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Purpose: The relationship between macrophages and the progression of abdominal aortic aneurysms (AAA) remains unclear, and 
effective biomarkers are lacking. In this study, we elucidated the mechanism whereby macrophages promote AAA development and 
identified associated biomarkers, with the goal of developing new targeted therapies and improving patient outcomes.
Patients and Methods: Differential expression analysis, weighted gene co-expression network analysis, and single-cell analysis 
were used to identify macrophage-related genes in an AAA dataset. Machine learning algorithms identified THBS1, HCLS1, DMXL2, 
and ZEB2 as key macrophage-related genes upregulated in AAA; these four hub genes were then used to construct a nomogram as an 
auxiliary tool for clinical diagnosis. Subsequent downstream single-cell and CellChat analyses were conducted to observe the 
interactions between macrophages and fibroblasts and analyze potential pathways.
Results: Single-cell validation confirmed enhanced THBS1 expression in macrophages in AAA. CellChat analysis revealed enhanced 
interactions between macrophages and fibroblasts in AAA through THBS1–CD47 signaling. Finally, an analysis of clinical samples 
from patients with AAA confirmed the high expression of THBS1 and CD47 in AAA and that THBS1 promotes the progression of 
AAA through the TNF-NFκB signaling pathway. Our findings reveal the THBS1–CD47 signaling pathway as a critical mechanism in 
macrophage-driven AAA progression, highlighting THBS1’s potential as a therapeutic target.
Conclusion: Our findings highlight THBS1 as a potential driver of macrophage-mediated AAA formation and an important biomarker for 
AAA diagnosis. The study results would help in improving treatment outcomes in patients with AAA. These findings provide a foundation for 
the development of diagnostic tools and targeted therapies for AAA, potentially improving early detection and patient outcomes.
Keywords: abdominal aortic aneurysm, macrophage, single-cell sequencing, machine learning algorithm, cell chat

Introduction
Abdominal aortic aneurysm (AAA) is a cardiovascular condition characterized by a pathological dilation of the aorta 
exceeding 50%, which can pose a major risk of aortic rupture and hemorrhage.1 Notably, AAA is often clinically silent 
until rupture.2 It is closely associated with high morbidity and mortality in older adults owing to aortic enlargement and 
rupture.3 As a chronic inflammatory disease, AAA is characterized by the infiltration of inflammatory cells throughout 
the arterial wall.1 The pathological process of AAA is also linked to changes in and loss of vascular smooth muscle cells 
(VSMCs) as well as remodeling of the extracellular matrix.4 Current treatments are limited to open or endovascular 
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surgical repair in eligible patients. Continuous monitoring of the biological activity of AAA is crucial for mitigating the 
high mortality and morbidity associated with rupture. However, few effective biomarkers exist to predict AAA progres-
sion, and no therapies are available to prevent it.5,6 Previous studies investigating elastin peptides and type III 
procollagen amino-terminal pro-peptide as potential biomarkers in AAA have not been further developed because of 
their low sensitivity and specificity.7 Therefore, understanding the potential mechanisms underlying AAA progression is 
essential for accurately identifying appropriate therapeutic targets.

Macrophages within the arterial wall play a pivotal and multifaceted role in the pathogenesis of AAA.8 Moreover, 
macrophages are key participants in the immune system that exhibit phenotypic plasticity and functions under various 
pathophysiological conditions.9 Classically activated (M1) macrophages produce high levels of pro-inflammatory 
cytokines, such as interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase 
(iNOS), which exacerbate local inflammation, recruit more immune cells, and promote the growth of AAA.10 In contrast, 
M2 macrophages are associated with wound healing and reduced inflammation. In the arterial wall, AAA progression is 
initiated when M1 macrophages respond to environmental stimuli and sustain persistent inflammation by producing 
proteolytic enzymes and pro-inflammatory mediators, leading to an M1/M2 imbalance.11 Elevated levels of pro- 
inflammatory cytokines have been detected in tissues from AAA animal models, which promote changes in the 
VSMC phenotype and elastin degradation.12–14 Therefore, inhibition of the expression of inflammatory cytokines, such 
as iNOS and IL-1β, can significantly reduce AAA formation.15,16 The small molecule activator SIRT1 enhances cellular 
p65 protein deacetylation, thereby inhibiting TNF-α-induced transcriptional activation of NF-κB, a key transcription 
factor for M1 macrophage activation.17 Macrophage-specific Sirt1 knockout AAA mice showed that Sirt1 deficiency 
promoted M1 polarization and reduced M2 polarization, accelerating AAA progression.18 However, despite our under-
standing of the crucial role of macrophages in AAA, identifying macrophage-related biomarkers and enhancing their 
clinical application remain challenging.
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Following continuous advances in high-throughput sequencing technologies, the use of transcriptome analysis and 
single-cell RNA sequencing have become increasingly common for studying the relationship between immune cells and 
diseases.19 Weighted gene co-expression network analysis (WGCNA) is a systems biology approach designed to 
investigate gene interaction patterns across multiple samples. This method enables the identification of highly co- 
expressed gene clusters and facilitates the discovery of potential biomarker genes or therapeutic targets by aiding in 
analyzing the relationships between these gene sets and their associations with clinical traits.20 Furthermore, machine 
learning is increasingly being applied in the biomedical field for diagnosing and predicting disease outcomes.21,22 

Together, these technologies can be used to analyze datasets to uncover disease mechanisms and guide clinical decision- 
making.

In this study, we investigated variations in the expression of genes associated with AAA and identified potential 
diagnostic and therapeutic targets using data from publicly available AAA databases, single-cell sequencing, WGCNA, 
and differential expression analysis. Furthermore, we applied machine learning algorithms, including support vector 
machine-recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO), and 
random forest (RF), to pinpoint hub genes involved in AAA. Finally, through downstream single-cell analysis, verifica-
tion of biomarkers, and identification of potential pathways, we elucidated the roles of hub genes in AAA. The 
biomarkers identified in this study reflect the pathological characteristics of different patients and can guide personalized 
treatment strategies. Additionally, tissue-level studies are more specific than circulating markers, as they reflect the 
biological characteristics of local lesions, thus addressing the limitations of existing screening technologies.

Materials and Methods
We retrieved two AAA RNA array datasets (GSE47472 and GSE57691) and one single-cell RNA sequencing dataset 
(GSE166676) from the Gene Expression Omnibus (GEO) database. The two RNA array datasets were used as the training 
set for model development. Additionally, we included another RNA array dataset (GSE98278) as an independent validation 
set to further assess the robustness and generalizability of the identified biomarkers. The GEO database is accessible at 
http://www.ncbi.nlm.nih.gov/geo. The transcriptome datasets were annotated and normalized using their respective GPL 
platforms. The information of 56 patients from the AAA group and 17 patients from the normal group was included in the 
transcriptome data for subsequent differential expression analysis and WGCNA. Detailed characteristics of the four 
datasets are provided in Table S1. All scripts used for data preprocessing, WGCNA analysis, and machine learning in 
this study are publicly available on the GitHub repository at https://github.com/guoqyao/cqmugqy.git.

Single-Cell Quality Control and Dimensionality Reduction
We identified cells that expressed 200–10,000 genes. We excluded the cells in which mitochondrial or ribosomal gene 
expression exceeded 20%. After identifying 2000 highly variable genes for subsequent analysis, we selected principal 
component (PC) 14 based on the PC clustering heatmap to generate a clustering tree. A resolution of one was chosen for 
dimensionality reduction, and the “UMAP” plot was used for visualization and annotation. Twenty clusters were identified.

Differential Gene Analysis and Single-Cell Annotation
Next, we analyzed the differentially expressed genes (DEGs) within each cluster based on the clustering results and 
performed manual single-cell annotation according to the expression of known marker genes in different cell types. We 
then used the “FindAllMarkers” function from the Seurat R package to filter the top five DEGs for each cell type. Based 
on manual annotations, we further identified DEGs in myeloid immune cell populations.

DEG Identification and WGCNA
The merged transcriptome datasets were used for differential expression analysis. We employed the “limma” R package 
to perform this analysis and visualized the results using heat maps. By applying the filtering criteria (|logFC| > 0.585, 
adjusted P < 0.05), we identified a set of DEGs, which were subsequently displayed in a volcano plot. We performed 
WGCNA on the merged transcriptome dataset to calculate gene significance. We divided the genes into different modules 
and identified the modules most closely associated with AAA.
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Functional Enrichment Analysis of AAA-Related Genes
We intersected DEGs from single-cell myeloid immune cells, DEGs from transcriptome analysis, and gene clusters 
related to AAA from WGCNA. This intersection yielded overlapping disease-related genes for subsequent analyses. 
Next, to explore the functions and pathways of AAA-related genes, we used the “ClusterProfiler” R package for Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment.

Screening of Biomarkers by Machine Learning
SVM-RFE, LASSO, and RF were used to screen for AAA biomarkers. LASSO logistic regression was performed using 
the “glmnet” R package, whereas RF analysis was conducted with the “RandomForest” R package. The “caret” package 
was employed for RF analysis with 10× cross-validation to select significant genes. We constructed the SVM classifier 
using the “e1071” R package. We then identified overlapping genes across these three classification models for further 
evaluation of their effectiveness as diagnostic markers. A diagnostic nomogram was constructed for disease prediction 
models. Additionally, receiver operating characteristic (ROC) analysis was used for validation; the predictive power of 
the algorithms was measured using area under the curve values.

Immune Infiltration Analysis
We employed the CIBERSORT analytical technique to evaluate immune cell infiltration levels in the transcriptome 
datasets by comparing AAA samples with normal controls. The analysis was conducted with the “PERM” parameter set 
to 1000 and a significance threshold of P < 0.05.

CellChat and Single-Cell Sequencing Analysis
We utilized the “CellChat” R package to analyze and visualize intercellular communication among various cell 
subpopulations in AAA. Ligand-receptor interaction analysis was conducted using a normalized expression matrix 
obtained from Seurat. Known ligand-receptor pairs were sourced from CellChatDB, a literature-supported database 
detailing ligand-receptor interactions in both mice and humans. Initially, we identified overexpressed ligands and 
receptors across different cell types, followed by the inference of communication probabilities by calculating interactions 
associated with each signaling pathway.

Based on the single-cell annotation results, we extracted the macrophage and fibroblast subpopulations separately to 
validate the expression of key genes and then visualized their differential expression using heatmaps and violin plots. 
Additionally, differential gene analysis was performed on macrophage and fibroblast subpopulations based on THBS1 
and CD47 expression, respectively. GO and KEGG enrichment analyses were performed to reveal changes in the cellular 
functions and pathways of DEGs.

Cell Culture
THP-1 cells were obtained from the National Cell Bank of China, Chinese Academy of Sciences, Shanghai, China. THP-1 
cells were cultured in RPMI Medium 1640, containing 10% fetal bovine serum, penicillin, and streptomycin, at 37°C in 
a humidified atmosphere of 5% CO2. 293T cells were cultured in DMEM high-glucose medium supplemented with 10% fetal 
bovine serum. THP-1 cells were incubated with 12-myristate 13-acetate (PMA, 100 ng/mL) for 24 h, after which the medium 
was replaced, and the cells were treated with lipopolysaccharide (LPS, 100 ng/mL) and interferon (IFN)-γ (20 ng/mL) for 
24 h before proceeding with further experiments. All the reagents mentioned above were obtained from Solarbio, China.

Primer Design and Lentiviral Packaging
Primers were designed, annealed, and ligated into the AgeI and EcoRI restriction sites of the pLKO.1-puro vector to 
insert the shRNA sequences, resulting in the construction of shTHBS1 plasmid. Lipo6000 was used as the transfection 
reagent, and sh-THBS1, psPAX.2, and pMD2.G were added to actively growing 293T cells at a ratio of 4:3:1 for 
lentiviral packaging. After 72 h, viral supernatant was collected using a 0.45 μm filter. The viral supernatant and 
polybrene (10 μg/mL) were added to THP-1 cells in a six-well plate for infection, followed by puromycin (2 μg/mL) 
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selection. All reagents mentioned above were purchased from Beyotime, China. The knockdown sequences are as 
follows: Sh-1: 5′-CCGG-TGACATCAGTGAGACCGATTT-CTCGAG-AAATCGGTCTCACTGATGTCA-TTTTT-3′; 
Sh-2: 5′-CCGG-GTAGGTTATGATGAGTTTAAT-CTCGAG-ATTAAACTCATCATAACCTAC-TTTTT-3′; Sh-3: 5′- 
CCGG-AGACATCTTCCAAGCATATAA-CTCGAG-TTATATGCTTGGAAGATGTCT-TTTTT-3′.

Quantitative PCR (qPCR) Analysis
Six tissue samples were obtained from the First Affiliated Hospital of Chongqing Medical University (three AAA and 
three normal tissue samples). This study was approved by the Ethics Committee of the First Affiliated Hospital of 
Chongqing Medical University (K2024-221-01). Patients provided informed consent following the principles of the 
Declaration of Helsinki. Total RNA was extracted from AAA tissues and THP-1 cells using TRIzol reagent (Invitrogen, 
USA) according to the manufacturer’s protocol. The qPCR procedure was carried out as described previously.23 The 
primer sequences used were as follows: GAPDH (Forward: 5′-GGACCTGACCTGCCGTCTAG-3′, Reverse: 5′- 
GTAGCCCAGATGCCCTTGA-3′), THBS1 (Forward: 5′-GCCATCCGCACTAACTACATT-3′, Reverse: 5′- 
TCCGTTGTGATAGCATAGGGG-3′), CD47 (Forward: 5′-TCCGGTGGTATGGATGAGAAA-3′, Reverse: 5′- 
ACCAAGGCCAGTAGCATTCTT-3′), synthesized by BGI (Shenzhen, China). GAPDH was used as an internal control. 
Relative expression levels were calculated using the 2^(-ΔCt) method. Statistical significance was set to P < 0.05.

Western Blotting
THP-1 cells were lysed using a protein lysis buffer containing protease and phosphatase inhibitors (Beyotime, China). After 
centrifugation, the supernatant was collected, and the protein concentration was measured using the BCA assay. Equal amounts 
of total protein from different samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 
transferred onto a nitrocellulose membrane. The membrane was blocked with 5% skimmed milk and then incubated with 
appropriate primary antibodies. After treatment with the appropriate HRP-conjugated secondary antibodies and washing the 
membrane, chemiluminescence (Bio-Rad, USA) was used to detect the signal as described previously.24 We assessed the 
expression levels of p65, phospho-p65, IκBα, phospho-IκBα, and β-actin. All antibodies were obtained from Proteintech, China.

Statistical Analysis
Statistical analyses were conducted using the R and SPSS software. A two-tailed Student’s t-test was used to validate 
significant differences. Statistical significance was set at P < 0.05.

Results
The workflow of this study is shown in Figure 1.

Single-Cell Quality Control and Clustering
The R package “Seurat” was used to analyze a single-cell dataset. The violin plots in Figure S1A display the filtered single- 
cell RNA characteristics, RNA quantity, mitochondrial RNA proportion, and ribosomal RNA proportion. According to the 
correlation analyses between the RNA quantity and RNA characteristics, mitochondrial gene proportion, and ribosomal 
gene proportion (Figure S1B), RNA quantity was highly correlated with RNA characteristics but not with the mitochondrial 
RNA proportion of mtRNA or RNA. Subsequently, we identified 2000 highly variable genes (highlighted in red in Figure 
S1C). Four AAA datasets and two normal arterial tissue datasets were combined; after data normalization and dimension-
ality reduction using PC analysis, we visualized the results using a “UMAP” plot (Figure S1D). Based on the PC analysis 
heatmap and JackStraw analysis (Figure S1E and F), PC = 14 was identified as the key PC for cell clustering (Figure 2A). 
Cell clustering analysis was executed employing the “FindNeighbors” and “FindClusters” functions from the “Seurat” 
package, with a resolution of one, and the results were displayed in a “UMAP” plot. The cells were categorized into 20 
clusters (Figure 2B). Subsequently, we used the “FindAllMarkers” function from the “Seurat” package to identify DEGs in 
each cluster. The 20 cell clusters were annotated into 13 cell types based on cell-specific genes (Figure 2C), including 
neutrophils (S100A9, S100A8, and LYZ), macrophages (FCGR3A, CD68, and CD86), epithelial cells (EPCAM), monocytes 
(C1QA, CD14, and C1QB), fibroblasts (COL1A1), B cells (CD38 and MK167), NK cells (NKG7), T cells (CD3D and 
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CD3E), endothelial cells (VWF), exocrine gland cells (PNLIP), VSMCs (LTBP1 and CNN1), mast cells (MS4A2 and 
FCER1A), and keratinocytes (CALML3) (Figure 2D). We calculated the proportion of all cells from different patients with 
AAA, noting the variability in the proportion of different cell types across patients. The DEGs for each cell type are shown 

Figure 1 Flowchart of the study process.
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in Figure 2E. The top five genes with the smallest P-values for each cell subpopulation are shown in Figure 2F. Finally, we 
identified 791 differential genes from myeloid immune cells using single-cell sequencing data (excluding mast cells).

Differential Gene Analysis and WGCNA
Two AAA-related datasets (GSE47472 and GSE57691) collected from the GEO database were merged and normalized to reduce 
errors in the subsequent analyses. Differential analysis between the AAA and normal groups was performed using the criteria of 
adjusted P < 0.05 and |logFC| > 0.585, resulting in the selection of 1800 DEGs for further analysis (Figure 3A). A heatmap 
showing the top 30 most significantly upregulated genes and the top 15 most downregulated genes is presented in Figure 3B.

Figure 2 Single-cell clustering and annotation of abdominal aortic aneurysms (AAA). (A) Cluster tree visualization of clustering with PC = 14. (B) “UMAP” plot showing the 
distribution of clusters after dimensionality reduction. (C) Single-cell manual annotation of marker genes and their expression. (D) “UMAP” plot displaying single-cell 
annotation results. (E) Bar plot showing the relative proportions of single-cell subgroups in different AAA tissue samples. (F) Heatmap displaying differential genes across 
single-cell subgroups in AAA. Gray dashed lines represent myeloid immune cell subgroups.
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We simultaneously performed WGCNA on the merged dataset. First, we used the “flashClust” package to perform 
clustering analysis with a threshold of 110; this clustering contained 49 samples. Next, using the “WGCNA” package’s 
“pickSoftThreshold” function, we filtered the power parameter range from 1 to 30 and chose a power of b = 9 (scale-free 
R2 = 0.9) as the soft threshold for constructing the scale-free network. We set the minimum number of genes per module 
to 50 and clustered the highly correlated genes into the same module (Figure 3C). To merge similar modules, a threshold 
of 0.6 was applied, leading to the identification of nine modules, each comprising genes with similar co-expression 
patterns (Figure 3D). Module-trait association analysis indicated that several modules were associated with AAA, with 
the lightcyan1 and steelblue modules showing strong associations and containing 1838 genes.

Figure 3 Differential gene visualization and weighted gene co-expression network analysis (WGCNA). (A) Volcano plot of differentially expressed genes in abdominal aortic 
aneurysms (AAA). (B) Heatmap showing the most significantly specific differential genes between AAA and normal abdominal aorta. (C) Genes with strong correlations are 
aggregated into the same module, with different modules shown in different colors. (D) Correlation analysis between WGCNA modules and AAA.
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Identification and Validation of Hub Genes
Venn diagrams were used to aggregate the differential genes identified through single-cell myeloid immune cell analysis, DEG 
analysis, and WGCNA, resulting in a total of 41 genes (Figure 4A). GO and KEGG analyses were performed to explore the 

Figure 4 Machine learning selection of hub genes for abdominal aortic aneurysms (AAA). (A) Venn diagram identifying macrophage-related genes associated with AAA. (B) 
Identification of feature hub genes using the SVM-RFE algorithm. (C) Random Forest tree, where the x-axis represents the number of trees, and the y-axis represents the 
error rate. Red, green, and black dots represent AAA samples, normal samples, and all samples, respectively. (D) and (E) Eleven candidate genes obtained through LASSO 
regression and 10-fold cross-validation. (F) X-axis represents gene importance, and Y-axis represents hub genes. (G) Venn diagram identifying hub genes selected using 
machine learning algorithms. (H) Correlations between hub genes.
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potential biological significance of these genes. The GO results were categorized into three domains (Figure S2A). The 
biological pathways involved included antigen processing and the presentation of peptides or polysaccharide antigens via 
major histocompatibility complex (MHC) class II molecules. Cellular component analysis indicated that MHC may be involved 
in this process. Molecular functions included binding of the MHC class II protein complex. The KEGG results were primarily 
focused on phagosome and allograft rejection; the genes most closely related to the top five KEGG pathways are displayed in 
Figure S2B and C.

Next, we integrated the results from the three machine learning algorithms. SVM-RFE selected twelve genes that 
resulted in the highest model accuracy (Figure 4B). RF ranked the genes according to disease relevance and selected the top 
genes that stabilized the decision tree with the smallest error (Figure 4C). Using linear regression, LASSO identified eleven 
important genes (Figure 4D and E). Finally, the four most important hub genes were identified (Figure 4G). The RF results 
also indicated that these four genes have relatively high importance (Figure 4F). Among them, THBS1 emerged as the most 
important. The correlation analysis of these four hub genes revealed that THBS1 was significantly negatively correlated 
with HCLS1 and DMXL2, whereas ZEB2 was minimally correlated with the other three genes (Figure 4H).

Accordingly, we established an AAA-related nomogram model based on four hub genes (THBS1, HCLS1, DMXL2, 
and ZEB2) as a simplified and reliable diagnostic tool for clinicians (Figure 5A). The accuracy of the nomogram model 
based on hub genes was close to the actual positive rate (Figure S3A). Both decision curve and clinical impact curve 
analyses significantly supported the ability of the nomogram model to identify AAA (Figure S3B and C). Additionally, 
ROC curves showed excellent classification performance for the hub genes, with high area under the curve values 
(Figure 5B–E). Violin plots illustrated the expression of the four hub genes in the normalized dataset, showing significant 
differences between AAA and normal tissues (Figure 5F–I).

Finally, we validated the identified hub genes in an independent dataset (GSE98278). The results showed that THBS1 
was significantly upregulated in AAA tissues and exhibited strong diagnostic performance (Figure S4A and E). However, 
the other three genes (HCLS1, DMXL2, and ZEB2) did not show statistically significant differences in expression or 
diagnostic utility in the validation dataset (Figure S4B-D and F–H).

Differences in Immune Characteristics of Patients with AAA
Here, we used the CiberSort algorithm to investigate immune cell infiltration in AAA and normal samples. Figure 6A 
shows the relative proportions of immune cell infiltration in AAA and normal tissues. Compared with the normal group, 
patients with AAA showed a significant increase in B cells naive, T cells CD4 memory activated, T cells CD4 naive, NK 
cells resting, monocytes, macrophages M0, and neutrophils (Figure 6B). In contrast, the normal group exhibited 
increased infiltration rates of NK cells activated, macrophages M1, macrophages M2, and dendritic cells resting.

Single-Cell Downstream and CellChat Analyses
We identified AAA-related hub genes (THBS1, HCLS1, DMXL2, and ZEB2) via machine learning for validation using 
single-cell datasets. A violin plot showing the expression levels of these hub genes in different cell subgroups is presented in 
Figure 7A. We extracted macrophage subgroups from single-cell data using the “subset” function in the “Seurat” package 
and visualized the expression of hub genes in AAA and normal tissues using “UMAP” plots (Figure 7B). Differential 
analysis indicated that THBS1 and DMXL2 expression was increased in the macrophage subgroups of AAA, whereas 
ZEB2 expression was increased in the macrophage subgroups of normal arteries (Figure 7C). However, HCLS1 showed no 
significant differences between the AAA and normal tissue macrophage subgroups.

To elucidate the potential cell communication and state transitions in AAA, we analyzed intercellular communication 
networks from single-cell transcriptome data using the “CellChat” software package. The number and weight of cells were 
higher in AAA tissues than in normal tissues (Figure 7D). We then summarized the communication probabilities in the 
information network to compare the overall information flow between AAA and normal arterial tissues. Results revealed that 
the THBS, CLEC, and CD45 signaling pathways were more abundant in AAA tissues (red), whereas the DESMOSOME and 
CCL signaling pathways were more prevalent in normal arterial tissues (green) (Figure 7E). The heat map in Figure 7F shows 
the differences in interactions between different cells in AAA and normal vascular tissues. AAA tissues exhibited increased 
incoming signals from fibroblasts, endothelial cells, and VSMCs but reduced outgoing signals from macrophages. Further 
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comparison of ligand–receptor communication between macrophages and other cells in AAA and normal arterial tissues 
revealed that THBS1–CD47 communication was highly active between macrophages and fibroblasts (Figure 7G).

To understand CD47 expression in AAA fibroblasts, we extracted the fibroblast subgroups and displayed them using 
“UMAP” plots (Figure 8A). Differential analysis showed that CD47 was highly expressed in AAA fibroblast subgroups 
compared with that in normal arterial tissues (Figure 8B). As THBS1–CD47 plays a key role in AAA macrophage 
subgroups affecting fibroblast subgroups, we categorized macrophages and fibroblasts into high- and low-expression 
groups according to the median expression of THBS1 and CD47 to analyze biological differences between the two 
subgroups (Figure 8D and F). Results indicated that the proportion of high THBS1-expressing macrophages and high 
CD47-expressing fibroblasts was higher in AAA tissues than in normal arterial tissues (Figure 8C and E).

Differential analysis was performed on the two groups of cells within each subgroup, followed by GO and KEGG 
analyses of the DEGs. GO analysis showed that the high THBS1-expressing macrophage subgroup was associated with 
RAGE receptor binding and immune receptor activity, whereas the high CD47-expressing fibroblast subgroup was 
associated with cadherin and integrin binding (Figure 8G and I). KEGG analysis revealed that the high THBS1- 

Figure 5 Construction of the hub-gene diagnostic clinical model. (A) Nomogram showing the prognostic value of THBS1, HCLS1, DMXL2, and ZEB2 in patients with 
abdominal aortic aneurysms (AAA). (B–E): ROC analysis results for THBS1, HCLS1, DMXL2, and ZEB2. (F–I): Violin plots showing the expression differences of THBS1, 
HCLS1, DMXL2, and ZEB2 in AAA and normal arterial tissues. **** P < 0.0001.
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expressing macrophage subgroup was involved in activation of the TNF and NF-kappa B signaling pathways, whereas 
the high CD47-expressing fibroblast subgroup was involved in the activation of fluid shear stress, atherosclerosis, and 
complement and coagulation cascades (Figure 8H and J).

Figure 6 Immune infiltration analysis of abdominal aortic aneurysms (AAA). (A) Heatmap showing the relative proportions of immune cell infiltration in AAA and normal 
arterial samples. (B) Boxplot displaying the differential analysis results of immune cells in AAA and normal arterial samples. * P < 0.05; ** P < 0.01; *** P < 0.001.
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Figure 7 Single-cell subgroup and CellChat analysis. (A) Violin plot showing the expression of hub genes in single-cell subgroups of abdominal aortic aneurysms (AAA) and 
normal samples. (B) “UMAP” plot displaying the expression and distribution of hub genes in macrophage subgroups of AAA and normal samples. Red dots represent single 
cells with positive gene expression. (C) Violin plot showing the differences in hub-gene expression levels in macrophage subgroups of AAA and normal samples. (D) Bar plot 
showing differences in the number and weight of cell interactions between AAA and normal samples. (E) Relative differences in gene signaling pathways between AAA and 
normal samples. (F) Heatmap showing cell interactions between single-cell subgroups in AAA and normal arterial tissues. Deeper red indicates stronger interaction. (G) 
Differences in gene signaling interactions between macrophage subgroups and other cell subgroups in AAA and normal samples. * P < 0.05; **** P < 0.0001.
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Verification of Biomarkers and Investigation of the NF-κB Pathway
Figure 9A, B shows the expression levels of THBS1 and CD47 detected via qPCR in six tissue samples (three AAA and 
three normal samples). Both THBS1 and CD47 were significantly upregulated in AAA tissues (P < 0.01). Additionally, 

Figure 8 Pathway analysis of macrophage and fibroblast subgroups at the single-cell level. (A and B): “UMAP” plot and differential analysis of CD47 expression in fibroblast 
subgroups. (C and D): Macrophages categorized into two groups based on THBS1, visualized using bar plots and “UMAP” plots. (E and F): Fibroblasts categorized into two 
groups based on CD47, visualized using bar plots and “UMAP” plots. (G and H): GO and KEGG pathway enrichment analysis for high-THBS1 and low-THBS1 macrophage 
groups. (I and J): GO and KEGG pathway enrichment analysis for high-CD47 and low-CD47 fibroblast groups.
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the results shown in Figure 8H indicate that THBS1 may affect the TNF-NFκB signaling pathway. We stimulated 
THBS1-knockdown THP-1 cells with LPS and INF-γ to observe whether THBS1 influences the progression of AAA 
through the TNF-NFκB signaling pathway. Results showed that upon the inhibition of THBS1 expression, the expression 
of p-IκBα and p-P65 significantly decreased (Figure 9C–F).

Discussion
AAA is a life-threatening condition wherein arterial rupture leads to a very high mortality rate.3 Owing to a limited under-
standing of AAA progression and its molecular mechanisms, current treatment options are restricted to surgical interventions, 
with no effective nonsurgical methods available to delay or even reverse AAA progression. Therefore, identifying effective 
biomarkers for early diagnosis is crucial for timely intervention and improving AAA patient outcomes. Macrophages are key 
participants of the immune system that exhibit phenotypic plasticity and functional diversity under various pathophysiological 
conditions.25,26 Macrophages also play a critical role in the pathogenesis of AAA as key mediators of inflammation.27 In this 
study, we explored the pivotal role of macrophages in the progression of AAA by identifying and analyzing key genes linked to 
macrophage activity. Our objective was to elucidate the underlying biological mechanisms, thereby providing a reference for the 
development of innovative diagnostic and therapeutic strategies.

Machine learning algorithms offer various advantages for accurately predicting the core molecules involved in 
disease processes and identifying potential clinical features in biomedical research.28 Thus, we employed machine 

Figure 9 Verification of Biomarkers and Pathway. (A) THBS1 is significantly upregulated in abdominal aortic aneurysms (AAA) tissues. (B) CD47 is significantly upregulated 
in AAA tissues. (C) qPCR results showing a decrease in THBS1 expression after knockdown. (D-F): Western blot analysis showing changes in the expression of p-IκBα, IκBα, 
p-P65, and P65 proteins in THP-1 cells. **: P < 0.01; ***: P < 0.001.
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learning algorithms to identify THBS1, HCLS1, DMXL2, and ZEB2 as potential auxiliary diagnostic biomarkers for 
AAA. HCLS1 is a regulatory factor that encodes immune system cells and is known to be associated with immune 
response, lymphocyte activation, and migration.29 Its role in the migration of immune cells, particularly T cells, may be 
linked to the inflammatory microenvironment in AAA. DMXL2 is a protein that regulates various biological processes, 
particularly cell adhesion and signal transduction.30 The occurrence of AAA involves the dedifferentiation and migration 
of VSMCs, processes that may be influenced by the regulation of DMXL2 in intracellular inflammatory signaling 
pathways. ZEB2 is a transcription factor that helps maintain the tissue-specific identity of macrophages.31 In different 
immune microenvironments, it preserves macrophage function by regulating the expression of key transcription factors, 
thereby promoting disease progression.

Single-cell analysis and validation in an independent dataset further revealed that THBS1 is closely associated with 
macrophages in the pathogenesis of AAA, highlighting its potential as a universal biomarker. Thrombospondin-1 
(THBS1), also known as TSP1, is a homotrimeric glycoprotein released by activated platelets, playing a crucial role 
in fibrin clotting responses following tissue injury.32 THBS1 is broadly expressed across a variety of cell types.33,34 

Previous studies have reported that THBS1 binds to CD47 to promote the development of acute kidney injury and that 
blocking THBS1 signaling can improve renal interstitial fibrosis.35 Moreover, THBS1 is upregulated in mouse models of 
sepsis-induced acute kidney injury, and the excessive release of inflammatory mediators is a major trigger.36 

Macrophages are present in both human aortic aneurysm lesions and animal AAA models.37,38 High levels of pro- 
inflammatory cytokines are persistently detected in AAA tissues, which promote the degradation of VSMCs, and the 
extracellular matrix.38 We found that THBS1 was highly expressed in the macrophage subgroups within AAA tissues, 
confirming that the occurrence of AAA is closely related to the extensive infiltration of high THBS1-expressing 
macrophages. At the single-cell level, we classified the macrophages into subgroups based on THBS1 expression and 
divided them into high and low THBS1-expressing macrophages according to the median expression. The proportion of 
high THBS1-expressing macrophages was higher in AAA tissues than in normal tissues, which further confirmed the 
importance of THBS1 in promoting the release of macrophage inflammatory mediators. In the presence of elevated 
THBS1 levels, inflammatory pathways, including the TNF-NFκB signaling pathway, were upregulated in macrophages. 
However, when THBS1 is knocked down, the TNF-NFκB signaling pathway is significantly inhibited. Considering the 
established role of macrophages in orchestrating inflammatory responses, which are pivotal in several immune-mediated 
pathophysiologies, we speculate that elevated THBS1 expression in macrophages may enhance their pro-inflammatory 
characteristics.

Upon comparing the differences in intercellular communication networks between normal tissues and AAA samples, 
we found that macrophage communication with fibroblasts was significantly increased in AAA. Additionally, the 
upregulation of THBS1 in macrophages promoted the expression of CD47 in fibroblasts. Fibroblasts, as the primary 
components of large- and medium-sized arteries, contribute to vascular adventitia, along with other cells and numerous 
extracellular matrix components.39 During oxidative stress and damage repair, fibroblasts can migrate to the subendothe-
lial layer, promoting the formation of new endothelium and transformation into myofibroblasts in the adventitia.40 Under 
AAA pathological conditions, macrophages accumulate in the affected areas and release various cytokines that stimulate 
fibroblasts to release proteins involved in extracellular remodeling, thereby exacerbating inflammation.38 In aneurysm 
tissues, fibroblasts are involved not only in tissue repair and extracellular matrix metabolic homeostasis but also in 
immune system regulation.41 Increased collagen fiber synthesis is a major characteristic of active fibroblast. The 
expression of type I/III collagen cross-links is prominent in human AAA tissues; however, the reduced expression of 
total collagen markers suggests a possible defect in the biosynthesis of new collagen.41 CD47 is a widely expressed cell 
receptor known for its immunoregulatory functions.42 By interacting with its ligands, including THBS1, signal regulatory 
protein alpha (SIRPα), integrins, and SH2 domain-containing protein tyrosine phosphatase substrate 1 (SIRPα), CD47 
regulates macrophage phagocytosis, neutrophil migration, and the activation of dendritic cells and T cells. Senescent and 
dysfunctional fibroblasts exhibit high CD47 expression, which results in the inhibition of macrophage-mediated phago-
cytosis and clearance.43 Therefore, we believe that CD47 upregulation may lead to the reduced clearance of abnormal 
fibroblasts by macrophages, potentially exacerbating AAA progression.
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In this study, we utilized a comprehensive set of bioinformatic tools to reveal the complex relationship between 
macrophage function and AAA pathogenesis, providing new insights into this complex disease. We identified THBS1 as 
a highly precise biomarker for the accurate diagnosis of AAA, which represents a potential therapeutic target for delaying 
AAA progression. Furthermore, specific pathways regulating macrophage activity, such as TNF-NFκB signaling, are 
known to play crucial roles in inflammation and tissue remodeling within the aortic wall. Interventions targeting these 
pathways could modulate macrophage function, reducing inflammation and slowing AAA progression. These potential 
therapeutic strategies not only highlight the relevance of our findings but also open new avenues for AAA management. 
Despite these advances, our study has certain limitations, including the reliance on existing sequencing data, insufficient 
external validation, and an incomplete understanding of the underlying biological mechanism. In future studies, we will 
continue to explore the crosstalk between macrophages and fibroblasts, as well as the specific pathways regulating 
macrophage behavior, to better understand their role in AAA development.

Conclusion
In summary, we conducted a comprehensive study on the relationship between macrophage-related biomarkers and AAA 
and identified the key genes involved in the process. These key genes were then subjected to integrated analysis using 
machine learning algorithms and single-cell sequencing. Finally, we identified THBS1 as a potential biomarker of AAA 
formation facilitated by macrophages. This study has important implications for achieving timely intervention and 
improved outcomes in patients with AAA.
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