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a b s t r a c t

The innate immune response involves a broad array of pathogen sensors that stimulate the production of
interferons (IFNs) to induce an antiviral state. Rotavirus, a significant cause of childhood gastroenteritis
and a member of the Reoviridae family of segmented, double-stranded RNA viruses, encodes at least two
direct antagonists of host innate immunity: NSP1 and VP3. NSP1, a putative E3 ubiquitin ligase, mediates
the degradation of cellular factors involved in both IFN induction and downstream signaling. VP3, the
viral capping enzyme, utilizes a 2H-phosphodiesterase domain to prevent activation of the cellular
oligoadenylate synthase (OAS)/RNase L pathway. Computational, molecular, and biochemical studies
have provided key insights into the structural and mechanistic basis of innate immune antagonism by
NSP1 and VP3 of group A rotaviruses (RVA). Future studies with non-RVA isolates will be essential to
understand how other rotavirus species evade host innate immune responses.
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Introduction

The innate immune response is the first line of defense after a
pathogen has breached physical barriers and entered a host
(Takeuchi and Akira, 2010). Cellular pathogen sensors known as
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pattern recognition receptors (PRRs)—these include Toll-like (TLRs),
retinoic acid-inducible gene 1 (RIG-I)-like (RLRs), and nucleotide-
binding organization domain (NOD)-like (NLRs) receptors—detect
conserved microbial antigens, or pathogen-associated molecular
patterns (PAMPs), to activate transcription factors that upregulate
expression of proinflammatory cytokines such as interferons (IFNs).
In response to viral infection, all cells can produce type I (IFN-α/β)
and III (IFN-λ) IFNs, which signal in an autocrine and paracrine
manner through the Janus kinase (JAK)-signal transducer and
activator of transcription (STAT) pathway to upregulate expression
of hundreds of IFN-stimulated genes (ISGs) and induce an antiviral
state (Goubau et al., 2013; Taylor and Mossman, 2013). ISGs can
restrict pathogenesis at all stages of the viral life cycle: entry and
uncoating, transcription and translation, and assembly and egress
(Goubau et al., 2013). Viruses have evolved a wealth of strategies to
evade detection by PRRs and to directly antagonize the host innate
immune response, which contribute to their continued success.

Rotavirus biology

Rotavirus (RV), a double-stranded RNA (dsRNA) virus of the
Reoviridae family, is a significant cause of childhood gastroenter-
itis and accounts for �450,000 deaths annually (Tate et al., 2012).
The non-enveloped, triple-layered RV virion encapsidates an 11-
segmented genome that encodes six structural (VP1-VP4, VP6,
VP7) and six nonstructural (NSP1–NSP6) proteins (Desselberger,
2014). RV replicates primarily in mature enterocytes located at
the villus tips of the small intestinal epithelium. Following
attachment and endocytosis, RV sheds its outer layer (attachment
protein VP4 and glycoprotein VP7) and releases a transcription-
ally active double-layered particle (DLP) into the cytoplasm. The
viral capping enzyme, VP3, modifies mRNAs with a 50 cap as they
are transcribed by the viral RNA-dependent RNA polymerase
(RdRp), VP1, and extruded from the DLP. Capping by VP3 is

incompletely efficient, which results in populations of uncapped
and partially capped viral transcripts that activate host innate
immune responses through the RNA-sensing PRRs RIG-I and
melanoma differentiation-associated protein 5 (MDA5) (Broquet
et al., 2011; Sen et al., 2011; Uzri and Greenberg, 2013). Genome
replication and virion assembly are coordinated within cytoplas-
mic inclusions, or viroplasms, that likely serve to conceal dsRNA
gene segments from detection by the host PRR machinery (Patton
et al., 2006; Trask et al., 2012). Newly synthesized DLPs acquire
their outer VP4/VP7 layer by budding through the endoplasmic
reticulum, after which progeny virions exit the cell by lysis or
exocytosis (Desselberger, 2014). Throughout the replication cycle,
RV must contend with the host immune response. In this review,
we discuss the structural and mechanistic basis of innate immune
antagonism by two direct effectors, the RV NSP1 and VP3 proteins
(Fig. 1).

Structure and function of RVA NSP1

The product of RV gene segment 5 is the nonstructural protein
NSP1 (Desselberger, 2014). In RV species A (RVA), which is respon-
sible for the majority of RV infection in humans, NSP1 is a �57-kDa
protein whose length ranges from 486 to 496 amino acids (Fig. 2A).
NSP1 is the least conserved member of the RVA proteome, with
sequence variability highest in the C-terminal half (Mitchell and
Both, 1990). Phylogenetic analysis reveals that NSP1 sequences
cluster according to host species (Dunn et al., 1994; Hua et al.,
1993; Kojima et al., 1996); this indicates a possible role for NSP1 in
host range restriction, which has been demonstrated in murine, but
not other animal, models (Bridger et al., 1998; Ciarlet et al., 1998;
Feng et al., 2011, 2013). An intact NSP1 protein is not essential for
RV to propagate in permissive cell culture and a number of labora-
tory strains contain a rearranged gene 5 that encodes a C-terminally
truncated NSP1 (Hua and Patton, 1994; Taniguchi et al., 1996; Tian

Fig. 1. Innate immune antagonism by RVA NSP1 and VP3. (A) Schematic of host innate immune responses to RV. Targets of RVA NSP1 and VP3 antagonist activity are
indicated. (B) Schematic of the host PI3K/Akt pathway. Targets of RVA NSP1 activity are indicated.
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et al., 1993). Such strains can be generated by passage of parental
(wild-type gene 5) strains at high multiplicity of infection (Hundley
et al., 1985; Patton et al., 2001).

Despite significant sequence variability between NSP1 proteins,
phylogenetic and biochemical analyses have identified key struc-
tural and functional domains. NSP1 contains a conserved zinc-
binding, putative C4-H-C3 RING domain (consensus sequence: C-
X2-C-X8-C-X2-C-X3-H-X-C-X2-C-X5-C) that spans residues 42–72
in most sequences (Brottier et al., 1992). The first 81 residues of
simian SA11-4F NSP1, including the RING domain, mediate a
specific interaction with the 50 termini of viral mRNAs, which
may prevent activation of cellular RNA sensors (Hua et al., 1994).
SA11-4F NSP1 localizes to the cytoplasm during infection and
associates with the cytoskeleton through a region that spans
residues 84–176; deletion of this sequence results in NSP1 nuclear
translocation (Hua et al., 1994; Hua and Patton, 1994). Through its
variable C terminus, NSP1 interacts with a number of host proteins
to induce their degradation (see below and Fig. 1)—typically, in a
proteasome-dependent manner—and the conservation of an N-
terminal RING domain strongly suggests that NSP1 functions as an
E3 ubiquitin ligase (Graff et al., 2007). The RING domain is
predicted to interact with a cellular E2 ubiquitin-conjugating
enzyme, leading to polyubiquitination of the target protein bound
at the NSP1 C terminus. However, difficulty in purifying recombi-
nant NSP1 for use in ubiquitination assays has impeded confirma-
tion of this activity.

Multilevel shutdown of the IFN response: NSP1-mediated
degradation of IRFs

The interferon regulatory factor (IRF) family of transcription
factors broadly influences cellular immune responses and is best
known for its role in IFN induction (Savitsky et al., 2010). The nine
mammalian IRFs (IRF1-IRF9) contain a conserved N-terminal DNA-
binding domain (DBD) that recognizes IFN-stimulated response
elements (ISREs) in the promoter region of IFN genes and ISGs. A
C-terminal IRF association domain (IAD)—type 1 (IAD1) in IRF3-IRF9
and type 2 (IAD2) in IRF1/IRF2—mediates IRF homo- and hetero-
dimerization and association with other transcription factors,
including members of the STAT family. The IAD shares structural
and electrostatic homology with the Forkhead-associated (FHA) and
Mad homology 2 (MH2) domains found in a number of transcription
factors (Qin et al., 2003). Activation signals from TLRs and RLRs
induce IAD phosphorylation (IRF1, IRF3, IRF5, and IRF7 only) and/or
dimerization, leading to IRF nuclear translocation and DBD binding
to ISREs (Savitsky et al., 2010).

The first indication that NSP1 functions as an innate immune
antagonist came from a yeast two-hybrid analysis that identified
IRF3 as a cellular interaction partner of bovine B641 and murine
EW NSP1 (Graff et al., 2002). Truncation of the NSP1 C terminus
disrupts association with IRF3, although the N-terminal RING
domain is also required. Subsequent work with simian RVA strains
SA11-4F and SA11-30-19, along with variants (SA11-5S and

Fig. 2. Domain organization of RVA–RVH NSP1. (A) RVA-like NSP1 proteins contain a putative RING domain near the N terminus. RNA-BD, RNA-binding domain; cyto-LD,
cytoskeleton localization domain; IRF-BD, IRF-binding domain. (B) Alignment of the putative RING domain of representative RVA-like NSP1 proteins. Conserved cysteine and
histidine residues are colored yellow and blue, respectively. (C) RVB-like NSP1 proteins contain two overlapping ORFs. ORF1 and ORF2, respectively, contain a central TM
domain and a short, N-terminal Cys/His-rich sequence. (D) RVH NSP1 contains a C-terminal 2A-like sequence and DSRM, like the NSP3 protein of RVC.
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SA11-30-1A, respectively) that are isogenic except for a C-terminal
truncation of NSP1 (17 and 71 residues, respectively), confirms the
essential role of the C terminus in NSP1 function (Barro and
Patton, 2005). Wild-type, but not C-terminally truncated, NSP1
suppresses nuclear translocation of IRF3 by inducing its
proteasome-dependent turnover (Fig. 1A). SA11-5S and SA11-30-
1A RVA induce a stronger IFN response and form smaller plaques
than do their parent strains, indicating deficiencies in spread that
likely result from impaired IFN antagonist activity by their NSP1
proteins. Disrupting the RING domain of B641 NSP1 abolishes
interaction with, and degradation of, IRF3, providing the first
evidence that NSP1 may function as an E3 ubiquitin ligase (Graff
et al., 2007).

The overlap of mechanistic and structural features among mem-
bers of the IRF family suggests that NSP1 might not simply mediate
the degradation of IRF3 to block the IFN response. Indeed, IRF5 and
IRF7 are targets of proteasome-dependent degradation by SA11-4F
NSP1, but not the SA11-5S variant, indicating that NSP1 recognizes a
conserved region within its targets (Fig. 1A) (Barro and Patton, 2007).
Truncation of IRF3 has identified the IAD as the minimal domain
necessary for degradation by SA11-4F NSP1 (Arnold et al., 2013a). The
ability of NSP1 to mediate the degradation of IRF3, IRF5, and/or IRF7 is
strain-specific and is most prevalent in NSP1 from animal strains
(Arnold and Patton, 2011). In addition, SA11-4F and human Wa NSP1
induce the turnover of IRF9, but not of IRF1, suggesting that NSP1 only
recognizes IAD1-containing IRFs (Fig. 1A) (Arnold et al., 2013a). IRF9,
in response to type I/III IFN-mediated activation of the JAK-STAT
pathway, assembles with STAT1 and STAT2 into the ISG factor 3
(ISGF3) complex, which translocates to the nucleus to bind ISREs and
upregulate ISG expression (Fink and Grandvaux, 2013). Wa and
simian RRV RVA inhibit nuclear translocation of STAT1 and STAT2,
though NSP1 may not be required for this activity (Holloway et al.,
2014, 2009). Further studies are required to assess whether NSP1 can
also mediate the degradation of IRF4, IRF6, and IRF8, each of which
contains a C-terminal IAD1.

Closing the door on NF-κB: NSP1-mediated degradation of
β-TrCP and TRAF2

Like IRFs, the nuclear factor κB (NF-κB) family of transcription
factors—p50, p52, p65, RelB, and c-Rel—plays a critical role in the
induction of host immune responses (Hayden and Ghosh, 2012). An
N-terminal Rel homology domain (RHD) mediates DNA binding and
NF-κB homo- and heterodimerization, and a C-terminal transcription
activation domain (TAD; present only in p65, RelB, and c-Rel)
positively regulates target gene expression. NF-κB also broadly influ-
ences cell differentiation, proliferation, and survival, and its activation
is therefore tightly regulated. In a resting cell, NF-κB dimers are held
inactive in the cytoplasm by an associated inhibitor of κB (IκB) protein.
Signals from PRRs and other molecules activate the IκB kinase (IKK)
complex to phosphorylate IκB on a conserved degron motif (DSGΦxS;
Φ, hydrophobic residue). This phosphodegron is recognized by β-
transducin repeat containing protein (β-TrCP), a member of the F-box
family of proteins that provides target specificity to the Skp-Cullin-F-
box (SCF) family of E3 ubiquitin ligases. SCFβ-TrCP induces the turnover
of phosphorylated IκB, releasing NF-κB to translocate to the nucleus
and bind κB sites in the promoter region of IFN genes and ISGs.

RVA NSP1 proteins do not universally conserve the ability to
mediate IRF degradation (Arnold and Patton, 2011; Graff et al.,
2007). Porcine OSU NSP1 potently blocks IFN-β induction during
infection, despite having no effect on IRF3 turnover or nuclear
translocation (Graff et al., 2009, 2007). Unlike the NSP1 proteins of
most animal RVA strains, OSU NSP1 induces the proteasome-
dependent degradation of β-TrCP (Fig. 1A) (Arnold and Patton,
2011; Graff et al., 2009). NF-κB activation is inhibited in both

OSU-infected and OSU NSP1-transfected cells (Graff et al., 2009).
In these cells, NSP1-mediated degradation of β-TrCP stabilizes
IκBα (independent of phosphorylation status) and β-catenin, a
target of β-TrCP that is central to the Wnt signaling pathway.
Consequently, p65 does not translocate to the nucleus and p50
does not associate with DNA. Like OSU NSP1, bovine NCDV NSP1
targets β-TrCP for degradation and has similarly inhibitory effects
on the NF-κB pathway, whereas the C-terminally truncated,
bovine A5-16 NSP1 lacks these activities. Both OSU and NCDV
NSP1 interact with β-TrCP, indicating that an association between
NSP1 and target is likely necessary to induce turnover, as is true
for NSP1 proteins that mediate IRF3 degradation.

Recently, microarray analysis of host gene expression in HT-29
(human colorectal adenocarcinoma) cells has demonstrated that infec-
tion with SA11-4F, Wa, or bovine A5-13 RVA upregulates transcription
of the tumor necrosis factor (TNF)-α-induced protein 3 (TNFAIP3) gene
(Bagchi et al., 2012). TNFAIP3, or A20, is a zinc-finger protein that
inhibits NF-κB activation in response to numerous stimuli, including
PRRs (Catrysse et al., 2014). Treatment of RV-infected cells with A20
siRNA reduces viral titer 10–100 fold (Bagchi et al., 2013a). In addition,
infection with A5-13, but not A5-16, RVA induces the NSP1-mediated
and proteasome-dependent degradation of TNF receptor-associated
factor 2 (TRAF2), a target of A20 activity (Fig. 1A). TRAF molecules
are involved in mediating signals from a number of cellular receptors,
including those that activate NF-κB (Xie, 2013). A region of NSP1
between residue 101 and the C terminus, which excludes the
N-terminal RING domain, mediates interaction with TRAF2 (Bagchi
et al., 2013a). Turnover of TRAF2 inhibits p52 nuclear translocation,
thereby arresting NF-κB activation.

No dsRNA here: NSP1-mediated degradation of RIG-I and MAVS

Nucleic acids make up the largest class of PAMPs detected by host
PRRs (Reikine et al., 2014). Members of the RLR family—RIG-I, MDA5,
and laboratory of genetics and physiology 2 (LGP2)—sense cytoplas-
mic dsRNA through a conserved DExD/H-box helicase and C-terminal
domain (CTD). RIG-I recognizes 50-triphosphorylated blunt ends of
short (o300 bp) dsRNA, whereas MDA5 lacks end specificity and
binds to internal sites on long (41000 bp) dsRNA (Hornung et al.,
2006; Kato et al., 2006; Pichlmair et al., 2006). Upon dsRNA binding,
N-terminal caspase recruitment domains (CARDs) in RIG-I and MDA5
mediate oligomerization and associationwith mitochondrial antiviral
signaling protein (MAVS), ultimately resulting in activation of IRFs
and NF-κB (Reikine et al., 2014). Although LGP2 also recognizes
dsRNA ends, it lacks CARD domains and cannot signal through
MAVS; instead, LGP2 acts as a positive and negative regulator of
MDA5 and RIG-I function, respectively.

SA11-4F and bovine UK NSP1 can block IRF3 transcriptional activity
without inducing its turnover, suggesting that another mechanism is
involved (Qin et al., 2011; Sen et al., 2009). A study with OSU and
SA11-4F NSP1, including a deletion mutant of SA11-4F that lacks the
C-terminal IRF-binding region, demonstrates that NSP1 can block RIG-
I-mediated activation of IFN-β (Fig. 1A) (Qin et al., 2011). All three
NSP1 proteins associate with RIG-I, though it is not known whether
RNA bridges this interaction. Surprisingly, OSU and SA11-4F NSP1
induce the proteasome-independent turnover of RIG-I, without
affecting the level of RIG-I mRNA transcripts. However, multiple
NSP1 proteins—A5-13, human DS-1, EW, human KU, OSU, RRV, and
SA11-4F—target MAVS for degradation in a proteasome-dependent
manner (Nandi et al., 2014). SA11-4F NSP1, through its C-terminal 100
residues and independent of the RING domain, interacts with the
CARD and/or transmembrane (TM) domains of MAVS. Unlike its full-
length counterparts, A5-16 NSP1 fails to block the formation of MAVS
aggregates and the concomitant induction of IFN-β, confirming the
role of the NSP1 C terminus in antagonizing MAVS. Together, these
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data indicate that NSP1 can block innate immune signaling at both the
transcriptional (IRF, NF-κB) and PRR level. Future work to characterize
the interactions of NSP1 with RIG-I and MAVS may reveal effects that
NSP1 has on MDA5 and LGP2 activity and turnover.

Keeping the lights on: NSP1-mediated activation of PI3K/Akt
and degradation of p53

Viruses are obligate intracellular parasites that rely on host
machinery to propagate. A key host defense mechanism is the induc-
tion of apoptosis in infected cells, which limits viral spread and
prevents further host pathogenesis (Diehl and Schaal, 2013). A
number of viruses circumvent apoptosis by interfering with the
phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Class I
PI3Ks, the best-characterized members of the PI3K family, are com-
posed of a catalytic p110 subunit and a regulatory p85 subunit, of
which two isomers (p85α and p85β) commonly interact with viral
proteins (Bagchi et al., 2013b; Diehl and Schaal, 2013). Signals from
cytokine and other growth factor receptors activate PI3K, which
phosphorylates the lipid substrate phosphatidylinositol (PtdIns) to
generate PtdIns-3,4,5-triphosphate (PIP3) (Diehl and Schaal, 2013).
The serine/threonine kinase Akt recognizes PIP3 and undergoes
activating phosphorylation by phosphoinositide-dependent kinase
1 (PDK1). Akt then signals to activate cellular factors related to
translation and growth and to inhibit apoptotic factors.

Recent studies show that A5-13, but not A5-16, RVA activates the
PI3K/Akt pathway to prevent premature apoptosis (Fig. 1B) (Bagchi
et al., 2010, 2013b). Unlike A5-16, A5-13 infection induces rapid and
long-lived phosphorylation of Akt and one of its substrates, glycogen
synthase kinase 3β (GSK3β) (Bagchi et al., 2010). This ultimately
results in delayed apoptosis, as indicated by upregulated expression
of X-linked inhibitor of apoptosis (XIAP) and delayed cleavage of
caspase 3 and poly(ADP-ribose) polymerase (PARP) in cells infected
with A5-13, but not A5-16. These effects are mediated by NSP1 and
depend on sustained activation of NF-κB, but do not require IFN.
Treatment with PI3K or NF-κB inhibitors attenuates A5-13 growth by
nearly 100 fold. A5-13, but not A5-16, NSP1 interacts with the p85
subunit of PI3K, indicating that the C-terminal region of NSP1 is likely
required for this association. The p85 protein contains four Src-
homology (SH) domains: an N-terminal SH3 domain and an inter-
SH2 (iSH2) domain that interacts with p110 and is bracketed by two
additional SH2 domains (Yu et al., 1998). Deletion mutagenesis
indicates that NSP1 binds the SH3 domain of p85α and the three
SH2 domains of p85β (Bagchi et al., 2013b). Both N- and C-terminal
fragments of NSP1 can interact with p85α, but p85β preferentially
associates with full-length NSP1. Since the PI3K/Akt pathway also
induces ISG expression, the innate immune antagonist functions of
NSP1 likely serve to neutralize this effect (Diehl and Schaal, 2013).

Among the targets of PI3K/Akt activity is p53, a stress-responsive
transcription factor that plays a significant role in apoptosis, cell cycle
regulation, and other processes (Rivas et al., 2010). In an unstressed
cell, the E3 ubiquitin ligase mouse double minute 2 homolog (MDM2)
targets hypophosphorylated p53 for degradation. Stress signals induce
p53 phosphorylation to block MDM2-mediated turnover, leading to
nuclear translocation of p53 and upregulation of target gene expres-
sion. Infection of cells with SA11-4F, but not A5-16, RVA results in the
posttranscriptional depletion of p53, suggesting that NSP1 mediates
this activity (Bhowmick et al., 2013). Indeed, expression of full-length,
but not C-terminally truncated, NSP1 induces the proteasome-
dependent degradation of p53; inhibitors of PI3K and MDM2 do not
arrest this turnover (Fig. 1B). Infection with SA11-4F, but not A5-16,
delays upregulation of p53-upregulated modulator of apoptosis
(PUMA) and mitochondrial translocation of Bax—two downstream
effectors of p53-induced apoptotic pathways—and occurs indepen-
dently of PI3K activation (Bhowmick et al., 2013; Rivas et al., 2010).

NSP1 interacts with the DBD (residues 100–300) of p53 through a
region C-terminal to the RING domain (Bhowmick et al., 2013). As
expected, the RING domain is required to induce p53 turnover.

Structure and function of non-RVA NSP1

RVs have been divided into eight species (RVA–RVH) based on
the sequence of gene segment 6, which encodes the intermediate
capsid protein, VP6 (Matthijnssens et al., 2012). All RV species
infect animals, though only RVA–RVC and RVH are currently
known to infect humans (Ghosh et al., 2010; Jiang et al., 2008;
Soma et al., 2013). In humans, RVH has been found only in adults,
whereas RVA–RVC have been found in both adults and children.
RVD, RVF, and RVG have been isolated exclusively from avian
species (Kindler et al., 2013; Phan et al., 2013; Trojnar et al., 2010).
Although comparatively few non-RVA NSP1 sequences are avail-
able, intra- and interspecies alignments suggest that NSP1 proteins
form three functional classes: RVA-like (RVA, RVC, RVD, RVF), RVB-
like (RVB, RVG), and RVH (Fig. 2).

RVA-like NSP1 proteins share an N-terminal, putative RING
domain (consensus sequence: C-X2-C-X8-C-X2-C-X3-H-X-C-X2-C-
X4–7-C); the only difference is the length of the spacer (4–7 amino
acids) between the final pair of cysteine residues (Fig. 2A and B).
However, aside from RVA NSP1, it is not known if these proteins
mediate the degradation of cellular factors (Fig. 1). RVA NSP1 is most
closely related to its substantially shorter RVC counterpart (486–496
versus 393–394 residues) (Hua et al., 1993). RVD NSP1 (574 residues)
is most homologous to avian RVA NSP1; the low sequence identity
between avian and mammalian RVA NSP1 may indicate a past
reassortment event between RVD and avian RVA NSP1 (Ito et al.,
2001; Trojnar et al., 2009). RVD and avian RVA NSP1 conserve a
domain of the transcription initiation factor IIE alpha subunit (TFA-
1) superfamily (19–35% amino acid identity) that spans residues
341–416 in RVD NSP1 (Trojnar et al., 2010). RVF NSP1 (547 residues)
shares partial sequence homology with the N-terminal half of RVD
and avian RVA NSP1 (Kindler et al., 2013).

The gene encoding RVB-like NSP1 contains two overlapping
open reading frames (ORFs; Fig. 2B); this is similar to RVA gene
segment 11, which encodes the nonstructural proteins NSP5 and
NSP6 (Desselberger, 2014; Ghosh et al., 2010; Kindler et al., 2013;
Phan et al., 2013). The RVB ORF2 product has been detected more
consistently than the ORF1 product in in vitro translation systems
and is also recognized by immune serum of RVB-infected rats,
indicating that the ORF2 protein is produced during infection
(Eiden, 1994; Shen et al., 1999). RVB NSP1 sequences cluster
according to host species, which suggests a role for NSP1 in RVB
host range restriction (Ghosh et al., 2010). The protein encoded by
ORF1 (RVB, 101–107 residues; RVG, 104–106 residues) does
not contain any obvious structural features, but does contain a
hydrophobic/nonpolar sequence (residues 39–61) that may be a
TM domain; in RVB NSP1, this region also overlaps with a short,
Cys-rich sequence (residues 57–66) (Kobayashi et al., 2001). The
ORF2 protein (RVB, 320–321 residues; RVG, 310–324 residues)
contains a short, Cys/His-rich sequence near the N terminus (RVB,
residues 64–76; RVG, residues 63–78). A few RVB isolates contain
a putative ORF3, but this ORF varies significantly in length (65–146
residues) and lacks any distinguishing features.

RVH NSP1 (395 residues) is most closely related to ORF2 of RVB
NSP1 and contains a C-terminal dsRNA-binding motif (DSRM; resi-
dues 327–395) that immediately follows a picornavirus 2A-like
sequence (Fig. 2C) (Yang et al., 2004). The 2A-like sequence termi-
nates in an NPGP motif that induces a ribosomal skip between the
glycine and second proline residues to produce two polypeptides
(Donnelly et al., 2001a, 2001b). The NSP3 protein of RVC also contains
a C-terminal DSRM preceded by a 2A-like sequence; RVC NSP3 is
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‘cleaved’ into two polypeptides and the DSRM prevents activation of
the ISG protein kinase R (PKR) by binding to dsRNA (Langland et al.,
1994). Presumably, the DSRM of RVH NSP1 functions in the same
manner, since there are no obvious Cys/His-rich sequences in the
N-terminal region that might function as a RING domain.

Structure and function of RVA VP3

The product of RV gene segment 3 is the structural protein VP3
(Desselberger, 2014). RVA VP3 is an 835-residue, �98-kDa protein
that is packaged into virions in low copy number. Using reassortant
genetics, VP3 has been linked to species-specific virulence proper-
ties in mouse and piglet models of infection, suggesting a potential
role in host range restriction (Feng et al., 2013; Hoshino et al., 1995;
Wang et al., 2011). Studies with purified RV subviral particles
demonstrate that VP3 has biochemical properties consistent with
those of RNA capping enzymes. First, VP3 binds single-stranded RNA
(ssRNA), with a preference for capped species (Patton and Chen,
1999). Second, VP3 binds covalently and reversibly to GMP and can
transfer this moiety to pyrophosphate or GDP, which is consistent
with guanylyltransferase (GT) activity (Fukuhara et al., 1989; Liu
et al., 1992; Pizarro et al., 1991). Finally, RV subviral particles can
produce methylated caps in vitro in the presence of S-adenosyl-L-
methionine (SAM); in these particles, VP3 can be chemically cross-
linked to SAM, which is consistent with SAM-dependent methyl-
transferase (MT) activity (Chen et al., 1999; Spencer and Garcia,
1984). Despite incomplete capping and methylation efficiency (Imai
et al., 1983; Uzri and Greenberg, 2013), modification by VP3 may
help prevent the detection of RV mRNAs by cellular innate immune
molecules, including RIG-I, which recognizes 50-triphosphorylated
RNA, and IFN-induced protein with tetratricopeptide repeats 1
(IFIT1), which recognizes and inhibits translation of mRNAs that
lack 20-O-methylation (Daffis et al., 2010; Hornung et al., 2006;
Pichlmair et al., 2006). In addition to its capping activities, RVA VP3
has been shown to cleave 20,50-oligoadenylates (2-5As), signaling

molecules produced by the cytoplasmic dsRNA sensor oligoadeny-
late synthetase (OAS) that activate the latent ribonuclease (RNase L)
to cleave single-stranded viral and cellular RNAs (Silverman, 2007;
Silverman and Weiss, 2014; Zhang et al., 2013). RNA fragments
produced by RNase L reduce viral replication by activating RLRs to
amplify IFN production and by inducing apoptosis to eliminate
infected cells. Thus, the multifunctional RVA VP3 protein may
contribute to innate immune evasion and virulence by indirect (viral
mRNA capping) and direct (2-5A cleavage) mechanisms.

Understanding the molecular basis of these activities has been
limited by a dearth of structural information for VP3, difficulties in
purifying the recombinant protein, and the lack of an RV reverse
genetics system. Key insights have been provided by homology
modeling with a number of reported structural homologs of VP3:
the capping enzymes of fellow Reoviridae member bluetongue virus
(BTV VP4; VP3 residues 39–634), vaccinia virus (VACV VP39; VP3
residues 257–333), and members of the 2H phosphoesterase super-
family, including the cellular A kinase anchoring protein 7 (AKAP7;
VP3 residues 697–800) (Gold et al., 2008; Hodel et al., 1996; Ogden et
al., 2014; Sutton et al., 2007; Zhang et al., 2013). RVA VP3 is predicted
to contain five structurally distinct domains: an N-terminal domain
(NTD) of unknown function; a guanine-N7-MT with an inserted 20-O-
MT; a combined RNA 50-triphosphatase (RTP)/GT; and a C-terminal
20,50-phosphodiesterase (PDE) (Ogden et al., 2014; Zhang et al., 2013).

Capping domains of RVA VP3

Like BTV VP4, the N-terminal �700 amino acids of RVAVP3 are
predicted to form a capping assembly line (Fig. 3A) (Ogden et al.,
2014; Sutton et al., 2007). The VP3 NTD (the N-terminal �175
residues) is thought to contain a kinase-like fold that, like the NTD
of BTV VP4, lacks the catalytic residues and P-loop required for
kinase activity. While no functional data for the VP3 NTD have
been reported, the corresponding domain of BTV VP4 is proposed
to act as an adaptor that bridges interactions with the viral RdRp.

Fig. 3. Predicted structure and active sites of RVA VP3. (A) Capping region (residues 1–688) of RVA RRV VP3, colored by domain (Ogden et al., 2014). Orange, NTD; green, N7-
MT; purple, 20-O-MT; blue, RTP/GT. (B) 20 ,50-PDE domain (cyan; residues 695–835) of RVA SA11 VP3 overlaid on the central domain of AKAP7 (Gold et al., 2008; Zhang et al.,
2013). (C) 20-O-MT domain. Predicted KDKE motif residues are shown. (D) N7-MT domain. R192 and conserved residues in the GxxxE(S/T) and LΩxL(ST)NxxN motifs are
shown. (E) RTP/GT domain. Blue, residues strictly conserved in sequence alignments of RV VP3 and orbivirus VP4; red, residues required for autoguanylation. (F) 20 ,50-PDE
domain. Residues that are strictly conserved in sequence alignments of RV VP3, coronavirus ns2, and AKAP7 are shown. Ligands (yellow, SAH; light blue, cap analog) from
structures of BTV VP4 (PDB ID: 2JHP, 2JHA) are overlaid in panels A, C, and D. Ligand (green, AMP) from a structure of the AKAP7 central domain (PDB ID: 2VFK) is overlaid in
panels B and F.
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The canonical class I, SAM-dependent MT fold is a seven-
stranded β-sheet that is flanked on either side by three α-helical
regions, though there is limited sequence identity among these
enzymes (Decroly et al., 2012). N7-MTs are thought to catalyze
methylation through optimal substrate positioning and electrostatic
environment, whereas 20-O-MTs employ a conserved, catalytic KDKE
tetrad, with the second lysine playing a prominent role in catalysis.
The identification of RVA VP3 residues �250–440 as the 20-O-MT
domain is supported primarily by predicted homology with the
20-O-MT domains of BTV VP4 and VACV VP39 (Ogden et al., 2014).
Although some discrepancy exists in the precise identity of the VP3
residues that are predicted to form the KDKE tetrad, homology
models place these residues in a conformation consistent with
catalytic function (Fig. 3A and C). Predictions regarding the disrupted
N7-MT domain of RVA VP3 (residues �175–250 and 440–555) are
rooted in the noteworthy conservation of sequences that form the
major SAM-binding surface in the corresponding domain of BTV VP4
(Ogden et al., 2014). These amino acids include R192, a GxxxE(S/T)
motif that spans residues 134–139, and an LΩxL(S/T)NxxN
motif that spans residues 409–417 (Ω, aromatic residue; Fig. 3D)
(Kindler et al., 2013; Ogden et al., 2014). Biochemical confirmation of
the 20-O- and N7-MT domain and residue assignments is currently
lacking.

RVA VP3 residues �555–690 are proposed to form an α-
helical RTP/GT domain (Fig. 3A) (Ogden et al., 2014). The homo-
logous domain in BTV VP4 covalently binds GMP in vitro and
forms a six-helix bundle, a structural arrangement not previously
observed for an RTP or GT (Sutton et al., 2007). While recombi-
nant BTV VP4 has demonstrated nucleoside 50-triphosphatase
activity in vitro, assignment of the CTD as the RTP is based solely
on the presence of a conserved cysteine at the base of a
depression, in the context of sequences reminiscent of a cysteine
phosphatase HCxxxxxR motif; this cysteine is not conserved in
RVA VP3 (Ogden et al., 2014; Sutton et al., 2007; Takagi et al.,
1997). Thus, the identity of the RTP domain remains an open
question for both RVs and orbiviruses. Sequence alignment of RV
and orbivirus GT domains reveals strict conservation at RVA VP3
positions S573, R577, W631, and H650, and within an SGHΦ
motif that spans residues 552–555 (Fig. 3E) (Ogden et al., 2014).
Autoguanylation assays with recombinant RVA VP3 proteins
mutagenized at conserved lysine, arginine, and histidine residues
within the predicted GT domain provide biochemical support for
its assigned function and identify residues R591 and H650 as
candidate sites of autoguanylation. Although their precise posi-
tions differ between RVA VP3 structural models, the conserved
and potentially catalytic residues occupy adjacent, surface-
exposed regions within loops and a depression in the GT domain
and likely contribute to folding, ligand binding, and catalysis. In
particular, the exquisite conservation of the SGHΦ motif within
the RTP/GT domain of RV and orbivirus capping enzymes sug-
gests a functional role, but the mechanisms of RTP and GT activity
remain to be determined.

Still no dsRNA here: antagonism of OAS/RNase L by the 20,50-PDE
domain of VP3

Support for homology of the C-terminal �140 residues of RVA
VP3 with the central domain of AKAP7 comes from studies using
computational, biochemical, and biological methods. Both sequ-
ence analysis and homology modeling predict that the CTD of RVA
VP3 is homologous with 2H phosphoesterase superfamily proteins
(Mazumder et al., 2002; Zhang et al., 2013). The conserved fold of
these proteins consists of a central, concave β-sheet that is flanked
below by two β-strands and on either side by two α-helical
regions (Mazumder et al., 2002). Two HΦ(S/T)Φ motifs sit at the

base of the groove formed by the concave β-sheet; the histidine
and threonine residues are proposed to be involved in catalysis
and substrate stabilization, respectively. The central domain of
AKAP7 adopts a similar fold and, in complex with AMP, served as
the basis for a structural model of the RVA VP3 CTD (Gold et al.,
2008; Zhang et al., 2013). The VP3 model contains a central,
concave structure of β-strands and loops, with two β-strands
running underneath; the HΦ(S/T)Φ motifs overlay very closely
with those of AKAP7 and are positioned to interact with AMP in a
similar manner (Fig. 3B). However, the central sheet in the VP3
model appears to lack some of the β-strands present in AKAP7, and
at least one of the α-helical regions appears to have been replaced
with a loop. Since the CTD of RVAVP3 is �50 residues shorter than
the central domain of AKAP7, it is likely that at least some of their
structural features will differ.

Phylogenetic analysis indicates that RVA VP3, AKAP7, and the ns2
protein of betacoronaviruses, including the model murine pathogen
mouse hepatitis virus (MHV), belong to the eukaryotic-viral LigT-like
group of the 2H phosphoesterase superfamily (Mazumder et al., 2002).
Each of these proteins has been shown to possess 20,50-PDE activity
and can cleave 2-5A in vitro to antagonize RNase L, which supports the
predicted homology between VP3 CTD and AKAP7 (Gusho et al., 2014;
Zhang et al., 2013; Zhao et al., 2012). While the significance of 20,50-
PDE activity remains to be determined for RV, studies using recombi-
nant MHV that expresses wild-type or catalytically inactive ns2 have
demonstrated that this activity is required for efficient viral replication
in some cell types (primarily macrophages) and for pathogenesis in
mice (Zhao et al., 2012). In trans expression of the RVAVP3 CTD in the
genome of MHV that encodes an inactive ns2 protein confers near
wild-type levels of viral growth and pathogenesis in infected mice,
which suggests that the 20,50-PDE activity of RVA VP3 is present and
relevant in a biological context (Zhang et al., 2013). Mutating either of
the predicted catalytic histidine residues results in a loss of catalytic
activity and of the capacity to complement inactive ns2, providing
further support for the AKAP7-based homology model (Banerjee et al.,
2014; Zhang et al., 2013). In alignments of the RVA VP3 CTD,
coronavirus ns2, torovirus polyprotein 1ab, and AKAP7, the only
residues that are conserved across all sequences, aside from both
catalytic histidine residues and threonine residue in the second HΦ(S/
T)Φ motif, are P697 and R792 in RVA VP3 (Zhang et al., 2013). The
AKAP7 residue that corresponds to R792 in RVA VP3 is located on the
‘R-loop’ and forms a π–π stack with bound AMP (Gold et al., 2008).
R792 is located on a related loop in RVA VP3, adjacent to P697 and
oriented appropriately to form a similar interaction with AMP in the
modeled structure (Fig. 3F) (Zhang et al., 2013). While the mechanism
of specific 2-5A recognition by 2H superfamily 20,50-PDEs remains to
be determined, these observations suggest that the conserved proline
and ‘R-loop’ arginine residues may be involved.

Structure and function of non-RVA VP3

Modeling studies and sequence comparisons have suggested
differences in the domain organization of VP3 from other RV species
(Ogden et al., 2014). RVB and RVG VP3 sequences contain an
insertion in the predicted N7-MT domain that is shorter than the
predicted 20-O-MT domain of the other species. Accordingly, a
central region of VP3 from all species but RVB and RVG is predicted
with high confidence to be homologous to VACV VP39. Like RVA
VP3, RVB and RVG VP3 contains a CTD that extends beyond the
predicted capping region and that may function as a 20,50-PDE,
based on predicted homology to AKAP7—albeit with less confidence
than for RVA VP3—and the apparent conservation of HΦ(S/T)Φ
motifs (Mazumder et al., 2002; Ogden et al., 2014; Zhang et al.,
2013). However, a polymorphism in the second HΦ(S/T)Φ motif of
RVG VP3 may preclude catalytic activity. While predicted
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differences in the 20-O-MTase and 20,50-PDE domains of VP3 may
result in differential capacity to evade the antiviral effects of IFITs
and the OAS/RNase L pathway, differences in host species or
pathobiology may render these effects more or less important for
different RV species, in terms of viral fitness.

VP3 function in the context of RV particles

Structural and biochemical studies have begun to shed light on the
incompletely understood interactions between RdRp VP1, inner capsid
protein VP2, and VP3 that mediate packaging, replication, and
transcription. Encapsidation assays with recombinantly expressed RV
structural proteins have shown that, although VP3 incorporation into
RV-like particles does not depend upon VP1, it requires the flexible
N-terminal arms of VP2 that approach the icosahedral fivefold vertices
in the particle interior (McClain et al., 2010; Zeng et al., 1998). Cryo-
electron microscopy image reconstructions of RV-like particles with
versuswithout encapsidated VP1 and VP3 suggest that both molecules
sit at the fivefold vertices, though only the orientation of VP1 has been
resolved unambiguously (Estrozi et al., 2013; Prasad et al., 1996). Viral
mRNA and dsRNA are hypothesized to emerge from separate tunnels
of the four-tunneled VP1 (Lu et al., 2008). To orient VP3 appropriately
for interaction with nascent mRNAs during transcription, the GTase
domain would be expected to sit proximal to the mRNA exit tunnel of
VP1. However, placement of VP1 with its putative mRNA exit tunnel
directly adjacent to a channel in the VP2 layer leaves little room for
VP3 to intervene between mRNA synthesis and extrusion from the
particle (Estrozi et al., 2013). This observation suggests that VP1 adopts
a distinct orientation in resting versus active RV DLPs, an idea that is
indirectly supported by the structural homogeneity of these particles
in solution (Gilmore et al., 2013). Alternatively, VP1 positioning within
virions or inefficient VP3 encapsidation may, in part, explain the
incomplete efficiency of RV mRNA capping and methylation (Imai et
al., 1983; Uzri and Greenberg, 2013).

VP3-mediated host range restriction

The mechanisms by which RVA VP3 mediates host range
restriction remain unclear. The ssRNA-binding activity of RVA VP3
is fairly nonspecific and other known substrates, including SAM,
GTP, and 2-5A, are universal across different species. However, basal
levels of OAS and RNase L differ based on cell type, with higher
levels detected in murine macrophages versus fibroblasts (Banerjee
et al., 2014). Differences in VP3 enzymatic efficiency and interac-
tions with other viral proteins may explain the host-specific
virulence effects observed for reassortant viruses in animal models,
but an apparent lack of difference in infectivity for most of these
viruses in vitro is more consistent with innate immune-mediated
effects (Feng et al., 2013; Hoshino et al., 1995; Wang et al., 2011).
Although VP3 has been classified as a structural protein and is
known to perform capping functions in the context of subviral
particles, the cytoplasmic localization of OAS, RNase L, and 2-5A
suggests that VP3 may also function independently of the particle
and engage in specific interactions with host proteins. Analysis of a
small number of RVA VP3 sequences has identified three host-
specific motifs (residues 197–207, 452–456, and 637–642) (Subodh
et al., 2006). In a homology model of the RVA VP3 capping region
(Fig. 3A), these motifs correspond to two loops on the side of the
N7-MT domain opposite the catalytic site and to a helix in the
RTP/GT domain; these are regions of low conservation among clade
A VP3 sequences and, therefore, are candidate sites for species-
specific protein interactions (Ogden et al., 2014).

Indirect antagonism of the host immune response by RVA

A virus must continually defend itself against the onslaught of host
immune responses that serve to arrest infection at all stages of the
viral life cycle, and RV is equipped with a number of indirect defenses
not covered in this review (Arnold et al., 2013b; Desselberger, 2014).
RV enters the cytoplasm as a transcriptionally active, closed particle
that shields the viral dsRNA genome from detection by host PRRs.
Expression of the NSP3 protein, which binds both eukaryotic transla-
tion initiation factor 4G (eIF4G) and the 30 consensus sequence of viral
transcripts, skews host translation to favor viral mRNAs and disrupts
nuclear-cytoplasmic transport of poly(A)-binding protein (PABP); this
has the added benefit of suppressing translation of the host proteins
that are required to mount an antiviral response. Other viral proteins
that bind dsRNA, including NSP6 and the DSRM encoded by some
non-RVA species, likely serve as added layers of protection against
PRRs and other cellular sensors. Finally, sequestration of the viral
replication machinery in dense viroplasms, and coordination of
genome replication and particle assembly, shield newly synthesized
RV RNAs from host sensors.

Conclusions

The structural and mechanistic properties of NSP1 and VP3
allow these proteins to directly antagonize host innate immune
responses. NSP1 is a putative E3 ubiquitin ligase that mediates the
degradation of a wide range of cellular targets, including those that
function as innate immune sensors (RIG-I), signaling intermediates
(TRAF2, MAVS, and β-TrCP), transcription factors (IRFs), and med-
iators of host survival pathways (PI3K and p53). In many respects,
VP3 is two proteins in one: it caps viral transcripts as they emerge
from RV DLPs, which likely prevents activation of host RNA sensors,
and it directly antagonizes the dsRNA-responsive OAS/RNase L
pathway by cleaving the signaling molecule 2-5A. VP3 may also
function in two distinct regions of the cell during infection: within a
viral particle as the capping enzyme and perhaps also within the
cytoplasm as a direct innate immune antagonist. The varied func-
tions of NSP1 and VP3 highlight the diversity and importance of
cellular innate immune defenses to RNA viruses and likely reflect
the requisite compactness of a viral genome.
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