'Mluk_ssrAT1_F	CATAACCTGAAGGAAGATCTGCTCTGATTCGGTTAAGTAG TGATGGGCCCTCTCCAAACGCCTTTCATAC AGGAAGATCTCACCAATATTACTAACAATGAAAAAATAG GTCGTCAGACTGATGGGCCCGTACCAATTAGTGCAATAAT TC		
SNPs_rofA_F SNPs_rofA_R SNP_ssrA_F SNP_ssrA_R 5'M1uk_ssrAT1_F 5'M1uk_ssrAT1_R	AACTTG CATAACCTGAAGGAAGATCTGCTCTGATTCGGTTAAGTAG TGATGGGCCCTCTCCAAACGCCTTTCATAC AGGAAGATCTCACCAATATTACTAACAATGAAAAAATAG GTCGTCAGACTGATGGGCCCGTACCAATTAGTGCAATAAT TC GGATAACGGAAACTCATGAACAAGACAAAAAAG		

3'M1 _{UK} _ssrAT1_F	TGTTTATAATACCATAACTTTCTATATTATTGACAAC
3'M1 _{UK_} ssrAT1_R	CATAACCTGAAGGAAGATCTCATTCTCGTGAGTAACAG
ssrAT1_GC>CG_F	CAAGACAAAAAGAAAAACCTTCATGTAAGAAGGTTTTA GTAAGTTATGATTACTTACGG
ssrAT1_GC>CG_R	CCGTAAGTAATCATAACTTACTAAAACCTTCTTACATGAA GGTTTTTTCTTTTTGTCTTG
Primers for qPCR	
qPCR-proS-F	AGCTGATCTCTGGCGTGAAT
qPCR-proS-R	CGCACCAAAGTCGTAAAGGT
qPCR-speA-F	TGTTTCAGGGCCAAATTATGA
qPCR-speA-R	CATGCACTCCTTTCTGCATT
Oligonucleotide for Northern blotting	
S.pyogenes.SpeA.2. NB	AGGAATTTCTAAATGATTCCCTTCATGATTTGTTACCCCTC CG

Footnote:

#Position is relative to MGAS5005 reference genome (GenBank CP000017.2).

Supplementary Table 4. Differential gene expression values (p>0.05, ≥ 2 fold-change) of 5448^{ssrA^*} relative to wildtype 5448.

locus_tag	names	product	baseMean read counts&	Log2 Fold-Change	pvalue	padj
RS01605	NA	MFS transporter	52746	-1.147358555	3.15E-15	5.38E-12
RS04435	speA	streptococcal pyrogenic exotoxin	943	1.902527071	2.31E-06	0.00098378
RS08015	lacG	6-phospho-beta- galactosidase	2224	1.381231493	9.62E-08	5.47E-05
RS08020	lacE	PTS transporter subunit EIIC	3914	1.368558547	1.37E-09	1.17E-06
RS08030	lacD.2	tagatose-bisphosphate aldolase	2625	1.156170295	4.01E-05	0.01367717
RS08035	lacC.2	tagatose-6-phosphate kinase	2173	1.098204169	0.00011919	0.03389034

Footnotes:

NA, no gene name currently assigned.

[&]amp; Normalized read-count value provided

References

- 1. McShan, W. M., McCullor, K. A. & Nguyen, S. V. The bacteriophages of *Streptococcus pyogenes*. *Microbiol. Spectr.* 7, doi: 10.1128/microbiolspec.GPP3-0059-2018 (2019).
- 2. Lynskey, N. N. et al. Emergence of dominant toxigenic M1T1 *Streptococcus pyogenes* clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. *Lancet Infect. Dis.* 19, 1209–1218 (2019).
- 3. The State of Queensland, Queensland Health, Communicable Diseases Branch, Prevention Division. Notifiable conditions annual reporting. https://www.health.qld.gov.au/clinical-practice/guidelines-procedures/diseases-infection/surveillance/reports/notifiable/annual.
- 4. Wertman, K. F., Wyman, A. R. & Botstein, D. Host/vector interactions which affect the viability of recombinant phage lambda clones. *Gene* 49, 253–262 (1986).
- 5. Ferretti, J. J. et al. Complete genome sequence of an M1 strain of *Streptococcus pyogenes*. *Proc. Natl. Acad. Sci. USA* 98, 4658–4663 (2001).
- 6. Chatellier, S. et al. Genetic relatedness and superantigen expression in group A Streptococcus serotype M1 isolates from patients with severe and nonsevere invasive diseases. Infect. Immun. 68, 3523–3534 (2000).
- 7. Zakour, N. L. B. et al. Transfer of scarlet fever-associated elements into the group A *Streptococcus* M1T1 clone. *Sci. Rep.* 5, 15877 (2015).
- 8. Barnett, T. C., Daw, J. N., Walker, M. J. & Brouwer, S. Genetic manipulation of group A *Streptococcus* gene deletion by allelic replacement. in group A *Streptococcus*:

 Methods and Protocols (eds. Proft, T. & Loh, J. M. S.) 59–69 (Springer US, 2020).