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Abstract
A modified version of the SEIR model with the effects of vaccination and inter-state 
movement is proposed to simulate the spread of COVID-19 in Malaysia. A mathe-
matical analysis of the proposed model was performed to derive the basic reproduc-
tion number. To enhance the model’s forecasting capabilities, the model parameters 
were estimated using the Nelder–Mead simplex method by fitting the model outputs 
to the observed data. Our results showed a good fit between the model outputs and 
available data, where the model was then able to perform short-term predictions. In 
line with the rapid vaccination program, our model predicted that the COVID-19 
cases in the country would decrease by the end of August. Furthermore, our findings 
indicated that relaxing travel restrictions from a highly vaccinated region to a low 
vaccinated region would result in an epidemic outbreak.
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1 Introduction

After more than 2 years, Malaysia continues to combat the Coronavirus Disease 
2019 (COVID-19), which was originally identified in late December 2019 in Wuhan, 
China (Zhu et al. 2020). The World Health Organization (WHO) has declared the 
COVID-19 pandemic, caused by a novel Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2), a public health emergency (World Health Organization 
declares novel coronavirus 2019). In January 2020, Malaysia reported its first cases 
of COVID-19 from Chinese visitors who entered the country via Singapore (Ahmad 
et al. 2020). Since then, Malaysia has reported over 2 million cumulative COVID-19 
cases and over 23,000 fatalities as of September 2021 (Aziz et al. 2020). In response 
to the alarming rates of spread and severity of COVID-19, the Malaysian govern-
ment has implemented multiple movement control orders (MCOs), international 
and interstate travel bans, the mandatory wearing of face masks in public spaces, 
restrictions on social gatherings and the promotion of good personal hygiene to pre-
vent the spread of this virus among the population (Aziz et  al. 2020; Cirrincione 
et al. 2020; Hashim et al. 2021). In addition, several regions in Malaysia were placed 
under "lockdowns" which restrict the movement of people in and out of these areas 
in order to assist health authorities in identifying and isolating individuals infected 
with COVID-19 (Hashim et al. 2021). Although the lockdowns have been successful 
in isolating infected individuals, the virus has already spread throughout urban and 
suburban populations.

Given the novelty and rapid spread of this coronavirus, scientists rushed to 
develop vaccines to prevent its transmission and reduce the global mortality rate. 
In an effort to achieve high rates of population immunity, Malaysia launched the 
National COVID-19 Immunisation Programme (NIP) in February 2021, with the 
goal of vaccinating 90% of the Malaysian population. However, the COVID-19 vac-
cination plan got off to a slow start due to economic, political, and social factors, 
and with the emergence of new SARS-CoV-2 variants that are potentially causing 
more damage than previously anticipated, there are concerns that the vaccination 
plan might not achieve its aims. The sudden increase in COVID-19 patients, coupled 
with the slow implementation of the national vaccination program and a shortage of 
vaccine supplies, has caused economic turmoil. Furthermore, rising unemployment 
due to increased COVID-19 cases has resulted in riots, protests and political demon-
strations. In view of the looming crisis, the Malaysian government has no choice but 
to reopen all major economic sectors including education, tourism, retail, and avia-
tion. To further reduce the burden on the healthcare system and to protect infants, 
children, and medically compromised individuals who are not fully vaccinated, only 
immunised individuals are permitted to work, travel, and attend social events. Other 
non-pharmaceutical measures such as inter-state travel will be gradually lifted to 
create more income-generating opportunities, particularly in the tourism industry. In 
order to minimise the socio-economic impact of the COVID-19 pandemic, quantita-
tive justifications are vital to determine whether the lockdown should be lifted or 
travel restrictions should be gradually eased, especially when the number of cases is 
still high and many individuals have not yet been fully vaccinated.
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To assist local health authorities in predicting the dynamics of disease transmis-
sion and potential risk of infection in a population, mathematical simulation and 
evaluation based on the Susceptible-Exposed-Infectious-Recovered (SEIR) model 
is a useful approach to complement biological and social research in suggesting 
appropriate and adequate strategies to mitigate the spread of COVID-19 (Syafrud-
din and Noorani 2012). In Malaysia, mathematical modelling based on the SEIR 
model has already been employed to understand the effectiveness of disease control 
strategies such as fogging, vaccination, and control of breeding sites to reduce den-
gue infections in Shah Alam, Selangor (Syafruddin and Noorani 2012; Tay et  al. 
2018a, b). Since the beginning of the COVID-19 pandemic, the SEIR model has 
been widely used to forecast the impact of mass gathering and the success of imple-
menting control measures such as MCO, isolation, and quarantine on the COVID-19 
transmission rate in Malaysia (Dass et al. 2021; Gill et al. 2020; Salman et al. 2021). 
Wong et al. (2021) recently utilised the Susceptible-Infected-Removed (SIR) model 
to predict the effectiveness of vaccination programs in reducing the SARS-CoV-2 
infection rates in Kuala Lumpur, Penang, Sabah, and Sarawak. Since the Malaysian 
government is considering allowing inter-state travel for fully vaccinated individu-
als, a projection study should be considered, which combines the implementation 
of vaccination programs and observation of traffic patterns between different states.

To the best of our knowledge, there is no SEIR model that has been incorporated 
to predict the impact of vaccination and interstate travel on the spread of COVID-19 
in Malaysia. Therefore, in this paper, we modified the classic SEIR model to predict 
the progression of COVID-19 in Malaysia when the government permits interstate 
travel for fully-vaccinated individuals. In this study, we employed the data of vac-
cinated and non-vaccinated people between March 2021 and August 2021. By the 
time of this study, the percentage of fully vaccinated people was 42% of the total 
population as of 9th August 2021. The outcome of this study will highlight the 
impacts of our vaccination program and consequences of inter-state travel by fully 
vaccinated individuals and hence enabling policymakers to make informed deci-
sions regarding vaccination programs and socioeconomic activities.

2  Material and Methods

In this section, we will first explain the data used in this work and then discuss the 
development of our modified SEIR model. We will also explain how the fitting pro-
cedures were performed. The final subsection is devoted to the derivation of the 
basic reproduction number.

2.1  Data Source

The COVID-19 vaccination program in Malaysia is currently being implemented in 
phases from 24th February 2021 with the aim to curb the COVID-19 pandemic by 
successfully achieving herd immunity. Due to data availability, this project only con-
siders case data for COVID-19 in Selangor and Kuala Lumpur (S &KL), Malaysia 
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from 2nd March to 15th August 2021, extracted from the Crisis Preparedness and 
Response Centre (CPRC), Ministry of Health (MOH), Malaysia (data is available on 
GitHub1). S &KL is chosen because its data is of better quality compared to those 
in other states (rural areas), it has the highest COVID-19 recorded cases, and as has 
more economic activities in Malaysia. The data was used to estimate some model 
parameters; namely, transmission and death rates. The daily vaccination rate in the 
state was extracted from the MOH’s official github. The values of other parameters 
used in the model were obtained from previous studies (see Table 1).

2.2  An Extended SEIR Model

We consider an extended SEIR epidemic disease model by taking into account the 
effect of the vaccination program and inter-state travel. This has not been considered 
in other existing literature. Aside from the basic SEIR (Susceptible (S), Exposed 
(E), Infected (I), and Recovered (R)) compartments, this model includes additional 5 
compartments; namely death due to disease (D), people who received only the first 
dose ( V1 ), fully vaccinated with the second dose ( V2 ), exposed human population 
who have been vaccinated ( EV ), and infected human population who have been vac-
cinated ( IV ). The dynamical transmission in the human population with vaccination 
is sketched in Fig. 1. In our model, we consider the following assumptions; 

 (i) We assume that, initially, the entire population in S &KL was susceptible. 
In order for the process to start, there should be at least one exposed or one 
infectious individual.

 (ii) Only fully vaccinated people are allowed to travel to other states.

Fig. 1  Disease transmission flow of the extended SEIR model

1 https:// github. com/ MoH- Malay sia/ covid 19- public

https://github.com/MoH-Malaysia/covid19-public
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 (iii) Like with other vaccines, vaccine breakthrough cases will still happen, even 
though the vaccines are working as expected. Vaccinated people have a lesser 
risk of infection, hospitalisation, and mortality than unvaccinated people.

The model is governed by the following set of nonlinear ordinary differential 
equations,

Table 1  Parameters description and their corresponding values used in the model simulation. DOSM 
stands for Department of Statistics Malaysia

Parameters description Value Source

N, Total human population in 8,311,700 DOSM
S &KL
b, Natural birth number 1344 people/day DOSM
� , Natural death rate 0.0041 DOSM
� , Incubation period 7 days Backer et al. (2019)
r, Recovery period 10 days Evensen et al. (2020)
�(t) , Transmission rate Varies Estimated using data

(2nd March– 9th Aug 2021)
�
1
 , Death rate of Varies Estimated using data

Non-vaccinated people (2nd March–9th Aug 2021)
�
2
 , Death rate of �

1
∕2 Estimated using data

Vaccinated people (2nd March–9th Aug 2021)
�
1
 , Vaccine efficacy 70% Thompson et al. (2021)

(First dose)
�
2
 , Vaccine efficacy 80% Polack et al. (2020)

(Second dose)
v
1
(t) , Vaccination rate of Varies MOH

First dose
v
2
(t) , Vaccination rate of Varies MOH

Second dose
� , Number of people travel (outflow) per day 10,000 to 30,000 Estimate
� , Number of people travel (inflow) per day 10,000 to 30,000 Estimate
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where N is the size of the population in S &KL. �(t) is the transmission rate and 
�(t)S

N

(
I + Iv

)
 describes the force of infection for susceptible individual S when making 

contact with either I or Iv . Similarly, the partial ( V1 ) and fully ( V2 ) vaccinated indi-
viduals interact with I and Iv , then the infection force is represented by �(t)(1−�1)V1(I+Iv)

N
 

and �(t)(1−�2)V2(I+Iv)

N
 , respectively. b and � are the natural birth number and death rate, 

respectively. Notice that in our model equation for I and Iv , the natural death is not 
included, since we assume that the infected person may either recover or die due to 
the disease. �1 and �2 are the disease-related death rates of vaccinated and non-vac-
cinated people, respectively. We assume that fully vaccinated people have 50% lower 
death rate compared to partial vaccinated people. � is the disease incubation period 
and r is the recovery period of the infected people.

v1(t) and v2(t) are the vaccination rates of first and second doses, respectively. 
The effect of the vaccination is incorporated into our model by the presence of the 
efficacy coefficients �1 (first dose) and �2 (second dose). If the values are one, the 
vaccine offers 100% protection against the virus. V2,i represents the number of vac-
cinated individuals in the ith state (i = 1,… ,m − 1) , where m is the number of states 
in Malaysia. The inter-state travel is described by V2

∑m−1

i=1
�i +

∑m−1

i=1
�iV2,i , where 

the first term corresponds to the outflow number of fully vaccinated people in S 
&KL to other states and the second term corresponds to the inflow number of fully 
vaccinated people in other states. V2,i represents the number of vaccinated individu-
als in the ith state (i = 1,… ,m − 1) , where m is the number of states in Malaysia. 
� (outflow) and � (inflow) are the number of fully vaccinated people travel into and 
out of S &KL, respectively. We summarize the list of parameters and their values in 
Table 1.

Finally, MATLAB R2020b with 64-bit Intel processor was used to perform 
all the numerical simulations. Each variable in the model was integrated in time 

(1)

dS

dt
= −

�(t)S

N

(
I + Iv

)
− v1(t)S + b − �S,

dV1

dt
= v1(t)S −

�(t)(1 − �1)V1

N
(I + Iv) − v2(t)V1 − �V1,

dV2

dt
= −

�(t)(1 − �2)V2

N
(I + Iv) + v2(t)V1 − �V2 − V2

m−1∑
i=1

�i +

m−1∑
i=1

�iV2,i,

dEv

dt
=

�(t)(1 − �1)V1

N
(Iv + I) +

�(t)(1 − �2)V2

N
(Iv + I) − �−1Ev − �Ev,

dE

dt
=

�(t)S

N
(I + Iv) − �−1E − �E,

dI

dt
= �−1E − (r−1 + �1)I,

dIv

dt
= �−1Ev − (r−1 + �2)Iv,

dR

dt
= r−1(I + Iv) − �R,

dD

dt
= �1I + �2Iv,
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with a relative tolerance of 10−6 employing MATLAB ode15s solver. ode15s is 
an adaptive multistep solver based on the numerical differentiation formulas of 
orders 1 to 5. According to Hairer and Wanner (1991), the method has stability 
regions on the negative real axis but not the whole left half-plane.

2.3  Model Parameterization

The COVID-19 death rate and transmission rate were determined from the model 
fit data from 2nd March to 9th August 2021. Transmission rate depends on many 
factors, including measures implemented by the state and the behaviour of the 
population. Hence, this parameter is uncertain and varies with time. A common 
approach is to consider a partition into discrete periods, [ t1 , t2 ), [ t2 , t3 ), ..., [ tn−1 , 
tn ], guided by the control measures taken (Carcione et al. 2020). Equivalently, the 
� and �1 functions can be expressed in the following form,

where Z = [�, �1] and H(⋅) is the Heaviside function. zi = [bi, mi] is the estimated 
transmission and death rates in each period [ti, ti+1] and i = 1, ..., n is the number 
of discrete periods involved. In this study, the period was set to 30 days. Note that 
�2 = f (�1) where f is defined as in Table 1 . bi and mi were estimated using the sim-
plex method by comparing the model output, ysim to the observed data, yobs using a 
residual (also known as ‘error’) function of the form,

k = 1, 2 refers to the number of observed data used to estimate the parameter val-
ues, where in our case are the total number of deaths and daily infected cases. In 
order to accomplish the fit, we used the bounded Nelder-Mead simplex algorithm 
(Nelder and Mead 1965) and the MATLAB codes were adapted from Aziz and Sim-
itev (2021a, b). The MATLAB codes to perform the optimization procedures can be 
downloaded from Aziz (2022). The fit was based on the L2-norm and yielded bi and 
mi from the beginning of the epidemic (day 1, March 2nd) to date (day 161, August 
9th). Parameters were estimated such that the residual (3) was minimized.

3  Mathematical Analysis of the Model

In this section, we discuss the non-negativity, boundedness, and disease-free 
equilibrium point of the model.

(2)Z(t) = H(t1 − t) ⋅ z1 +

n−1∑
i=2

H(t − ti−1) ⋅ H(ti − t) ⋅ zi + H(t − tn) ⋅ zn.

(3)E(t) =

2∑
k=1

n∑
i=1

(ysim(ti) − yobs(ti))
2.
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3.1  Non‑negativity of the Model

Theorem  1 If S0 ≥ 0, E0 ≥ 0, I0 ≥ 0, R0 ≥ 0, D0 ≥ 0, (V1)0 ≥ 0, (V2)0 ≥ 0, (Ev)0 ≥ 0, (Iv)0 ≥ 0 , 
then all the solutions in system (1) have non-negative values for all t > 0.

Proof Because of invariant non-negativity assumption for all t > 0 , the rate of 
change for each compartment should be at leasr greater than its death rate. From first 
equation of system (1), we have

and this implies S(t) ≥ S0e
−�S ≥ 0 . Hence, S(t) remains non-negative for all t > 0 . 

V1(t) , V2(t) , E(t), Ev(t) and R(t) follows similar manner of derivation and one can 
show that these variables are positive for all t > 0 . For I(t), we have

Integrating the equation, we get I(t) ≥ I0e
−(r−1+�1)I ≥ 0 . One can do the same for Iv(t) 

and shows that it is non-negative. Therefore, all the variables remain non-negative 
for all t ≥ 0 .   ◻

3.2  Boundedness

Theorem 2 All solutions of the proposed model with positive initial conditions are 
bounded and N(t) ≤ b∕� for all t ≥ 0.

Proof Summing up all the equations in the system (1), the growth rate of the total 
population can be written as

This yields

Since I(t†) = Iv(t†) = 0 when t† is sufficiently large, then we can reduce the equation 
to

(4)
dS

dt
≥ −�S

(5)
dI

dt
≥ −(r−1 + �1)I

(6)dN

dt
=

dS

dt
+

dE

dt
+

dI

dt
+

dR

dt
+

dD

dt
+

dV1

dt
+

dV2

dt
+

dEv

dt
+

dIv

dt
.

(7)
dN

dt
= b − �(N − I − Iv).

(8)
dN

dt
= b − �N



1 3

Modelling the Effect of Vaccination Program and Inter‑state… Page 9 of 22     2 

Upon solving equation (8) and taking the limit of t → ∞ , we get

Thus, together with non-negativity property, we find that

Therefore, all the variables are bounded.   ◻

3.3  Disease Free Equilibrium

The disease-free equilibrium X0 of the transmission model is acquired by setting all the 
derivatives to zero and the infected number to zero. Also, assume that at the beginning 
of the outbreak all individuals in the population are susceptible, S∕N = 1 , that gives us,

where X = (S,E, I,R,D,V1,V2,Ev, Iv) . Next, we derive the basic reproduction num-
ber, R0 , which is the average number of secondary cases produced by one infected 
individual introduced into a population of susceptible individuals (van den Driess-
che 2017). R0 is derived using the next-generation matrix method introduced by 
van den Driessche (2017). Firstly, we let X = (E,EV , I, IV )

T . System (1) then can be 
written as

where

and

Their corresponding Jacobian matrices at the disease-free equilibrium are

(9)N(t) ≤
b

�
.

(10)0 ≤ N(t) ≤
b

�
.

(11)X0 =

(
b

� − v1
, 0, 0, 0, 0,

v1b

(v2 + �)(� − v1)
,

v1v2b

�(v2 + �)(� − v1)
, 0, 0

)
.

(12)X� = �(X) −�(X),

(13)�(X) =

⎛
⎜⎜⎜⎜⎝

�S(I+Iv)

N
�(1−�1)V1(Iv+I)

N
+

�(1−�2)V2(Iv+I)

N

�−1E

�−1Ev

⎞⎟⎟⎟⎟⎠

(14)�(X) =

⎛⎜⎜⎜⎝

(�−1 + �)E

(�−1 + �)Ev

(r−1 + �1)I

(r−1 + �2)Iv

⎞⎟⎟⎟⎠



 M. H. N. Aziz et al.

1 3

    2  Page 10 of 22

Following the method described in van den Driessche (2017), the basic reproduc-
tion number, R0 is described by the largest eigenvalue of the next-generation matrix 
J
�
J−1
�

 . This yields

where g1 = �1 + r−1 and g2 = �2 + r−1 . S0,V0

1
,V0

2
 are as defined in (11). R0 is used 

to measure the severeness of the disease epidemic. A disease outbreak is expected 
to occur if R0 > 1 and contain if R0 < 1 (Carcione et  al. 2020; van den Driessche 
2017).

Next we want to determine the local stability of (11). System (1) can be simplified 
into a reduced form by eliminating the last equation for the death compartment (D). 
This is because the compartment has no significance effect on the whole system and it 
can also be determined from D = N −

∑
X where X is the other compartments in the 

system. The Jacobian matrix of the reduced model at the disease-free equilibrium is 
described as

where

J
�
=

⎛
⎜⎜⎜⎜⎝

0 0
�S0

N

�S0

N

0 0
�(1−�1)V1

N
+

�(1−�2)V2

N

�(1−�1)V1

N
+

�(1−�2)V2

N

�−1 0 0 0

0 �−1 0 0

⎞
⎟⎟⎟⎟⎠

J
�

=

⎛
⎜⎜⎜⎝

�−1 + � 0 0 0

0 �−1 + � 0 0

0 0 r−1 + �1 0

0 0 0 r−1 + �2

⎞
⎟⎟⎟⎠

(15)R0 =

√
��−1

[
S0g2 + V0

1
g1(1 − �1) + V0

2
(g2 − �2g1)

]
Ng1g2(�

−1 + �)
,

J(X0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−v1 − � 0 −
�S0

N
0 0 0 0 −

�S0

N

0 − �−1 − �
�S0

N
0 0 0 0

�S0

N

0 − �−1 − r−1 − �1 0 0 0 0 0

0 0 r−1 − � 0 0 0 r−1

v1 0 �1 0 − v2 − � 0 0 �1
0 0 �2 0 v2 − � 0 �2
0 0 �3 0 0 0 − �−1 − � �3
0 0 0 0 0 0 �−1 − r−1 − �2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�1 = −
�(1 − �1)V

0

1

N
,

�2 = −
�(1 − �2)V

0

2

N
,

�3 =
�(1 − �1)V

0

1

N
+

�(1 − �2)V
0

2

N
.
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By using MATLAB symbolic math toolbox, we find that the disease-free equilib-
rium X0 is locally stable when R0 < 1 and locally unstable when R0 > 1 . See supple-
mentary material for a more detailed discussion.

4  Results

All the significant results obtained from our model are presented in this section. 
This section consists of three subsections. In the first subsection, we performed a 
simple simulation to simulate the COVID-19 outbreak. The second subsection will 
focus on sensitivity analysis, where we vary some of the parameters in the model 
and then observe the outcomes. The aim was to perform simulations of various pos-
sible cases, which cannot be done in a real situation. Finally, we present the results 
of our optimization procedures in the last subsection.

4.1  Outbreak Simulation of COVID‑19

To begin with, we simulate the outbreak by considering a set of base parameters as 
listed in Table 1. The travelling rates are set to 0 to indicate that the border between 
regions is closed. At time, t = 0 , we set E(0) = 1000 and other variables are zero, 
except for S(0) = N −

∑
y(0) , where y is a vector containing all other variables.

Figure 2a, b shows the number of infected cases and total cumulative confirmed 
deaths due to disease for both vaccinated and non-vaccinated individuals, respec-
tively. As can be seen, the non-vaccinated people are affected the most, with a maxi-
mum number of nearly 2500 infected cases and approximately 3400 deaths in total. 
With large numbers of people being vaccinated (see Fig. 2c), the number of infected 
cases among non-vaccinated people exhibits an immediate fall after day 100. It is 
interesting to note that the number of infected cases among the vaccinated people 
shows a slight increase approximately from day 100, reaching a peak on day 138 
with a maximum number of nearly 400 cases. This is expected as the population 
is now dominated by vaccinated people. While vaccines are known to be effective 
at preventing infection, a small proportion of fully vaccinated individuals will still 
catch the disease. The peak of infected cases for the vaccinated group, however, 
is approximately 6 times lower than the peak of cases for the unvaccinated group. 
This is illustrated in Fig. 2a. It shows that vaccines can protect people from being 
infected.

On day 170, we observe a comparable number of infected cases ( ≈185 cases) 
recorded in both groups, marked as a violet star marker in Fig.  2a. Although the 
number of cases is equivalent, the number of deaths that occurred among the vacci-
nated group on that day is twice the size of the other group. The results demonstrate 
that the risk of death is vastly lower for those who have been vaccinated against 
COVID-19, compared to those who have received no vaccine doses. Finally, Fig. 2d 
shows the number of individuals in different classes generated from this simulation.
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4.2  Sensitivity Analysis

Hereafter, we perform a local sensitivity analysis on the model and observe how 
the model responds when some of the key parameters are changed. By varying the 
model parameters, a scenario analysis is performed to give insight into the influence 
of the system parameters on the selection of strategies, thus enabling more informed 
decisions.

Impact of vaccination We first investigate the effect of vaccine-related parameters 
and variables in the model on the spread of the disease. Particularly, they are vacci-
nation rates v1, v2 , vaccine efficacy �1 , and initial proportion of fully vaccinated peo-
ple V2(0) . In order for the outbreak to occur, there should be at least one exposed or 
infectious individual. Hence, we assume that there are 1000 people who have been 
exposed to the disease initially. We also assume that the vaccines offer 70% and 80% 
protection against COVID-19 after the first and second doses, respectively. We start 
our numerical simulation for a period of 5 months with and without vaccination. The 
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total number of vaccine doses administered per day is varied between 0 and 90,000, 
and the effects on the number of infected cases and total deaths are observed.

Numerical results are presented in Fig. 3. Overall, we can see that intensifying 
the vaccination campaign starts to significantly decrease the number of infected 
cases and deaths in the population. In particular, when no vaccine is available, the 
peak of infected cases may rise to 2644. Meanwhile, when 50,000 doses of vaccines 
are administered per day, the peak has been reduced to 1496. This represents a 43 
percent reduction. The peak gets lower as more vaccines are rolled out, as depicted 
in Fig. 3a. On the other hand, it is interesting to highlight that the vaccination pro-
gramme has significantly reduced the total number of deaths due to the disease 
(Fig. 3b). In comparison to a no vaccination condition, 100,000 doses of vaccine per 
day can save approximately 3000 lives. While this number is just an estimation, one 
should notice that vaccines can reduce the risk of death by at least 50%.

Next, we investigate the effects of having various proportions of fully vaccinated 
individuals ( V2(0) ) in the group. In this simulation, we vary the proportion value 
from 0 to 70% , as indicated in Fig. 4a. The results of the simulation show a decre-
ment in the peak of infected cases, starting from 1000 cases (none is vaccinated at 
the beginning) to as low as 473 cases (70% of the total population is vaccinated). 
The number of infected cases also exponentially decays faster as V2(0) increases. 
A similar pattern is exhibited in the cumulative deaths, where the curves plateau 
quicker as more people have been vaccinated initially (Fig. 4b). It demonstrates that 
achieving herd-immunity through vaccination, in which the threshold is between 60 
and 70% of the population, is crucial to stopping the spread of the disease.

Finally, to further appreciate our model in predicting the spread of disease, 
we observe the effect of vaccine efficacy, �1 on the dynamic of COVID-19 cases 
and deaths. The results are presented in Fig.  5. As shown in both Fig.  5a and 
b, the daily reported cases and deaths increase as vaccines become less effec-
tive (decrease in the �1 value). While vaccine waning is still possible because of 
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factors such as the emergence of new variants, the results here also give us a pre-
diction for when it happens later.

Impact of inter-state travel Using a similar model, we performed numerical 
simulations to predict the number of infected cases when fully vaccinated indi-
viduals were allowed to travel between two regions (let us denote them as Region 
A and B). We assume that both regions have an equal population size N but with 
a different initial proportion of fully vaccinated individuals ( V2(0) ). Particularly, 
we consider two different cases, which are, 

 I. Mobility from a highly vaccinated region to a low-vaccinated region; 
V2,A(0) = 0.7 × N and V2,B(0) = 0.2 × N
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 II. Mobility from a highly vaccinated region to a highly vaccinated region; 
V2,A(0) = 0.7 × N and V2,B(0) = 0.7 × N

where V2,A(0) and V2,B(0) corresponds to the number of fully vaccinated people in 
Region A and B, respectively. The vaccination rates and the implementation of 
control measures in both regions are assumed to be similar and comparable. Since 
we had no data on the number of people travelling from Region A to Region 
B, the parameter � varied between 10,000 and 30,000 people per day. Also, we 
assume that people from Region A would stay, on average, five days in Region B. 
This causes the travel rate from Region B to Region A, � to be lower by a factor 
of 5. Additional assumptions include that if a person was found to be infected, 
they were not allowed to travel to avoid disease transmission to another region.

We began our numerical simulation for a period of 150 days with and without 
inter-state movement. The results of case (I) are shown in Fig.  6a and b. Notice 
that the number of reported cases in Region A is comparable for all � . This is, in 
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fact, predictable as at least 70% of the population in the region has been vaccinated. 
As these people move to Region B, the interaction with the local community has 
increased the number of cases in Region B. The peak of infected cases becomes 
larger (roughly 25% increment at most) as more people travel (increase in the value 
of � ) into the region. As the model only allows people in compartment V2 to travel, 
we expect a more significant impact would be seen if infectious people could freely 
travel. On the other hand, for the second situation, we observe equivalent results 
in terms of the number of daily infected cases in both regions when the travelling 
parameter � is varied (Fig.  6c, d). The peak number of cases in Region B is also 
lower than the first case for all � . This is in line with the high number of vaccinated 
people in Region B (case ii), which resulted in a lower peak.

4.3  Disease Outbreak in Selangor and Kuala Lumpur (S &KL)

Next, we attempt to model the COVID-19 epidemic in Selangor and Kuala Lum-
pur (Malaysia), for which data is available at the Crisis Preparedness and Response 
Centre (CPRC), Ministry of Health, Malaysia. The available data allows us to per-
form a relatively reliable fit to the observed data from day 1 (March 2nd) to day 161 
(August 9th), as shown in Fig. 7. For this simulation, the population in Selangor and 
Kuala Lumpur (S &KL) is considered as a single population. It is not possible to 
model for Selangor or Kuala Lumpur separately because people commute within the 
states frequently.

Figure 7a depicts the results of our model fit with the active cases between the 
observed time frame. It is estimated that the transmission rate, � shows an upward 
trend from � = 0.0788 at the beginning ( t1 = day 1) to � = 0.2601 at day 60 (April 
30th). On day 92 (June 1st), the Malaysian government imposed the third national 
lockdown in order to reduce the spread of the disease, which resulted in a decrease 
in the transmission rate of 0.1176. This is expected since the public was embrac-
ing stay-at-home orders, which directly contributed to the reduction of the transmis-
sion rate, thereby decreasing the number of active cases (day 96 to 116). However, 
from the observed data, a rise in the number of daily cases from day 120 onward 
(June 29th) in Fig. 7a indicates the ineffectiveness of the lockdown. It is debatable 
whether the Malaysian government applied the same lockdown rules as in the previ-
ous lockdown (March 2020).

Based on the estimated parameter values, we performed a short term forecast to 
predict the spread of the disease ahead. We extended the simulation time period for 
30 days starting on August 9th and then plotted the number of infected cases. Note 
that long-term prediction is not suitable using the model as the situation may change 
as time goes on, requiring an update to the model. Our model predicts a decrease 
in the number of COVID-19 cases from late August. This is probably due to the 
increase in the number of vaccinated people (Fig. 7c). At the time of writing (Sep-
tember 7th), the number of daily cases reported from August 9th to September 9th 
showed a downward trend, which is qualitatively similar to our model’s prediction.

In addition, Fig. 7b depicts the total cumulative confirmed deaths between sim-
ulated and real data within the observed period. The model simulation achieves a 
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very good fit to the observed data (blue dots), with an exponential growth in the 
number of deaths. Also, one can notice that the number of deaths is in line with 
the number of cases. In other words, the higher the number of cases, the higher the 
number of deaths. From day 1 to approximately day 60 (April 30th), the data shows 
a slight increase in the total confirmed deaths and begins to gradually increase after 
that as many active cases are reported.

Figure  7c shows the total percentage of fully vaccinated people in S &KL for 
both simulated and real data. As can be seen, the total cumulative population that 
received the second dose of vaccine is approximately 30% on August 15th. Our pre-
diction is not far enough from real data, where the number of fully vaccinated peo-
ple has reached at least 40% of the total population in S &KL. The small discrepancy 
here is due to our assumption that the recovered individuals (R compartment) were 
not administered vaccines. At this point in our work, we do not have enough data 
to incorporate this effect into the model; this would require the addition of another 
coefficient that takes into account the re-population of the vaccinated compartment. 
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Fig. 7  The Selangor and Kuala Lumpur cases history. a Daily active cases, b Total cumulative deaths, 
c Total percentage of fully vaccinated individuals and d Other model outputs. In a–c, model outputs are 
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Finally, Fig. 7d shows the number of individuals in the different classes within the 
simulated period.

5  Discussion

The majority of COVID-19 outbreak modelling studies in the literature simulate a 
forecast of cases occurring during an epidemic without accounting for the effects of 
vaccination programmes as the vaccine was not available during the time of these 
studies. This work extends previously proposed SEIR models, which now include 
the effect of both vaccination and inter-state travel.

The findings from our study showed that the vaccination programme has a sig-
nificant effect on the spread of the disease. The number of cases exhibited a down-
ward trend as more people were vaccinated (Figs. 3, 4, 5). A rapid vaccination pro-
gramme and effective vaccines play important roles in eradicating the disease faster. 
This is consistent with the results reported in Layan et al. (2021). While vaccination 
has proven to be an effective method of protecting people from the virus, our simu-
lations show that a vaccine breakthrough is still possible. The number of infected 
cases among vaccinated people, however, is much lower than that of non-vaccinated 
people (Fig. 2a), indicating the effectiveness of the vaccines in lowering the trans-
mission risk. However, COVID-19 transmission between unvaccinated people is the 
primary cause of continued spread (CDC. Science brief 2021). It is also important to 
highlight that the vaccines are so effective in reducing the risk of death for infected 
individuals by half (Fig. 2b).

In addition, we find that the inter-region movement would cause an outbreak 
(Fig. 7). In the model, we only allowed fully vaccinated individuals to cross the bor-
der, but this still failed to prevent disease spread. The interaction with local infec-
tious people has probably caused the outbreak. We expect that the number of local 
cases would be higher if the fully vaccinated people were infectious prior to trav-
elling. This effect, however, was not considered in this study. Depending on daily 
travel rates, the severity of the outbreak could vary as the number changes. Although 
our study focused on two different populations (regions) only, the model can actu-
ally be extended to multiple regions by modifying the background conditions such 
as population sizes, local transmission rates, and daily travel rates. Results presented 
by our model have highlighted the impact that would occur if travelling restric-
tions are lifted improperly. In addition, our model can be a good framework for the 
authorities to plan a safe travel bubble for the tourism industry, for example.

To validate our model’s prediction capability, we performed the optimization 
procedures by fitting the model to a set of real data. The observed data was com-
prised of daily infected cases and total cumulative deaths in Selangor and Kuala 
Lumpur, in which taken from MOH’s github. Note that the reported daily infected 
cases cannot be used as the sole quantity for calibration because this data cannot 
be trusted. This number depends on many factors, including testing capacity and 
strategy. All countries’ reported confirmed cases underestimate the number of 
actual infected people. Many asymptomatic and mildly symptomatic people were 
unlikely to have been diagnosed. Hence, using the number of casualties could 
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improve the forecast due to the fact that this data is more reliable than that of 
infected cases. In order to accomplish the fit between model outputs and observed 
data, we used the simplex method (Nelder and Mead 1965), where the MATLAB 
codes were made available in Aziz (2022).

As shown in Fig. 7a, b, the targeted model outputs exhibited a good fit with the 
observed data within the selected time period. The model predicts a decrease in 
COVID-19 cases from late August due to the rapid vaccination program. Inter-
estingly, despite being "locked" down for several months (from June 1st until 
August 9th), the number of cases was constantly increasing. This suggests that 
the lockdown measure was not properly implemented. Partially enforcing lock-
down would very certainly lead to periodic fluctuations in the number of infec-
tion cases (Fig. 2a). Many studies have shown that lockdown is the most effec-
tive non-pharmaceutical intervention (Haug et  al. 2020; Gill et  al. 2020), but it 
requires strict regulations.

While numerical results are obtained for certain states over a specified time 
period, the model can be reparameterized for other states and updated when the 
epidemiological situation changes. We updated the model a number of times by 
including or removing initial assumptions as our understanding of the nature of 
disease transmission improved. Since modelling the exact behaviour of the dis-
ease is too complicated, our proposed model has some caveats and limitations 
that need to be considered in future studies. Firstly, we only considered a cumula-
tive factor embedded in a single parameter � to describe the transmission rate of 
the virus. Other non-pharmaceutical interventions, for example, social distanc-
ing, practising hand hygiene, use of face masks, and banning of large gatherings, 
are not separately considered in the model (Chu et  al. 2020) because of a lack 
of empirical data about the efficacy of these individual control measures. Also, 
adherence to these control measures may be considerably different across regions 
and over time.

Secondly, the population density in a particular region is not homogeneous in 
reality, which means we expect a higher infection rate in a dense location. We, 
however, did not model this effect as it requires the incorporation of a spatial 
diffusion equation (Noble 1974) or the use of agent-based models (Ying and 
O’Clery 2021; Frias-Martinez et  al. 2011). Thirdly, according to a study con-
ducted by Seow et al. (2020), it was highlighted that levels of antibodies that kill 
coronavirus waned over the 3-month study; this problem may make it more likely 
for those who have already recovered from the virus to become infected again 
(Breathnach et al. 2021). The second infection, however, would likely be milder 
than the first. Future studies may need to include the effect of multiple infections 
as well as vaccine waning in the model development as done by Salman et  al. 
(2021).
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6  Conclusion

In this study, we proposed an extended SEIR transmission model by incorporating 
both vaccination programmes and inter-state movement. The model was mathemati-
cally analysed to determine the disease-free equilibrium and the basic reproduction 
number. We then carried out several parameter sensitivity analyses to observe the 
model outputs in simulating various possible cases. In particular, the effects of vac-
cination-related parameters were investigated by observing the number of infected 
cases and deaths as these parameters were modified. Moreover, the model was also 
used to predict the spread of the virus as inter-state travel was allowed. The outbreak 
simulation involved the movement of fully vaccinated individuals from a highly 
dense vaccinated region to a less dense vaccinated region. The results demonstrated 
the risk of the emergence of another infection wave due to inter-state movement.

To validate the model outputs and estimate the unknown parameters, we per-
formed a parameter estimation method based on the Nelder-Mead simplex method 
in order to enhance the model’s prediction capability. The real data of active cases 
and total cumulative deaths showed a good fit to our respective model outputs. Using 
the estimated parameters from both the fitting process and existing literature, we 
used the model to perform short-term predictions of the number of infected cases in 
Selangor and Kuala Lumpur. Our model predicted that the COVID-19 cases would 
be reduced from late August. Finally, the new proposed model can serve as a tool for 
health authorities to plan, prepare, and take appropriate interventions and decisions 
to control the transmission of the disease.
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