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Abstract

The neurodegenerative disease Friedreich’s ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is
caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a
mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein
levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to
controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of
genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial
and nuclear DNA damage in the blood of these patients (p,0.0001, respectively). Additionally, frataxin mRNA levels
correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response,
oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were
downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic
survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results
yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the
identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in
future clinical trials.
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Introduction

Friedreich’s ataxia (FRDA; OMIM# 229300) is the most

common autosomal-recessively inherited ataxia beginning in

childhood and leading to death in early adulthood. Patients

exhibit neurodegeneration of the large sensory neurons and

spinocerebellar tracts, along with variable systemic manifestations

that include hypertrophic cardiomyopathy, scoliosis, and diabetes

mellitus (see http://www.ncbi.nlm.nih.gov/entrez/dispomim.

cgi?id=229300).

FRDA results from the partial loss of frataxin (FXN; Entrez

Gene ID 2395), a small nuclear encoded 18-kDa protein targeted

to the mitochondrial matrix [1]. A GAA triplet repeat expansion

in the first intron impairs transcription of frataxin, resulting in a

significant reduction in mRNA and protein levels [2–4]. The exact

physiological function of frataxin is still unclear, but it has been

shown to bind iron and play a role in iron-sulfur cluster (ISC)

assembly [5,6]. A decrease in frataxin may also increase reactive

oxygen species (ROS) produced by increases in bioavailable iron

[5,7–10] and the lack of iron detoxification [11]. The conclusions

of several studies indicate that a defect in ISC assembly is the

primary event in frataxin-deficient cells [5,12–14] and that ROS

production is a secondary event [8,15]. Napoli et al. [12] believe

the dysfunction of biosynthesis of mitochondrial iron-sulfur

clusters, and deficiency of ISC enzyme activity, produces a defect

in heme, which in turn causes a loss of cytochrome C. Impairment

of electron transport activity results in higher levels of ROS

production [14], and according to Napoli et al. [12], it is the

decrease in cytochrome C that leads to the unchecked increase in

production of mitochondrial ROS in Friedreich’s ataxia patients.

This hypothesis is further supported by studies of yeast strains with

reduced frataxin, which accumulate mitochondrial iron and
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generate reactive hydroxyl radicals that damage membranes,

proteins, and mitochondrial DNA (mtDNA), ultimately resulting

in the decreased capacity for ATP synthesis through impaired

oxidative phosphorylation [15,16]. Moreover, evidence consistent

with nuclear DNA (nDNA) damage is demonstrated by decreasing

the levels of frataxin in a RAD52 (854976) double-strand break

repair deficient yeast strain, which results in rapid G2/M cell cycle

arrest [16].

In FRDA patients, iron deposition is observed in neuronal and

myocardial cells and suggests the potential for free radical damage

[17,18]; however, we note that the case for oxidative stress has

been somewhat controversial. Cell models support sensitivity to

oxidative stress, and patient studies have found markers of

oxidative stress [7,19,20], but a conditional knock-out (KO)

mouse model did not show oxidative stress, or improvement, when

overexpressing superoxide dismutase (SOD) [21]. Recent studies

have also failed to replicate the previous marker data [22,23].

Therefore, it is important to examine other markers of oxidative

stress by more sensitive and specific means, such as testing for

mtDNA damage in the patient. There is good evidence to suggest

that hypertrophic cardiomyopathy, which leads to the death of

most FRDA patients, is probably a consequence of iron-catalyzed

Fenton chemistry causing damage to mitochondrial macromole-

cules followed by muscle fiber necrosis and a chronic reactive

myocarditis [24]. More work is needed to understand the causes of

the pathobiology associated with the progression of FRDA.

While genome-wide scans in frataxin-deficient model organisms

and mammalian cells have previously been published [15,25–27],

we report the first study involving transcription profiling of total

blood from children with FRDA. These gene expression data were

further validated in a second cohort of adults with FRDA, who

were compared to an independent group of controls. Importantly,

we observed previously unreported signatures of gene expression

associated with DNA damage responses. Based on these results, we

further analyzed patient mitochondrial and nuclear DNA from

peripheral blood and detected high levels of damage as compared

to control samples. These results provide insights into the nature of

the disease and a working model for frataxin deficiency in humans.

Results

Microarray analysis of global gene expression in total
blood from children with FRDA

We set out to identify mechanisms involved in the nature and

progression of Friedreich’s ataxia by analyzing global gene

expression changes in blood samples from 28 FRDA children

involved in an idebenone clinical trial [22] (Table S1). Blood

samples were collected from the children prior to the administra-

tion of idebenone. The protocol only allowed one 8.5 ml sample of

blood for the RNA isolation, which resulted in a limited amount of

RNA for this study. Furthermore, control unaffected children were

not included in this clinical trial; therefore, we used the youngest

control adults available from an NIEHS sponsored study [28] for

the gene expression analysis (Table S1).

Significance Analysis of Microarray (SAM) [29] identified 1,370

differentially expressed genes at a false discovery rate (FDR) less

than 0.023% (Dataset S1). A majority of genes, 899, were

downregulated in FRDA compared with control, while 471 genes

were upregulated. We further investigated whether these altered

transcripts (FDR,0.023%) were associated to specific gene

ontology (GO) terms, at p#0.05, in order to assess the global

impact of FRDA on gene expression. This analysis identified

significant functional groups that included apoptosis signaling,

transcription/RNA processing, cell-cell signaling, cell cycle,

ubiquitin cycle, proteolysis/protein catabolism, response to

stimuli, and fatty acid beta-oxidation (Figure 1).

Although age-matched control children were not available for

this study, we decided not to use data uploaded to GEO by other

laboratories. It is important to minimize cross-platform differenc-

es, which can give rise to large technical variation that may

obscure small biological differences in blood cells. Therefore, the

controls we used were gene expression profiles from young adults

processed in our same facility, on the same oligonucleotide chip

design, by the same operator. However, we did assess what effect

age might have on gene expression by using SAM to test for any

association. This analysis was performed in the controls, and age

was dichotomized by comparison to the median age of the

controls. Age was not found to be associated with any gene

expression value after multiple testing correction (min q = 0.47);

thus no age-specific gene expression changes were discerned in our

control group.

Gene Set Analysis reveals common gene signatures to
genotoxic stress responses in children and a validation
cohort of adults with FRDA

As an alternative approach to gene ontology enrichment

analysis, the microarray data for children with FRDA were

further analyzed by employing Gene Set Analysis (GSA), a tool

that uses predefined gene sets to identify significant biological

changes in microarray datasets [30,31]. We searched for

significantly associated gene sets from Molecular Signatures

Database subcatalog C2, a database of 1684 microarray

experiment gene sets, pathways, and other groups of genes [31].

The analysis yielded many biologically informative sets (Dataset

S2) consisting of genes enriched in brain cortex and heart atria, as

well as biological processes such as mitochondrial fatty acid beta-

oxidation, and reactive oxygen species. The application of GSA

also identified 23 gene sets associated to genotoxic stress response

(Table 1). P53genes_all is composed of transcriptional targets of p53

(7157), a regulator of gene expression in response to various signals

Author Summary

Friedreich’s ataxia is an inherited disease that causes
progressive damage to the nervous system and affects the
muscles and heart. The disease is caused by a defect in the
frataxin gene, which is involved in iron homeostasis and
likely protects against reactive oxygen species. In order to
identify mechanisms involved in the nature and progres-
sion of the disease, we performed transcriptional profiling
and measurements of mitochondrial and nuclear DNA
damage on blood cells from FRDA patients. Transcriptional
profiling was performed on blood samples from a cohort
of 28 children compared to a control group. These data
were then validated with a cohort of 14 adults with FRDA
compared to a second independent control group. DNA
damage was assessed on the blood samples from the 28
FRDA children, plus an additional 19 affected children, by
quantitative PCR (QPCR). Transcriptional profiling revealed
changes in gene expression consistent with the presence
of genotoxic stress in FRDA patients. This finding was
supported by the direct evidence that FRDA patients
accumulated significantly higher levels of mitochondrial
and nuclear DNA damage as compared to controls. The
identification of potential biomarkers, including the DNA
damage found in peripheral blood, may help identify
therapeutic approaches for this devastating disease.

DNA Damage in Blood from FRDA Patients
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of genotoxic stress, with genes such as GADD45A (1647), PMAIP1

(5366), and SESN1 (27244) displaying repressed expression.

Genotoxins_all_24h_reg consists of downregulated genes regulated

in mouse lymphocytes at 24 hours by cisplatin, methyl methane-

sulfonate (MMS), mitomycin C, taxol, hydroxyurea, and etoposide

[32]. Other gene sets consist of mostly downregulated genes in

response to bleomycin, MMS, ultraviolet B (UVB), and ultraviolet

C (UVC) radiation, which were also downregulated in the FRDA

dataset (denoted by the negative GSA scores) (Table 1). We next

asked if there were genes in common across the 23 genotoxic-

stress-response gene sets. Transcripts present in at least 25% of the

gene lists (81 genes total) were subjected to unsupervised clustering

and displayed segregation into two groups of controls and patients

(Figure 2A, right panels, and Dataset S3). Most of these genes fall

in the gene ontology categories of transcription, signal transduc-

tion, and cell cycle (data not shown).

To validate the gene expression changes observed in the child

FRDA cohort, we examined an adult FRDA cohort (n = 14).

These patients were compared with a new group of 15 adult

controls, obtained from an NIEHS sponsored study [28] (Table

S2). SAM analysis yielded 2,874 genes at an FDR of less than

0.018% (Dataset S4). This dataset was also analyzed with GSA,

yielding significant gene sets related to genotoxic stress response,

DNA repair, insulin response, and apoptosis (Dataset S5). When

we performed unsupervised clustering of the same list of 81 genes

found in the children with FRDA, we observed a similar

segregation of patients from controls in this independent group

of adults (Figure 2A), thus helping to validate this gene set.

The FRDA adult and FRDA children’s datasets were further

compared by limiting to significant SAM genes in common and

taking into account the direction of differential expression. As stated

earlier, a total of 1370 probesets were found significant in the

children’s cohort (FDR,0.023%), and the median FDR for these

probesets in the second cohort was 0.34%. These analyses resulted

in 228 mostly downregulated genes in common in both gene sets

(FDR,0.018%; overlap p = 0.007 – based on the probability of the

hypergeometric distribution) (Figure 2B). This list of 228 genes was

analyzed for specific GO category enrichment (Figure 2C) (catego-

ries similar to those displayed in Figure 1 are not included; for the

full list, see Table S3) and significantly associated to ubiquitin cycle,

protein ubiquitination, and proteolysis/catabolism, as well as cell

cycle. Using the Ingenuity Knowledge Base (see Materials and

Methods), we further mapped the genes to biological function

categories and specific pathways, which included apoptosis signaling

and oxidative phosphorylation (Table S4). Additionally, the Fisher’s

exact test was used to search the Molecular Signatures Database for

gene sets enriched with genes found in the overlap. These results

yielded similar genotoxic gene sets as those observed with the

children’s data as a whole (Table S5).

FRDA patients have significant mitochondrial and
nuclear DNA lesions

Having seen a genotoxic stress response in the microarray data

of the FRDA patients, we sought to validate these findings and test

Figure 1. Selected gene classifications according to biological
processes. Significantly regulated genes (SAM FDR,0.023%; n = 1,370)
from FRDA children versus healthy young adults were grouped according
to the gene ontology category of biological process (p#0.05 in updown,
over, or under [expression] output lists). The percent of total (displayed
with a gray ball) is based on the number of significantly changed genes
out of the total number of genes assigned to each gene ontology term.
The change in expression for each GO term is depicted in yellow for
upregulation and blue for downregulation.
doi:10.1371/journal.pgen.1000812.g001

Table 1. Gene Set Analysis demonstrates a signature of DNA
damage in FRDA patients.

Set Name Score p-Value FDR

BLEO_HUMAN_LYMPH_HIGH_4HRS_UP 20.37 0.044 0.6916

GENOTOXINS_ALL_24HRS_REG 20.4663 0.044 0.6916

MMS_HUMAN_LYMPH_LOW_4HRS_DN 21.1264 0.01 0.5726

MMS_MOUSE_LYMPH_HIGH_4HRS_UP 20.7369 0.002 0.4453

P53GENES_ALL 0.3779 0.04 0.9698

UVB_NHEK1_C6 20.4047 0.022 0.6203

UVB_NHEK1_DN 20.4473 0.014 0.5726

UVB_NHEK2_DN 20.3615 0.012 0.5726

UVB_NHEK3_C2 20.7741 0.004 0.5726

UVC_HIGH_ALL_DN 20.4171 0.006 0.5726

UVC_HIGH_D1_DN 20.4286 0.032 0.668

UVC_HIGH_D2_DN 20.366 0.064 0.7433

UVC_HIGH_D7_DN 20.4576 0.018 0.5726

UVC_HIGH_D9_DN 20.733 0.008 0.5726

UVC_TTD_4HR_DN 20.5704 0.006 0.5726

UVC_TTD_8HR_DN 20.3107 0.044 0.6916

UVC_TTD_ALL_DN 20.4737 0.008 0.5726

UVC_TTD-XPCS_COMMON_DN 20.4533 0.012 0.5726

UVC_XPCS_4HR_DN 20.5225 0.014 0.5726

UVC_XPCS_4HR_UP 20.6511 0.028 0.645

UVC_XPCS_8HR_DN 20.5428 0.008 0.5726

UVC_XPCS_ALL_DN 20.5414 0.006 0.5726

UV-CMV_UNIQUE_HCMV_6HRS_DN 20.2488 0.02 0.5938

GSA was performed using the Molecular Signatures Database. Significantly
enriched gene sets included 23 sets associated to genotoxic stress response.
doi:10.1371/journal.pgen.1000812.t001
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Figure 2. Analogous gene expression responses in blood from children and adults with FRDA. (A) A common gene signature is
representative of a genotoxic stress response found by Gene Set Analysis. Twenty-three genotoxic stress response gene sets were searched for
common genes. This heat map, generated by unsupervised clustering, displays the genes present in at least 6 of the 23 gene sets and compares
transcript levels between FRDA patients, the adult and children cohorts, and controls. Yellow = upregulated; Blue = downregulated. C = Control;
P = Patient. Note that while three patients and one control did not segregate with their respective groups, all adult patients and controls clustered in
two separate groups in this unsupervised clustering. (B) Heat-map generated by unsupervised clustering of FRDA and control samples, which displays
the overlap of significantly differentially expressed genes (SAM FDR,0.023%; n = 228) in the FRDA children and FRDA adults (overlap p#0.007).
C = control; P = patient. (C) A selected list of significant GO groups representing the overlap gene list described in (B). All controls used for comparison
to the FRDA children are young adults (see Table S1). The percent of total (displayed with a gray ball) is based on the number of significantly changed
genes out of the total number of genes assigned to each gene ontology term. The gene number for each GO group is shown with a blue bar, the
intensity of which is indicative of the p-value.
doi:10.1371/journal.pgen.1000812.g002
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whether damage to the nuclear and mitochondrial genomes is

elevated in patients with FRDA. Moreover, although genotoxic

responsive gene sets in the children and adult cohorts had highly

significant p-values, some had high false discovery rates, requiring

further biological validation.

Blood DNA from the same 28 children studied for gene

expression was analyzed using a quantitative PCR (QPCR) assay

to detect DNA damage [33]. In addition to the 28 children

evaluated by gene expression profiling, we obtained 19 more DNA

samples from affected children in the same clinical study (Table

S6) [22]. Only one 8.5 ml sample, per child, of whole blood was

allotted for DNA isolation; all DNA samples were prepared by one

person using the same protocol (see Materials and Methods).

Blood from 15 young adults was obtained from an NIH blood

bank in Bethesda, MD and used as controls (Table S6).

The QPCR technique we used has successfully identified lesions

in nDNA and mtDNA, resulting from oxidative stress, in a

number of organisms, including human and rat cell cultures

[34–36], yeast [16], and mice [37]. However, this is the first time

the assay has been used for DNA derived from human blood. The

approach involves the amplification of a large 8.9 kb and 12.2 kb

fragment for mtDNA and nDNA, respectively. Previous work by

our group suggests that damage is distributed evenly throughout

both genomes [34,38,39]. The large mtDNA amplification

product constitutes ,54% of the genome and is the representative

of the overall genome. The primers used to amplify the product

were designed to specifically avoid the D-loop region – a region

that is often single-stranded and could increase DNA damage

because of its high mutation frequency. Additionally, amplification

of a short, ,200 bp mtDNA fragment, which due to its small size

has less chance of containing a lesion, is used to normalize for

mitochondrial copy number in the amplification of the large

mtDNA fragment. Oxidative damage induces a spectrum of

lesions, such as strand breaks, abasic sites, and some base damage

(i.e. thymine glycol), which interfere with the progression of the

thermostable polymerase to replicate the template DNA. Thus,

during amplification, the presence of an oxidative lesion results in

the inability of the polymerase to synthesize the template DNA.

The final amount of amplified DNA is inversely proportional to

the number of oxidative lesions. The QPCR gene-specific damage

assay is based on differential amplification of target genes in

affected controls as compared to a control population. Excess

DNA damage in the affected group will show as a decrease in

amplification as compared to the control group.

A significant number of nuclear (0.53 lesions/10 kb) and

mitochondrial DNA lesions (0.81 lesions/10 kb) was observed in

the 47 FRDA children compared to 15 young adult controls

(Table S6), with p,0.0001, respectively, by Mann Whitney U-test

(Figure 3). There was also a significantly higher number of

mitochondrial lesions than nuclear lesions (p,0.002, Mann

Whitney U), and both mtDNA and nDNA lesions were found to

be highly correlated by Spearman’s rank test (Rho = 0.700;

p,0.0001). Since this study did not have age-matched control

children, for the two DNA damage variables (nDNA and mtDNA),

we used a t-test to detect any association with age in the control

group. This analysis was performed in the controls after stratifying

the subjects as ‘‘higher’’ or ‘‘lower’’ than the median age of the

group. Age was not found to be associated with mtDNA damage

(p = 0.98) or nDNA damage (p = 0.10).

Finally, mtDNA and nDNA damage samples were classified as

‘‘high damage’’ or ‘‘low damage’’ if the lesions/10 kb of DNA was

.0.85 or ,0.85 (based on the distribution pattern; data not shown),

respectively. GSA was then used to test the association of the DNA

damage to predefined gene sets. A positive score would indicate

enrichment in samples with high DNA lesions/10 kb, and a negative

score would point to enrichment in samples with less lesions/10 kb.

This analysis showed higher levels of DNA lesions associating to gene

sets involving neuronal and synapse formation, as well as several

others regarding a genotoxic stress response (p#0.01) (Dataset S6).

Extracting gene expression patterns identifies potential
biomarkers of disease progression

Since the bioinformatics analyses in this study were applied to

SAM-derived data based on pooling the raw data from all 28

children (Materials and Methods), we tested the hypothesis that a

discrete set of genes would be differentially expressed in patients

with the lowest levels of frataxin. We next generated a

transcription profile comparing patients with the lowest amount

of frataxin, analyzed by Real-time PCR, to those with the highest.

The samples were stratified into two groups, based on the

expression distribution, where the values formed two distinct

modes (see Figure S1 legend). A threshold of 22.5 was selected to

separate these two modes, resulting in six patients considered

‘‘high-frataxin expressers’’ and 21 patients designated ‘‘low-

frataxin expressers’’ (Figure 4A and Figure S1). Significant gene

changes were determined using SAM at a cutoff of FDR#8%

(p#0.05) for a total of 973 genes. These genes were analyzed for

gene ontology enrichment and mapped to pathways in the

Ingenuity Knowledge Base. Top scoring categories and pathways

included protein biosynthesis, oxidative phosphorylation, ubiqui-

none biosynthesis, nucleotide excision repair, and protein

ubiquitination, all of which were downregulated in those patients

expressing lower levels of frataxin (Figure 4B).

Since we had quantified the level of frataxin for each patient, we

sought to find an association of these levels to the expression of

each gene in our genotoxic signaling list (Dataset S3). A univariate

linear model was constructed to test this association, and no genes

in this set were found to be significantly associated with frataxin

levels. The minimum p-value was 0.002, which was not significant

Figure 3. Nuclear and mitochondrial DNA damage are identi-
fied by QPCR analysis of blood DNA from 47 patients with
FRDA and 15 controls. These data represent the number of excess
lesions found per 10 kb of DNA from both mtDNA and nDNA genomes
in FRDA patients as compared to the controls. A significant number of
nuclear (0.53 lesions/10 kb) and mitochondrial DNA lesions (0.81
lesions/10 kb) were observed (p,0.0001, respectively, by Mann-
Whitney U test). There is a significantly higher number of mitochondrial
lesions than nuclear lesions (p,0.002 by Mann-Whitney U test), and
both types of lesions are highly correlated (p,0.0001 by Spearman’s
Rank Correlation). Error bars represent the standard error of the mean.
doi:10.1371/journal.pgen.1000812.g003

DNA Damage in Blood from FRDA Patients
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after multiple testing correction (q = 0.20). We further sought to

find correlations of frataxin mRNA levels to all available clinical

data for each child, including DNA lesions and disease duration,

but only found an association, by univariate linear modeling, with

age of onset and number of short GAA repeats. This resulted in

p = 0.00277 and r2 = 0.305 for the relationship of frataxin mRNA

levels to age of onset (Figure 4C), and p = 0.00131 (r2 = 0.344) for

the relationship of frataxin mRNA levels with the short GAA

repeat length (Figure S2). These correlations of frataxin mRNA to

short GAA repeat length and age of onset are in agreement with

other published studies [1,40,41].

Intrigued by these associations to clinical data, we wondered if

we could directly associate the global gene expression data to all

clinical data and decided to use a method called EPIG, which

extracts microarray gene expression patterns and identifies co-

expressed genes (see Materials and Methods) [42]. Indeed, not

only did we validate the SAM gene lists for the FRDA children,

but we extracted patterns that associated the mostly downregu-

lated transcriptional changes to their frataxin levels, age of

diagnosis, and International Cooperative Ataxia Rating Scale

scores – a scoring method used to discern the level of disability in

the FRDA patient (Table 2) [43]. Patterns correlating levels of

frataxin to gene expression encompassed 37 responsive genes.

These genes were grouped most strongly in the GO categories of

immune response and protein biosynthesis. Patient age of

diagnosis and ICARS score associated with 98 and 48 genes,

Figure 4. Patients with lower levels of frataxin correlate with age of onset of disease and have more compromised mitochondrial
and protein biosynthetic function. (A) Real-time PCR of frataxin levels in all patients with available RNA (27) were compared to controls (10).
Levels of frataxin are relative to the average DCT of the controls (dotted line). The error bars represent standard deviations. Brackets encompass the
patients stratified by their expression distribution into those expressing higher levels of frataxin (n = 6) and those expressing lower levels of frataxin
(n = 21) (see Figure S1). (B) Global gene expression changes were analyzed in the patients with low levels of frataxin vs. patients with high levels of
frataxin. Significantly differentially expressed genes (SAM FDR#8%; p#0.05; n = 973) were further examined for gene ontology groups categorized by
biological process. The same list of genes was analyzed with IPA (Ingenuity Systems), which identified significant biological functions and canonical
pathways. All gene groups contain mostly downregulated genes, indicating compromised mitochondrial and biosynthetic function in patients with
the lowest expression of frataxin. (C) Age of onset plotted against the Real-time PCR frataxin levels yields a correlation of r2 = 0.305 (p = 0.00277).
doi:10.1371/journal.pgen.1000812.g004

DNA Damage in Blood from FRDA Patients
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respectively, with protein biosynthesis as a highly significant

category. Supervised correlation analysis was also performed,

where correlation r values and p-values between each gene

expression profile and ICARS score were calculated. This analysis

generated a list of 144 positively and negatively correlated genes at

a p-value threshold of 0.01. Protein biosynthetic function was once

again highly significant as a GO category, resulting from the input

of these genes (Table 2). Genes correlated with ICARS are

potential biomarker candidates that may help to classify the

progression of the disease.

Analysis of the second patient cohort shows consistent
alterations in gene expression with FRDA children

EPIG was further utilized to extract patterns and compare

between the FRDA children and FRDA adults. We were

interested in finding biomarker gene candidates based on duration

of disease and representative of severity. Of particular interest

were genes that were very significant in both cohorts, regulated in

the same direction, but displaying larger differential expression in

the adults. A detailed examination of the gene profiles was

employed using the signal to noise ratio, ANOVA, Student’s t-test,

and fold changes, and resulted in fifteen genes that are potential

biomarkers of disease progression in need of further testing:

SERPINC1 (462), DHFRL1 (200895), IRX2 (153572), SGCE (8910),

ADAM23 (8745), TBX3 (6926), SLC5A4 (6527), CCAR1 (55749),

MS4A2 (2206), IMPACT (55364), NDUFA5 (4698), CEACAM6

(4680), C10orf88 (80007), ITGA4 (3676), and CD69 (969) (first

seven genes are upregulated and the subsequent eight genes are

downregulated). Entrez IDs for these genes and all genes described

in this paper can be found in Table S7.

Discussion

This study provides the first summary of gene expression

changes in the blood of 28 children with Friedreich’s ataxia and

the association of this global response to the nuclear and

mitochondrial DNA damage found in 47 children (including the

28 children from the gene expression analysis). These data – the 23

gene sets associated to a genotoxic stress response and the direct

biological evidence of mtDNA and nDNA damage in the blood –

result in a working model of the disease, where repressed levels of

frataxin create a vicious cycle of mitochondrial dysfunction

(probably due to ISC biosynthesis impairment), decreased

oxidative phosphorylation, and increased reactive oxygen species

production and genotoxic stress (Figure 5). These events result in

DNA damage and altered DNA transactions, which likely

contribute to the decreased protein biosynthesis, signaling,

transcription, DNA replication/recombination/repair, apoptosis,

and ubiquitination, as well as the altered immune response and

proliferation indicated in the transcription profiling. Such changes

Table 2. Potential biomarkers of FRDA: gene associations to clinical data based on differential expression.

Clinical Data Gene Category p-Value Gene Symbol

Frataxin Levels n = 37

Immune Response (BP) 9.79E-06 CXCL11; FPR1; HLA-C; IFITM1; LILRB3; POU2F2; S100A12; S100A9; S100B; TLR4

Protein Biosynthesis (BP) 6.14E-04 RPS20; RPS23; RPS26; RPS27A; RPS4X; S100B; TLR4

Inflammatory Response (BP) 7.55E-04 CXCL11; FPR1; S100A12; S100A9; TLR4

Eukaryotic 48s Initiation Complex (CC) 3.83E-05 RPS20; RPS23; RPS26; RPS4X

Ribosome (CC) 2.35E-03 RPS20; RPS23; RPS26; RPS27A; RPS4X

Age of Diagnosis n = 98

Protein Biosynthesis (BP) 1.83E-02 MAN1B1; RPL37; RPL3L; RPS20; RPS23; RPS4X; RPS5

Cytosolic Ribosome (CC) 2.64E-04 RPL37; RPS20; RPS23; RPS4X; RPS5

ICARS1 n = 49

Protein Biosynthesis (BP) 2.74E-05 MRPS14; RPL24; RPL26L1; RPL27; RPL37; RPS19; RPS23; RPS27A; RPS3

Ribosome (CC) 3.04E-10 HAT1; MRPS14; MRPS28; RPL24; RPL26L1; RPL27; RPL37; RPS19; RPS23; RPS27A; RPS3

ICARS2 n = 144

Protein Biosynthesis (BP) 1.41E-11 FAU; GSPT2; NHP2L1; RPL13A; RPL18A; RPL19; RPL22; RPL23A; RPL28; RPL29; RPL36;
RPL37; RPL37A; RPLP2; RPS10; RPS12; RPS13; RPS14; RPS15; RPS19; RPS23; RPS28; RPS3

Ribosome (CC) 3.78E-19 FAU; MTHFR; NHP2L1; ONECUT1; RPL13A; RPL18A; RPL19; RPL22; RPL23A; RPL28;
RPL29; RPL36; RPL37; RPL37A; RPLP2; RPS10; RPS12; RPS13; RPS14; RPS15; RPS19;
RPS23; RPS28; RPS3

Cytoplasm (CC) 8.50E-08 ACTN4; ADSS; AP2B1; APRT; ATP5G2; CCND3; CDC42BPB; CES1; CFL1; CRIP2; CTSF;
DSG1; FAU; FHL2; GLI2; HIPK2; HSPC152; ITGAE; KIAA0907; LOC51334; MAP4; MTHFR;
NGFRAP1; NHP2L1; NME3; NXT1; ONECUT1; PAPSS2; PEX6; RPL13A; RPL18A; RPL19;
RPL22; RPL23A; RPL28; RPL29; RPL36; RPL37; RPL37A; RPLP2; RPS10; RPS12; RPS13;
RPS14; RPS15; RPS19; RPS23; RPS28; RPS3; SLC27A5; STX6; TMEM9; UXT; XPO7

Structural Constituent of Ribosome (MF) 2.06E-19 FAU; MRPS24; NHP2L1; RPL13A; RPL18A; RPL19; RPL22; RPL23A; RPL28; RPL29; RPL36;
RPL37; RPL37A; RPLP2; RPS10; RPS12; RPS13; RPS14; RPS15; RPS19; RPS23; RPS28; RPS3

n = significant genes; selected categories and their genes are displayed.
Frataxin levels, Age of Diagnosis, ICARS1; n = genes found by EPIG analysis.
ICARS2; n = genes found by supervised correlation analysis, where the r and P values between gene expression and ICARS score were calculated.
BP = Gene ontology system, biological process.
CC = Gene ontology system, cellular component.
MF = Gene ontology system, molecular function.
doi:10.1371/journal.pgen.1000812.t002
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in the blood may relate to the clinical manifestations of

neurodegenerative and cardiovascular disease in FRDA patients,

while also providing biomarker candidates for their disease.

Gene expression changes in peripheral blood of FRDA
patients compared to lymphoblastoid cell lines

Cortopassi and coworkers have previously published two global

gene expression analyses of cells from FRDA patients [25] and

tissue from frataxin-KO mice (26). While direct analyses of these

published studies with the work presented here is not possible,

since these previous data were not apparently deposited in a public

database, several points are worth noting. Tan et al. [25] reported

48 significant frataxin-dependent differentially expressed genes in

at least two of the human cell types. In particular, they focused on

seven downregulated transcripts belonging to the sulfur amino

acid (SAA) and iron-sulfur cluster biosynthetic pathways. When

they combined data from mouse and human frataxin-deficient

cells and tissues, mitochondrial coproporphyrinogen oxidase

(CPOX; 1371), which is involved in the heme pathway, and the

homologue of yeast COX23 (856516) were most consistently

downregulated [27]. These transcripts were not found to be

significant in our dataset. The authors conclude that frataxin

deficiency leads to heme deficiency. While our work with both

FRDA patient cohorts did not show the heme pathway as

significantly repressed, the downregulated mitochondrial pathways

we did observe are easily affected by, or could contribute to, heme

deficiency. Ultimately, these changes in heme biosynthesis could

cause DNA damage [44] recapitulated in our patients.

We wanted to further validate the datasets derived from

children and adults with FRDA, so we analyzed ten FRDA

lymphoblastoid cell lines, compared with seven age-matched

controls, and data from a previous report involving two

lymphoblastoid cell lines (one control and one affected) (Table

S8) [45]. Particularly interesting overlaps with the blood data were

observed with GSA analysis, which also yielded significant gene

sets related to genotoxic stress response (for biologically informa-

tive sets in common between the FRDA children’s data and the

lymphoblastoid data, see Dataset S7 and Figure S3). Furthermore,

GSA analysis of the lymphoblastoid data also found an association

to significant gene sets like electron_transport_chain, mitochondrion, and

ubiquinone biosynthesis, which are indicative of the mitochondrial

dysfunction expected in frataxin-deficient cells (Dataset S7).

Consequences of mitochondrial and nuclear DNA
damage in FRDA patients

While the QPCR assay used in this study cannot directly

identify the type of DNA damage inhibiting the progression of the

thermostable polymerase, the increase in mtDNA damage, as

compared to nDNA damage, is consistent with a large number of

studies from our and other laboratories, indicating that mtDNA is

more prone to oxidative stress [16,34–37]. The increased DNA

damage observed in the children suggests oxidant injury in their

blood cells, probably caused by an increase in bioavailable iron in

the mitochondria. Persistent mtDNA damage in FRDA patients

could impair mitochondrial function. Experiments with mamma-

lian cell cultures, treated with hydrogen peroxide, indicate that

relentless mtDNA damage decreases oxidative phosphorylation

and ATP production (unpublished observation). In vivo evidence of

impaired mitochondrial ATP production has, in fact, been seen in

the muscle of FRDA patients [46,47] and in KO mice [48].

Karthikeyan et al. [16] also demonstrate how yeast strains with

reduced frataxin accumulate mitochondrial iron and generate

reactive hydroxyl radicals, which damage cell membranes,

proteins, and mitochondrial DNA, resulting in the decreased

capacity for ATP synthesis through impaired oxidative phosphor-

ylation. The same study further demonstrates how low levels of

frataxin in a RAD52 double-strand break repair deficient yeast

strain lead to rapid G2/M cell cycle arrest, which is consistent with

Figure 5. Model of Friedreich’s ataxia pathology based on this study. Data presented in this study are consistent with a dysregulation of
mitochondrial function, decreased oxidative phosphorylation, increased ROS production, and subsequent mitochondrial and nuclear DNA damage.
These factors contribute to decreased signaling and altered DNA transactions, which are likely to result in subsequent loss of protein synthesis and
decreased protein degradation, as suggested in the transcription profiling. These alterations may cause tissue damage, altered immune response,
and the clinical pathology associated with FRDA.
doi:10.1371/journal.pgen.1000812.g005
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nuclear damage. Moreover, reports depicting an increased

sensitivity to gamma irradiation in FRDA skin fibroblasts, and

the induction of chromosomal damage by mutagens in blood

lymphocytes, support a hypothesis of increased susceptibility and/

or altered DNA repair capacity in these patients [49,50].

The eukaryotic cell, in response to DNA damage, employs

different strategies for damage recognition and repair in order to

maintain the integrity of the genome. DNA damage sensors such as

ATM (472) and p53 are crucial in detecting double-strand breaks

and general DNA damage responses, respectively [51]. Although

the ATM and p53 genes are not differentially expressed in the

datasets presented here, we observed, via GSA and the Ingenuity

Knowledge Base (data not shown), that many interacting network

partners of these two proteins are significantly altered.

The significant increase in persistent DNA damage we found in

FRDA patients, as well as the transcription profiling results,

indicate altered repair capacity and altered apoptosis signaling

events. Furthermore, a significant number of genes included in the

Ingenuity biological function category of Cancer (104 and 475

genes in Cancer and its subcategories, p#0.05, for FRDA children

and FRDA adults, respectively; data not shown) may explain the

malignant transformation potential of frataxin-deficient cells, both

in vitro and in vivo [10,48,52]. This hypothesis is supported by work

done in mice by Thierbach et al. [48], albeit a mouse model

completely deleted for frataxin. When they disrupted expression of

frataxin in mouse hepatocytes, lifespan was not only reduced, but

the livers had increased oxidative stress and mitochondrial

dysfunction. This was paralleled by reduced activity of iron-sulfur

cluster containing proteins and the development of multiple

hepatic tumors. The authors also reported impaired phosphory-

lation of the stress-inducible p38 MAP kinase and suggest that

frataxin may, in fact, be a mitochondrial tumor suppressor protein.

Thus, while reports of cancer in FRDA patients are rare [53–56],

the incidence may be underestimated due to premature mortality

of these patients in early adulthood.

The overall decrease in transcription and DNA damage we

observed are likely consequences of dysfunctional ISC biosynthesis

and reduced activity of proteins containing iron-sulfur centers. In

fact, several damage recognition and DNA repair proteins are

iron-sulfur containing and could be directly linked to the DNA

damage described [57–60]. Currently, we are analyzing protein

levels, in frataxin-deficient cell lines, of a panel of iron-sulfur

containing proteins important to DNA repair. Some candidate

proteins with iron-sulfur centers include the MutY (4595)

homologue (a glycosylase in base excision repair); the yeast

protein, Rad3 (856918), which is essential for viability, and its

human homologues XPD (2068) and Fancj (83990) (helicases

involved in nucleotide excision repair and the Fanconi anemia

repair pathway, respectively); and Pri2 (853821) (essential to RNA

primer synthesis) [57–60].

The likely sequence of events leading to the DNA damage we

observed are as follows: 1) deficiency of frataxin generates a defect in

ISC assembly and biogenesis [5,12–14]; 2) the dysfunction of

biosynthesis of mitochondrial iron-sulfur clusters, and deficient ISC

enzyme activity, produces a defect in heme and a lack of cytochrome

C [12]; 3) impairment of electron transport activity, which is

dependent on iron-sulfur biogenesis, and the decrease in cytochrome

C, results in higher levels of ROS production [12,14]; and 4) due to

lack in antioxidative capacity, which we explain below, eventual

DNA damage occurs. Therefore, we believe the DNA damage in the

blood of the Friedreich’s ataxia patient is a secondary event to the

primary one of frataxin depletion and neurodegeneration. However,

the secondary event of cellular oxidative stress and DNA damage is a

significant component to the underlying pathology of the disease.

Adaptation to chronic stress
We further propose that the downregulation of many key

pathways (Figure S4A and Figure 4C) and GO categories

(Figure 1, Figure 2C, and Figure 4B), in this study, may suggest a

systemic survival response to chronic genotoxic stress and conse-

quent DNA damage. Chronic genotoxic stress in FRDA probably

results from iron accumulation in the mitochondria, and it might be

expected that cellular redox homeostasis, such as that regulated by

NRF2 (4780), would protect the cell from excessive reactive oxygen

metabolites. However, we observed the downregulation of the

NRF2-mediated oxidative stress pathway (Figure S4B), strengthening

published reports suggesting a disabled antioxidant defense response

in FRDA [9,10,61], including a recent study by Paupe et al. [62]

showing that cultured fibroblasts from patients with FRDA exhibit

hypersensitivity to oxidative stress because of an impaired NRF2

signaling pathway. Furthermore, Chantrel-Groussard et al. [9]

found that reduced frataxin does not induce superoxide dismutases

nor the import iron machinery by endogenous oxidative stress in

FRDA fibroblasts compared to controls. Superoxide dismutase

activity is also not induced in the heart of conditional knock-out mice

[21]. Conversely, overexpression of human frataxin in murine cells

increases antioxidant defense via activation of glutathione peroxidase

and elevation of reduced thiols, and reduces the incidence of ROS-

induced malignant transformation [10]. Sturm et al. [61] reported

data strongly indicating that a reduction in frataxin does not affect

the mitochondrial labile iron pool in human cell lines and suggests

that these cells have a decreased antioxidative capacity. Overall,

these studies support a mechanism by which iron-sulfur proteins are

lost [13] and there are increased amounts of ROS and a disabled

antioxidant defense system.

Based on our blood analysis of FDRA patients showing chronic

genotoxic stress responses and chronic DNA damage, we believe

these stressors cause a genetic reprogramming of fundamental

biological pathways as a protective survival response. A similar

idea was reported by Niedernhofer et al., [63] who analyzed a case

of XPF/ERCC1 (2072/2067) progeroid syndrome and a knockout

mouse model of this disease. They concluded that chronic DNA

damage causes cells to deemphasize growth activities in order to

ensure organismal preservation and maximal lifespan, despite an

increase in cellular senescence and apoptosis.

The level of injury in the cells of these patients is not only

exacerbated by the loss of antioxidative defense, but also by the

downregulation of oxidative phosphorylation and the shutdown of

protein synthesis and translation, as was observed in the gene

expression analysis of patients with lower levels of frataxin as

compared to patients with higher levels. EPIG analysis further

demonstrated a marked decrease in genes involved in protein

synthesis, and genes encoding ribosomal proteins, correlating with

frataxin levels, age of diagnosis, and ICARS scores. Many of the

significant genes involved in the category of protein synthesis

include the repression of several initiation factors. Paschen et al.

[64] discuss how such events suggest the relationship between the

shutdown of translation and induction of neuronal cell death. It is

our hypothesis that such global responses are triggered by chronic

stress.

We also found interesting the effect frataxin deficiency has on

ubiquitin cycle and protein degradation in both FRDA children

and FRDA adults. Modifications to the function of ubiquitinating

enzymes by oxidative stress have been reported [4]. Degradation

of damaged proteins by the ubiquitin-proteasome system (UPS) is

one of the most important processes in the cell, and a decreased

capacity for protein degradation is related to several neurodegen-

erative diseases and pathologies of the inflammatory immune

response [65,66].
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In summary, this study provides the first evidence of increased

mitochondrial and nuclear DNA damage, as well as gene

expression patterns consistent with DNA damage, in peripheral

blood cells of patients with FRDA. Analyses of clinical features and

gene expression patterns correlate with age of onset and frataxin

mRNA levels, as well as altered protein synthesis with frataxin

levels, ICARS score, and age of diagnosis. Future studies with

Friedreich’s ataxia patients will help better define these gene sets

and DNA damage as candidate biomarkers of disease severity and

progression. Additionally, biomarkers are vital to the development

of therapeutic approaches, and our study points to possible drug

interventions, like modulating the ubiquitin-proteasome system or

upregulating molecular chaperone activity, which may be as useful

for FRDA as they are in other neurodegenerative diseases.

However, the development of effective therapeutic approaches

also depends on an enhanced understanding of signaling pathways

and other cellular responses to chronic genotoxic stress.

Materials and Methods

Ethics statement
Peripheral blood samples were collected from 48 children with

FRDA participating in a randomized, placebo-controlled clinical

trial for idebenone [registered with ClinicalTrials.gov, number

NCT00229632, and approved by the NIH Institutional Review

Board at the National Institute of Neurological Disorders and

Stroke (NINDS), protocol # 05-N-0245]. Samples from 14

anonymous FRDA adults were collected in the reference center

clinic dedicated to cerebellar ataxias and aspartic paraplegias at

the University Salpêtrière Hospital in Paris; samples were

exempted by the NIH Institutional Review Board at the National

Institute of Environmental Health Sciences (NIEHS), exempt #
3984. All controls used for transcriptional profiling were young

healthy adults from an acetaminophen study [28], approved by the

Institutional Review Board at the University of North Carolina,

Chapel Hill, protocol # GCRC-2265. Controls used for the DNA

damage assay were obtained from an NIH blood bank. Blood

and/or apheresis samples were obtained from healthy volunteer

donors who gave signed consent to participate in an IRB-approved

protocol for use of their blood in laboratory research studies; these

samples were approved by the Institutional Review Board at the

National Cancer Institute (NCI), protocol # 99-CC-0168.

RNA isolation from blood
Peripheral blood samples were collected from 48 children with

FRDA participating in a randomized, placebo-controlled clinical

trial. All whole blood samples in this study were collected before

administration of idebenone. A detailed description of all subjects

and clinical endpoints was recently published [22]. Due to other

endpoints, this study only allotted one 8.5 ml sample of blood from

each patient for RNA isolation. RNA was isolated by one person,

utilizing the PAXgene blood RNA isolation kit (PreAnalytiX/

QIAGEN, Hilden, Germany) according to the manufacturer’s

protocol, including the optional on-column DNase digestion,

except that the centrifugation time after proteinase K digestion

was increased from 3 to 20 minutes in order to obtain a tighter

debris pellet. RNA quality was assessed with an Agilent

Bioanalyzer (Palo Alto, CA) to ensure that samples with intact

18S and 28S ribosomal RNA peaks were used for microarray

analysis. Of the 48 patients, twenty samples were lost during the

isolation procedures, leaving 28 high-quality RNA samples

remaining. The demographics for these subjects are detailed in

Table S1. RNA was also isolated, using the same methods already

described, from 14 anonymous FRDA adults (Table S2). All

controls used were young healthy adults (see demographics data in

Table S1 and Table S2) from an acetaminophen study [28]. Two

independent sets of control populations were used separately to

compare to the children and the adult validation cohort.

Gene profiling
Gene expression profiling was conducted using Agilent Human

1A(V2) Oligo arrays with ,20,000 genes represented (Agilent

Technologies, Palo Alto, CA). Each sample was hybridized against

a human universal RNA control (Stratagene, La Jolla, CA).

500 ng of total RNA was amplified and labeled using the Agilent

Low RNA Input Fluorescent Linear Amplification Kit, according

to manufacturer’s protocol. For each two color comparison,

750 ng of each Cy3- (universal control) and Cy5-labeled (sample)

cRNA were mixed and fragmented using the Agilent In Situ

Hybridization Kit protocol. Hybridizations were performed for

17 hours in a rotating hybridization oven according to the Agilent

60-mer oligo microarray processing protocol prior to washing and

scanning with an Agilent Scanner (Agilent Technologies, Wil-

mington, DE). The data were obtained with the Agilent Feature

Extraction software (v9.1), using defaults for all parameters. The

Feature Extraction Software performs error modeling before data

are loaded into a database system. Images and GEML files,

including error and p-values, were exported from the Agilent

Feature Extraction software and deposited into Rosetta Resolver

(version 5.0, build 5.0.0.2.48) (Rosetta Biosoftware, Kirkland,

WA). All gene expression data have been deposited in the public

Gene Expression Omnibus (GEO) database and are available

under the series ID GSE11204.

Statistical and data analyses
Supervised analysis to find genes associated with case versus

control or low frataxin expression versus high expression was

performed using Significance Analysis of Microarrays (SAM) after

pooling the raw data [29]. The two-class unpaired SAM algorithm

was used and the false discovery rate was set to less than or equal

to 1% for all analyses. Gene Set Analysis (GSA) [30] was also

performed for these comparisons to test the association of gene sets

instead of individual genes. The database of gene sets used for

GSA was obtained from the Molecular Signatures Database

(MSigDb) [30]. Gene sets demonstrating a p-value less than 0.01

were considered significant.

Biologically relevant themes in the lists of significant genes from

SAM were analyzed with gene ontology tools, GoMiner and

DAVID (Database for Annotation, Visualization and Integrated

Discovery) [67,68]. GO terms with p#0.05 for upregulated,

downregulated, and/or combined direction of change were

selected for analysis. Both tools group genes according to the

GO categories of biological process, cellular component, and

molecular function, based on ranking by a hypergeometric test p-

value. These data were also uploaded into Ingenuity Pathway

Analysis (IPA) software v 5.5.1 (Ingenuity Systems, Redwood City,

CA), a program that categorizes genes into biological functions but

also enables visualization of biologically relevant networks and

canonical pathways (‘‘canonical’’ implies ‘‘established’’). Go to

www.Ingenuity.com for specifics regarding the application.

Unsupervised clustering and heat-map generation were carried

out with Cluster and Treeview programs [69].

The levels of DNA damage were analyzed by Mann-Whitney U

test or Spearman’s Rank Correlation because the data is not

normally distributed or homoskedastic.

In order to test association between gene expression and age, we

used SAM. For the two DNA damage variables we used a

Student’s t-test to detect association with age. All these analyses
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were performed in the controls, and age was dichotomized by

comparison to the median age of the controls.

A univariate linear model was constructed to test the association

of each gene in the genotoxic gene set list (genes found in 25% of

gene lists from significant gene sets) to patient frataxin levels

(determined by Real-time PCR). Correlations of frataxin mRNA

levels to all available clinical data for each child were also

performed by univariate linear modeling.

In extracting gene expression patterns, EPIG [42] uses a filtering

process where all profiles initially are considered as pattern

candidates. Briefly, using all pair-wise correlations, any candidate

profile, whose local cluster size is less than a predefined size Mt or its

correlation with another profile is higher (.Rt) but has a lower local

cluster size M, is removed from pattern construction consideration.

Among the remaining profiles, EPIG then creates representative

profiles for the corresponding local clusters and removes those

profiles with a signal-to-noise ratio or magnitude less than given

thresholds. After this filtering processing, the remaining profiles

consist of the extracted patterns, which are used to be the

representatives to each of the local clusters. Subsequently, EPIG

categorizes each significant gene to a pattern, for which it has the

highest correlation with the gene profile. A gene not assigned to any

extracted pattern is considered an ‘‘orphan’’ if its highest correlation

r-value is lower than the given threshold R.

TaqMan real-time PCR
The frataxin probe on the Agilent chip was observed to lack

sensitivity for both the individual lymphoblastoid cell lines from

affected people (data not shown) and the whole blood from FRDA

patients. We, therefore, decided to obtain relative gene expression

levels of frataxin by TaqMan Real-time PCR [70]. The sequence

information of the probe used for TaqMan is the proprietary

information of PE Applied Biosystems, but we know it is 75

nucleotides that span across the exon 1 and exon 2 boundary. On

the other hand, the probe on the microarray chip is mostly from

the 39 UTR of frataxin.

One microgram of total RNA from 27 patients and 10 controls

was used for reverse transcription with TaqMan Reverse

Transcription Reagents (PE Applied Biosystems). To determine

relative frataxin mRNA levels, Real-time PCR was carried out

using the ABI Prism 7900HT sequence detection system. Primer

and probe sets for frataxin and glucuronidase-beta were purchased

as pre-developed assays from PE Applied Biosystems. Relative

quantification was obtained using the threshold cycle method after

verification of primer performance, following the manufacturer’s

guidelines. The levels of frataxin obtained are relative to the

average DCT from 10 controls.

Mitochondrial and nuclear DNA quantitative PCR assay
Total DNA from whole blood was successfully isolated from 47

children enrolled in the study and 15 adult controls obtained from

an NIH blood bank in Bethesda, MD, (Table S6) using the

PAXgene blood DNA isolation kit (PreAnalytiX/QIAGEN,

Hilden, Germany) according to the instructions of the manufac-

turer. Briefly, one 8.5 ml sample of whole blood, per child, was

collected in PAXgene blood DNA tubes for DNA isolation; each

blood sample was transferred to a processing tube containing a

lysing solution. Lysed red and white blood cells were centrifuged,

and the resulting pellet of nuclei and mitochondria was washed

and resuspended. After digestion with protease, DNA was

precipitated by addition of isopropanol and dissolved in water.

All DNA samples were prepared by one person. DNA lesion

frequencies were calculated as described previously [33]. Briefly,

the amplification of patient samples (Apatient) was compared to the

amplification of non-damaged controls (Acontrol) resulting in a

relative amplification ratio. Assuming a random distribution of

lesions and using the Poisson equation [f(x) = .ẽ
2l lx/x!, where l is

the average lesion frequency for the nondamaged template (i.e.,

the zero class; x = 0)], the average lesion per DNA strand was

determined by the following equation: .l=.2ln APatient/Acontrol.

Amplification of the large mitochondrial target was normalized

to mitochondrial copy number by examination of a short

mitochondrial target, which due to its short size, should be free

of damage.

Supporting Information

Figure S1 Stratification of Friedreich’s ataxia patients based on

the distribution of frataxin expression levels. A density plot of

frataxin (FXN) expression by Real-time PCR illustrates the

distribution of FXN expression over the cases. The x-axis indicates

the change in cycle threshold (ddCT) in the cases relative to a pool

of the controls. A threshold of 22.5 was selected to split the cases

into those with high expression of FXN (6 cases) versus those with

relatively low expression of FXN (21 cases).

Found at: doi:10.1371/journal.pgen.1000812.s001 (0.17 MB TIF)

Figure S2 GAA repeat length correlates with frataxin levels.

Individual FXN levels were determined for each patient by real-

time PCR. A univariate linear model was constructed to test the

association of frataxin mRNA levels with short GAA repeats. The

short GAA repeat length correlated with mRNA levels (r2 = 0.338,

p = 0.00131).

Found at: doi:10.1371/journal.pgen.1000812.s002 (0.17 MB TIF)

Figure S3 Gene Set Analysis finds gene sets in common between

the lymphoblastoid cell line and the FRDA children datasets.

Significantly associated gene sets from Gene Set Enrichment

Analysis subcatalog C2, a database of 1,684 microarray experi-

ment gene sets, pathways, and other groups of genes, were

identified for both the lymphoblastoid cell line and FRDA children

datasets. The analysis yielded many biologically informative sets

(n = 171, p#0.05 and n = 120, p#0.05 for the lymphoblastoids and

FRDA children, respectively) with 37 gene sets in common for the

two datasets. The Venn diagram displays 8 selected gene sets that

associate with both datasets. Descriptions in black loosely

summarize the gene set’s association to phenotype, cells, tissue,

or pathway as described by the authors of origin in the database.

Found at: doi:10.1371/journal.pgen.1000812.s003 (0.99 MB TIF)

Figure S4 Highly significant pathways responding to frataxin

reduction in FRDA patients are driven by downregulation.

Significant p-values were calculated by the right-tailed Fisher’s

Exact test using the entire dataset in the Ingenuity Pathway

Analysis program. (A) Significance of the top signaling and

metabolic pathways (p-value$0.05) in the complete list of

differentially expressed genes compared to that of downregulated

genes only (FDR,0.023%). Upregulated genes only did not reach

significance and were not included. (B) Frataxin deficiency

downregulates genes involved in the NRF2-mediated oxidative

stress pathway (adapted from the Ingenuity Pathway Analysis

Knowledge Base). Induced and repressed genes are depicted in

yellow and blue, respectively. Genes with no borders are

significant in FRDA children, genes with black borders are

significant in FRDA adults, and genes with red borders are

significant in both. Significant genes in FRDA children not shown:

FKBP5 (Q). Significant genes in FRDA adults not shown: ASK1

(Q), MEK5 (Q), JNK1/2 (Q), EIF2AK3 (Q), GSTO1 (Q), GSTA1

(q), GSTM3 (q), JUN (q), MAFG (Q), NQO1 (q).

Found at: doi:10.1371/journal.pgen.1000812.s004 (3.92 MB TIF)
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Table S1 Demographics for Friedreich’s ataxia children in-

volved in gene expression analysis of peripheral blood.

Found at: doi:10.1371/journal.pgen.1000812.s005 (0.03 MB

DOC)

Table S2 Demographics for Friedreich’s ataxia adult subjects

involved in gene expression analysis of peripheral blood.

Found at: doi:10.1371/journal.pgen.1000812.s006 (0.03 MB

DOC)

Table S3 The complete list of GO terms associated to the 228

significant genes in common between the FRDA children and

FRDA adults.

Found at: doi:10.1371/journal.pgen.1000812.s007 (0.06 MB

DOC)

Table S4 Ingenuity Pathway Analysis. Ingenuity Knowledge

Base biological function categories and pathways associated to the

overlap of 228 significant genes from the FRDA children and

FRDA adults, respectively (p$0.05).

Found at: doi:10.1371/journal.pgen.1000812.s008 (0.11 MB

RTF)

Table S5 Gene Set Analysis of common genes. Enriched gene

sets associated to significant genes (SAM) that overlap between

FRDA children and FRDA adults.

Found at: doi:10.1371/journal.pgen.1000812.s009 (0.04 MB

DOC)

Table S6 Demographics for Friedreich’s ataxia children in-

volved in DNA damage analysis of peripheral blood.

Found at: doi:10.1371/journal.pgen.1000812.s010 (0.03 MB

DOC)

Table S7 Gene names and corresponding IDs.

Found at: doi:10.1371/journal.pgen.1000812.s011 (0.19 MB

RTF)

Table S8 Demographic data for FRDA and control lympho-

blastoid cell lines. Data from a previous lymphoblastoid gene

expression analysis [45] was of limited use due to replicate noise,

difference in microarray platform (they used Affymetrix), and only

one affected and one control lymphoblastoid comparison; thus,

few comparisons could be drawn between our lymphoblastoid data

or our cohort data with their data.

Found at: doi:10.1371/journal.pgen.1000812.s012 (0.07 MB

RTF)

Dataset S1 SAM list of genes for the children’s cohort.

Found at: doi:10.1371/journal.pgen.1000812.s013 (4.44 MB

XLS)

Dataset S2 Biologically informative gene sets for the FRDA

children using Gene Set Analysis.

Found at: doi:10.1371/journal.pgen.1000812.s014 (0.16 MB

XLS)

Dataset S3 Transcripts present in at least 25% of the gene lists

from genotoxic stress gene sets found with Gene Set Analysis.

Found at: doi:10.1371/journal.pgen.1000812.s015 (0.03 MB

XLS)

Dataset S4 SAM list of genes for the FRDA adult cohort.

Found at: doi:10.1371/journal.pgen.1000812.s016 (4.67 MB

XLS)

Dataset S5 Biologically informative gene sets for the FRDA

adult cohort using Gene Set Analysis.

Found at: doi:10.1371/journal.pgen.1000812.s017 (0.19 MB

XLS)

Dataset S6 The association of the DNA damage to predefined

gene sets.

Found at: doi:10.1371/journal.pgen.1000812.s018 (0.18 MB

XLS)

Dataset S7 Biologically informative gene sets for FRDA

lymphoblastoid data using Gene Set Analysis and compared to

FRDA children gene sets.

Found at: doi:10.1371/journal.pgen.1000812.s019 (0.20 MB

XLS)
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