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ABSTRACT

Motivation: The increasing number and complexity of biomodels
makes automatic procedures for checking the models’ properties
and quality necessary. Approaches like elementary mode analysis,
flux balance analysis, deficiency analysis and chemical organization
theory (OT) require only the stoichiometric structure of the reaction
network for derivation of valuable information. In formalisms like
Systems Biology Markup Language (SBML), however, information
about the stoichiometric coefficients required for an analysis of
chemical organizations can be hidden in kinetic laws.
Results: First, we introduce an algorithm that uncovers
stoichiometric information that might be hidden in the kinetic
laws of a reaction network. This allows us to apply OT to SBML
models using modifiers. Second, using the new algorithm, we
performed a large-scale analysis of the 185 models contained in
the manually curated BioModels Database. We found that for 41
models (22%) the set of organizations changes when modifiers
are considered correctly. We discuss one of these models in detail
(BIOMD149, a combined model of the ERK- and Wnt-signaling
pathways), whose set of organizations drastically changes when
modifiers are considered. Third, we found inconsistencies in 5
models (3%) and identified their characteristics. Compared with
flux-based methods, OT is able to identify those species and
reactions more accurately [in 26 cases (14%)] that can be present in
a long-term simulation of the model. We conclude that our approach
is a valuable tool that helps to improve the consistency of biomodels
and their repositories.
Availability: All data and a JAVA applet to check SBML-models is
available from
http://www.minet.uni-jena.de/csb/prj/ot/tools

Contact: dittrich@minet.uni-jena.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Reaction networks are widely used to model biological systems
at various levels, including the molecular level (Le Novére et al.,
2006), the cellular level (Wodarz and Nowak, 1999), the ecological
scale (Hofbauer and Sigmund, 1998) and the level of social
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interactions (Dittrich et al., 2003). Because of the growing number
of models, methods for their verification are needed. Approaches
that can be used for this purpose are flux balance analysis (FBA;
Varma and Palsson, 1994), elementary mode analysis (Schuster
et al., 1999), extreme pathway analysis (Schilling et al., 2000) and
chemical organization theory (OT; Dittrich and Speroni di Fenizio,
2007). These methods have in common that they allow deriving
constraints to dynamic behavior from the stoichiometric structure of
a network. This stoichiometric structure is defined by the number of
molecules of educts as well as the products each reaction consumes
and produces. Thus, stoichiometry-based methods do not require a
precise knowledge of the underlying reaction kinetics, which are
often partly or totally unknown.

Here, we will use OT. An important property of chemical
organizations is that every steady state and growth state1 of a
network corresponds to a chemical organization (Dittrich and
Speroni di Fenizio, 2007, and Supplementary Material). These states
we call the limit behavior of a model. However, this property is
fulfilled only if a reaction network meets a condition formulated
by Feinberg and Horn (1974): each reaction has a non-zero flux if
and only if all of its educts have a positive concentration. Using this
property, OT has already been applied to the prediction of growth
phenotypes (Centler et al., 2007) and the outcome of knockout
experiments (Kaleta et al., 2008), as well as in the design of chemical
programs to solve NP-complete problems (Matsumaru et al., 2007).

In a recent work, we used OT to assess the quality of a genome-
scale reaction network of Escherichia coli by identifying species
and reactions that could not be present in the limit behavior of
the model during simulation (Centler et al., 2008). We concluded
that these species and reactions hint at missing knowledge as they
were mostly part of pathways starting from or ending in dead-end
species. Here, we want to extend this approach in two directions.
First, we present a method for more accurately predicting the limit
behavior of a reaction network if information on reactions kinetics
is available. If modeled in Systems Biology Markup Language
(SBML, Hucka et al., 2003), the velocity of a reaction depends on the
concentration of its educts, products and modifiers. A modifier is a
species whose concentration affects the reaction velocity, but whose
concentration itself is not changed by this reaction. Some modifiers,
as for example catalysts or activators, are required to be present

1As growth state we define a situation where some species accumulate. An
example is exponential growth in which, for instance, the overall amount of
DNA increases given that there is a continuous supply (inflow) of nutrients.
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for a non-zero reaction velocity. However, if we want a reaction
to fulfill the Feinberg condition, such modifiers need to be added
on its educt and product sides. Hence, since information necessary
for the analysis using OT can be hidden in the kinetic laws, we
present an algorithm for extracting this information. Second, using
this approach, we demonstrate how knowledge of the organizational
structure of a reaction network and thus of its limit behavior can
help to uncover modeling inconsistencies. These inconsistencies are
represented by species as well as by reactions that belong to no
organization, indicating either incomplete knowledge, compounds
missing from the specified growth media or modeling errors.

This work is structured as follows. In Section 2, we give
a short outline of OT and present an algorithm that modifies
the stoichiometric structure in a reaction network such that the
Feinberg condition is fulfilled. We use this algorithm in Section 3
to demonstrate how these modifications affect the organizational
structure of a model of the extracellular signal related-kinase
(ERK)/Wnt-signaling pathway. In Section 4, we use our approach
to find inconsistencies in a large-scale analysis of the models of
the BioModels Database (Le Novére et al., 2006) and compare
our results with those obtained by other stoichiometric analysis
techniques. Finally, we conclude in Section 5.

2 METHODS

2.1 Chemical OT
We define a reaction network 〈M,R〉 by a set of molecular species M
and a set of reaction rules R. A reaction rule ρ ∈R is defined by the
stoichiometric coefficients li,ρ and ri,ρ denoting the left- and right-hand sides
of a reaction rule, respectively. Given a reaction rule ρ ∈R, we denote the set
of reactant species and set of product species by LHS(ρ) :={i∈M|li,ρ >0}
and RHS(ρ) :={i∈M|ri,ρ >0}, respectively. With N= (ni,ρ )= (ri,ρ −li,ρ ),
we denote the stoichiometric matrix of 〈M,R〉. W.l.o.g. we assume vρ ≥0;
hence a reversible reaction has two entries in v.

Given a set A⊆M, its set of reaction rules RA ={ρ ∈R|LHS(ρ)⊆A},
and the corresponding stoichiometric matrix NA, we say that A is closed if
for all reaction rules ρ ∈RA, RHS(ρ)∈A. Thus, we call A closed if there
is no reaction with educts from A producing a species not in A. A is self-
maintaining if there exists a strictly positive flux vector v′ ∈R

|RA|
>0 such that

all species in A are produced at a non-negative rate, that is, NAv′ ≥0 (Dittrich
and Speroni di Fenizio, 2007). A set A that is closed and self-maintaining is
called an organization (Fontana and Buss, 1994). An organization is called
reactive if each of its species participates in at least one reaction of that
organization. Elementary organizations are reactive organization that cannot
be generated as union of other reactive organizations (Centler et al., 2008).

Because organizations may share the same species, the set of organizations
together with the set inclusion ⊆ form a partially ordered set that can be
visualized in a Hasse diagram, providing a hierarchical view of the network
under consideration: organizations are vertically arranged by size, with small
organizations at the bottom. Two organizations are connected by a line, if
the upper contains the lower organization and no other organization exists
between them. For simplicity, only species appearing for the first time, i.e.
which are not element of a lower organization, are displayed.

2.2 Analyzing reaction networks with modifiers
In this section, we introduce an algorithm that allows application of
OT to reaction network models containing modifiers. As an example,
we use a phosphorylation cycle, a typical motive found in signaling
networks (Fig. 1A). The network consists of seven molecular species M=
{A,B,M1,...M5} and three reactions R={R1,R2,R3}.
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R1

M1

M2

M3

M4

M5

A B

C

Fig. 1. (A) Example network (phosphorylation cycle) with seven species and
three reaction rules. (B and C) Hasse diagrams of elementary organizations
of the unprocessed and processed networks, respectively. Only species
appearing for the first time in each organization are displayed.

For the reactions R={ R1 :∅→A, R2 :B→A, R3 :A→B}, we assume
the following kinetic laws (omitting rate constants and units):

vR1 = 1

vR2 = [B](1+[M1]+[M2])
vR3 = [A]([M3][M4]+[M3][M5]+[M4][M5])

This model can be formulated in SBML, with M1,M2 being modifiers
of reaction R2 and M3,M4,M5 being modifiers of reaction R3, while not
appearing as reactants.

Our algorithm consists of two steps: first, we examine the kinetic law of
each reaction to detect minimal sets of modifiers that are necessary for that
reaction to have a positive flux. Then, we use this information to adapt a
reaction’s set of reactants in order to more faithfully reflect the algebraic
structure of the network used for computation of chemical organizations.

2.2.1 Step 1: identifying sets of essential modifiers In this first step, we
identify all minimal supporting modifier sets of each reaction. Given a
reaction ρ ∈R, a minimal supporting modifier set (supporting set, for short)
is defined as a minimal set of modifiers that need positive concentrations
(while all others are absent) to allow reaction ρ to have a positive flux. If at
least one of these modifiers is additionally set to a zero concentration, the
flux of the reaction is constrained to zero. There might be several possibly
overlapping supporting sets. With respect to a certain reaction, a modifier is
called essential if it is contained in all supporting sets of the reaction.

Determination of supporting sets: to decide whether a set of modifiers is a
supporting set for a particular reaction, we follow a straightforward approach.
If a set of modifiers is a supporting set, a positive concentration of only these
modifiers allows a non-zero flux, while a positive concentration of only a
proper subset of these modifiers constrains the flux to zero. Following this
idea, we implemented FormulaChecker, which tries to compute the velocity
of each reaction in terms of modifier concentrations. All variables in the
kinetic law that represent undefined parameters or educt or product species
are not further resolved; i.e. they are treated as symbols. The modifiers we
want to test to determine whether they belong to a supporting set are also
treated as symbols. The remaining modifiers are set to zero concentration.
Function calls are resolved by application of their respective parameters, if
necessary. Applying FormulaChecker can lead to two different results for the
reaction velocity:

(1) The result is zero. In this case the tested modifier set is not a supporting
set. Let {M3}, for example, be the set to be checked in R3. Setting the
concentrations of the remaining modifiers to zero results in vR3 =0.
Thus, {M3} is not a supporting set of R3. This also applies to the sets
{M4} and {M5}.

(2) The result is non-zero. Thus, it might be a constant only depending on
parameters, or a formula, dependent on variables. Checking {M3,M4}
in R3 yields the kinetic law vR3 =[A]([M3][M4]). Since we know that
{M3}, {M4} and {M5} do not represent supporting sets, {M3,M4}
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has to be a supporting set. In contrast, if we check the empty set
in R2 by setting M1 and M2 to zero values in the kinetic law, we
obtain vR2 =[B]. In consequence, neither {M1} nor {M2} represent
supporting sets of R2; the supporting set is the empty set, and no
further tests are required.

Finding all supporting sets: in order to find all supporting sets of a reaction,
the algorithm analyzes the power set of the reaction’s set of modifiers to
ensure that all supporting sets are found. The sets are checked in increasing
size order, trying to avoid testing the whole power set of modifiers. If we
find that a set of modifiers is a minimal supporting set, we do not need to
test any of its supersets.

Looking at R3 in the example, after the empty set, all single-modifier
sets are checked. We find that neither M3 nor M4 nor M5 allow a positive
flux if standing alone. In the next step all two-element sets are tested. Since
all these sets allow a positive flux of R3, but none of the smaller ones, we
conclude that {M3,M4}, {M3,M5} and {M4,M5} are the supporting sets. In
consequence, we do not have to test the superset {M3,M4,M5}.

2.2.2 Step 2: adapting the reactions In the second step, each reaction
possessing at least one supporting set is processed. For each supporting set
the reaction is duplicated and the modifiers of the supporting set are added as
catalysts to the duplicate reaction. Finally, the original reaction is removed
from the model. In order to preserve the dynamics of the original model in the
processed model, the kinetic law of each of the duplicate reactions is divided
by the number of derived reactions, i.e. the number of supporting sets. The
duplicate reactions get new names of the form [old_reaction_name]
variant [number].

For our example, we obtain the following set of reaction rules R=
{R1,R2,R3variant1,R3variant2, R3variant3} with

R1 : →A

R2 : B→A

R3variant1 : A+M3+M4→B+M3+M4

R3variant2 : A+M3+M5→B+M3+M5

R3variant3 : A+M4+M5→B+M4+M5

For a more detailed outline of the processing of the kinetic laws, see the
Supplementary Material.

2.2.3 Example application Applying the algorithm to our example, we
can see several effects of the processing of the kinetic laws (see Figs 1B and C
for the Hasse diagrams of elementary organizations). Two trends are
superimposed. First, some organizations vanish, including the organization
solely containing A and B in the unprocessed network. In the processed
network, a reaction still converts B to A. In order to replenish B, one pair of the
modifiers M3, M4 and M5 is necessary. Thus, {A,B} does not fulfill the self-
maintenance condition in the processed network. Second, some organizations
appear for the first time, as in the case of the organization containing A in
the processed network. In the original network, the set {A} was not closed
since R3 unconditionally produced B from A.

3 ORGANIZATIONAL STRUCTURE OF THE
ERK/WNT-SIGNALING PATHWAY

In order to demonstrate the utility of the incorporation of kinetic
laws into the analysis with OT, we analyze the model BIOMD1492

from the BioModels database (Le Novére et al., 2006) containing
an integrated ERK and Wnt/β-catenin signaling pathway (Figure 2).

2We abbreviate the official name of the BioModels by reducing the number
to three digits. The original name of the model is BIOMD0000000149.

ERK−Pathway Wnt−Pathway

Raf1 Raf1*

MEK MEK*

Rasi Rasa

−Catenin/TCFβ

GSK3 β

X

ERK ERK*

Fig. 2. Simplified representation of the reaction network from
BIOMD149 (Kim et al., 2007) combining the ERK- and Wnt-signaling
pathways. The Wnt signal, serving as input to both pathways, is not shown.
Lines with circles represent essential modifiers identified with the presented
approach. Lines ending in orthogonal bars indicate inhibition.

This model is based on the work of Kim et al. (2007), who described
a positive feedback loop between these two pathways important
in the development of some cancer. The positive feedback loop
works through a yet unknown mechanism modeled by a species
called ‘molecule X’. The transcription of this molecule is modeled
to be upregulated by a complex of β-catenin and T-cell factor
(TCF). The availability of β-catenin is regulated by active glycogen
synthase kinase 3β (GSK-3β), which in turn is inactivated by
phosphorylated ERK. According to the model, X upregulates the
signaling through the ERK-pathway. The rates of phosphorylation
of the different levels of the ERK-pathway are modeled with kinetic
laws. Thus, a high concentration of phosphorylated Raf increases
the rate of phosphorylation of MEK, which in turn increases the rate
of phosporylation of ERK.

Without the processing of the kinetic laws the network
contains 384 reactive organizations generated from the union
of 11 elementary organizations. After processing, the network
contains 150 reactive organizations generated from the union
of 18 elementary organizations. Thus, the number of reactive
organizations declines, while the number of elementary
organizations increases. Figures 3 and 4 depict the Hasse
diagram of elementary organizations of both networks. The Hasse
diagram of the unprocessed network (Fig. 3) displays a very simple
structure. The smallest organization already contains X. From the
kinetic law of the production reaction of X, it can be determined that
a positive concentration of the complex β-catenin/TCF is required
for a non-zero flux of this reaction. But this is not taken into
account since this constraint is modeled through the modifiers of
the reaction and not on the level of substrates and educts as required
by the Feinberg condition. Consequently, the different levels of
the ERK-signaling pathway are also present independent of each
other. This can be observed by the presence of the corresponding
phosphorylated and dephosphorylated proteins directly above the
smallest organization in the Hasse diagram.

From a simulation perspective, the reactive organizations of the
original network would indicate a state of the network where,
for example, MEK and MEK* as well as the input species
could be constantly present (Fig. 3, organization 4). However, by
examining the kinetic laws of the phosphorylation from MEK to
MEK*, we find that this reaction has a flux of zero if the species
Raf1* is not present. Thus, only the dephosphorylation of MEK
would have a positive flux, finally using up all MEK*. After
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Fig. 3. Hasse diagram of elementary organizations of BIOMD149 without
processing of the kinetic laws. Only species appearing for the first time
in each organization are shown. For example organization 9 contains the
species displayed in the nodes corresponding to organization 0, 7 and 9. Not
all species in organization 10 are displayed. A list of abbreviations can be
found in the Supplementary Material. Phosphorylated forms of a protein are
denoted by the suffix ‘_ast’. Active/Inactive forms by the suffix ‘a’/‘i’.

ERK−signaling
bCatenin/TCF mediated Ras−mediated

ERK−signaling

Fig. 4. Hasse diagram of elementary organizations of BIOMD149 after the
processing of the kinetic laws. Only species appearing for the first time in
each organization are shown. Not all species in organization 12 are displayed.
Naming follows the same conventions as in Figure 3. The different pathways
for upregulation of the ERK-signaling pathway are indicated. In comparison
to Figure 3, we find, for example, the node corresponding to organization 6
above the node corresponding to organization 2 (corresponding to the nodes
labeled 7, respectively, 3 in Fig. 3). This corresponds to the conclusion that a
positive concentration of Rasa and Rasi is required for the presence of Raf1
and Raf1* in the limit behavior. Comparison with Figure 3 shows that this
conclusion can be drawn only if the kinetic laws are processed.

processing of the corresponding kinetic law, Raf1* is identified
as an essential modifier and added as a catalyst to the reaction,
as seen in the Hasse diagram of the processed network (Fig. 4).
The organization containing the species MEK* and MEK (Fig. 4,
organization 8) is situated above the organization containing Raf1*
(Fig. 4, organization 6).

From this perspective, the processing of the kinetic laws can be
seen as adding mechanistic detail to the reactions. Thus, when we

find Raf1* necessary for the phosphorylation of MEK to MEK*, the
addition of the modifier Raf1* as catalyst corresponds to the complex
formation between Raf1* with MEK prior to phosphorylation. The
approach to consider kinetic laws in OT can be seen as refinement
of the reactions of a model making use of the additional information
present in kinetic laws. Even though OT does not explicitly require
the kinetic laws of a reaction network, knowledge about them can
be used to better predict the limit behavior of a reaction network.
Conversely, in the sense of the Feinberg condition, the underlying
mechanisms are modeled more accurately on the stoichiometric level
of the network if this approach is used.

In agreement with the results of Kim et al. (2007), we find an
alternative route for the activation of the ERK-pathway, indicated by
the organizations 3, 7, 9 and 11 in Figure 4. Through the action of the
complex β-catenin/TCF, the transcription of X is upregulated and,
thus, bypasses the activation of Raf by Ras. A constant activation
of β-catenin/TCF, for example through a mutation, can result in
a decoupling from any signal and consequently lead to a constant
upregulation of the ERK-signaling pathway, as is often found in
cancer (Kim et al., 2007). In the unprocessed network, we do not
obtain these results.

4 LARGE-SCALE ANALYSIS OF BIOMODELS
In order to demonstrate the utility of our approach, we analyze the
models of the 11th release3 of the BioModels database (Le Novére
et al., 2006). This database contains 185 manually curated models
of biological networks in SBML format.

SBML allows species to be defined as external. Thus, their
concentration is assumed constant. For the computation of chemical
organizations, we add an inflow and outflow reaction of the form
∅→s and s→∅ for each external species s. For all except 3
models, we were able to compute the reactive organizations using the
deterministic algorithms for organization computation [see Centler
et al. (2008) for algorithmic details]. For the remaining three models
(BIOMD014, BIOMD019 and BIOMD049), a heuristic based on a
random walk strategy to determine organizations (Centler et al.,
2008) needed to be applied. Since we wanted to identify species
appearing in no organization and each of these models did contain
an organization encompassing the entire species set, computation of
the complete set of organization was not necessary for these models.

A total of 172 models contained a non-empty organization. In
the remaining 13 models only the empty organization was found,
since they contained neither reactions nor species. An overview
of the number of reactive organizations is given in Table 2 in the
Supplementary Material. While 77 models contained only a single
reactive organization, the highest number of organizations was found
in BIOMD175, with 319 248 reactive organizations. An overview
of the distribution of the number of organizations can be found in
Figure 5.

Species participating in none of the reactions can drastically
increase the number of organizations in a network. Thus, we
computed only the reactive organizations in each network and
omitted species participating in no reaction (in 24 models) from
the analysis. In 31 models some species did not appear in

3The BioModels Database is updated in releases whereby models are
corrected or added. We downloaded the models used in this work on October
20, 2008.
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any reactive organization. A first analysis showed that this set
contains many models where such behavior was intended. Thus,
in several models the concentration of some species was set to
a non-zero value at a given time point (e.g. t =0). To take into
account this short-time behavior, we added an inflow reaction for
each such species. Doing this, we found that only five models
with species absent from any reactive organization remained:
BIOMD044, BIOMD093, BIOMD094, BIOMD143 and BIOMD151
(Table 1). By analyzing the reactions in which the missing
species participated and comparing the SBML models to their
description in the corresponding publications, we found the potential
inconsistencies. We identified all these inconsistencies as actual
modeling errors.

4.1 Resolving network inconsistencies
In three of the five models, BIOMD093, BIOMD094 and
BIOMD143, we identified reactions that were set to irreversible
despite their kinetic laws producing negative fluxes in the course of
the simulation, as described in the corresponding publications. Thus,
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Fig. 5. Histogram of the number of reactive organizations in the models of
the BioModels Database. Please note that this number includes six models
with more than 1000 organizations (listed below >10 organizations).

they were indeed reversible and we modified them accordingly.
Repeating the analysis, we found all species present in the reactive
organizations of BIOMD093. In BIOMD094, missing species
remained. However, this was an intended behavior since a gene
knockout was modeled (Yamada et al., 2003).

In BIOMD143, we still found some species absent after we
had changed reactions with negative fluxes in the simulation to
be reversible. This model describes the oscillatory metabolism
of activated neutrophils (Olsen et al., 2003). A simplified and
decompartmentalized version of the relevant reactions is depicted
in Figure 6. The species absent from the reactive organizations
are hydrogen from cytoplasm and phagosome. The model contains
only reactions consuming these two species. During simulation
even negative concentrations of both species appear. The reason
for the consumption of these species is inconsistent modeling of
the stoichiometry of the reactions and an inconsistent kinetic law.
Cytoplasmatic and phagosomal hydrogen are consumed together
with superoxide (O−

2 ) to produce hydrogen peroxide (H2O2). In
the course of the disposal of H2O2 by ferric peroxidase in the
phagosome, additional four protons from melatonin (MLTH) are
consumed to produce the initial form of ferric peroxidase. With the
exception of ferric peroxidase and free radicals of melatonin (MLT),
all species are consumed without producing equivalent products.
Thus, the disposal of H2O2 by ferric peroxidase consumes oxygen
and protons. The model contains an inflow for NADPH and O2.
Oxidation of NADPH by oxygen or free radicals of melatonin
can produce superoxide and melatonin, respectively. Thus, there
is a constant inflow of NADPH and oxygen that can replenish
the consumed species. However, the kinetic law of the production
of superoxide from O−

2 and hydrogen does not depend on the
concentration of hydrogen in the model. Together with a zero
initial concentration of hydrogen, the simulation of the model leads
to a negative concentration of this species. Making the rate law
dependent on the concentration of hydrogen resolves the problem
of negative concentration of hydrogen.Additionally, either removing
the inconsistencies in the stoichiometry or adding an inflow for

Table 1. Selected results from the large-scale analysis

Model Description Species/
Reactions

Reactive
Orgs.

First Step Second Step

OT FBM OT FBM
(spec./rea.) (rea.) (spec./rea.) (rea.)

BIOMD037 Sporulation control network in P. polycephalum (Goldbeter, 1991) 12/14 (14) 1 (2) 3/6 10 12/14 14
BIOMD044 Model of intracellular calcium oscillations (Borghans et al., 1997) 7/8 (8) 2 (2) 3/4 5 6/7 7
BIOMD093 JAK/STAT signal transduction pathway (Yamada et al., 2003) 34/48 (48) 5 (3) 11/16 30 31/43 43
BIOMD094 JAK/STAT signal transduction pathway (Yamada et al., 2003) 34/47 (47) 2 (3) 5/5 27 24/24 40
BIOMD143 Oscillatory metabolism of activated neutrophils (Olsen et al., 2003) 20/20 (20) 1 (1) 4/4 4 7/5 5
BIOMD149 Crosstalk between Wnt and ERK Pathways (Kim et al., 2007) 28/39 (39) 150 (384) 28/39 39 – −
BIOMD151 IL-6 signal transduction in hepatocytes (Singh et al., 2006) 68/114 (114) 80 (96) 49/71 111 19/14 112

See Supplementary Material for the entire table. The five models in which inconsistencies have been identified are shaded in light gray. The first 4 columns give general details
about the models. Numbers in brackets indicate the number of reactions of the original network that can increase through processing of the kinetic laws. The number of species
remains constant. The fourth column gives the number of reactive organizations in the modified and (in brackets) the original network. In the fifth and sixth columns species and
reactions that can be present in the limit behavior of the processed network are given. OT denotes the predictions by OT, and FBM the predictions by flux-based methods. In some
cases, FBM identifies more reactions to be present in the limit behavior than OT. These cases are shaded in dark gray. The seventh and eighth columns give the same numbers when
inflow reactions for species with an event setting their concentration to a positive value at a certain time point are added. In cases where the original network already contained all
species, those numbers are omitted.
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Fig. 6. Simplified representation of the reactions of BIOMD143. As a result
of inconsistent stoichiometries hydrogen and oxygen are consumed in the
course of detoxification of hydrogen peroxide. There is only an inflow
of oxygen, and the consumption of hydrogen does not depend upon its
concentration. Consequently, a simulation leads to a negative concentration
of hydrogen.

hydrogen allows positive concentrations of this species during
simulation.

The reasons for the missing species in BIOMD044 are very
similar. Here, a species is modeled to serve as a pseudo-substrate to a
reaction that could have been modeled without substrate. The kinetic
law governing the reaction does not depend upon the concentration
of this substrate. Since it is not produced by any other reaction,
negative concentrations appear in the course of the simulation.
Replacing the respective reaction by an inflow reaction resolves the
problem.

In BIOMD151 almost all species are absent from reactive
organizations. This network represents an integrated model of
the JAK/STAT and ERK-signaling pathways regulated by IL-6 in
hepatocytes (Singh et al., 2006). A detailed analysis of the model
and the set of ordinary differential equations presented in Singh et al.
(2006) showed that a complex formation step was missing, such that
the signal from IL-6 could not be transmitted to the subsequent
signaling pathways. Only the complex dissociation reaction was
present. During simulation it had a negative flux, mimicking the
complex formation reaction. Adding the missing step produced a
model in which all species appeared in a reactive organization.

4.2 Comparison with flux-based methods
Next, we will compare our results with those obtained with
flux-based methods, including FBA (Varma and Palsson, 1994),
elementary mode analysis (Schuster et al., 1999) and extreme
pathway analysis (Schilling et al., 2000). These methods can be
used to check whether a certain reaction can be present in a steady-
state flux obeying the irreversibility constraint. Thus, they can
predict whether a reaction can be present in the limit behavior
of a reaction network. In FBA this can be done directly, while
elementary mode analysis and extreme pathway analysis return a set
of vectors spanning the solution space of the steady-state condition.
However, since OT also takes into account growth states, in which
some species accumulate, the steady-state condition is adapted
accordingly (details can be found in the Supplementary Material).
Furthermore, since we only want to know whether a reaction can
appear in any steady state or growth state, we do not need to apply
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PrPfr

Yi
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Pi
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prepreS preS S

V

Xa Xi

PrPfr

Yi
Gluc
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Fig. 7. Reaction network from BIOMD037 modeling the sporulation control
in P.polycephalum from Marwan (2003). Lines ending in circles indicate
essential modifiers for a reaction. Light gray reactions cannot have a
positive flux in the limit behavior, according to A OT and B flux-based
methods. Abbreviations: Pr, active photoreceptor; Pi, inactive photoreceptor;
(pre/prepre)S, sporulation signal (and precursors); Ya/i, active/inactive
glucose receptor; Gluc, glucose; Xa/i, active/inactive signal transducer.

these methods directly, but can use a linear programming approach
similar to FBA, outlined in the Supplementary Material.

We compared the predictions of flux-based methods to those of OT
for the models of the BioModels Database. With OT, we identified
31 models where some reactions did not appear in any reactive
organization. The same 31 models are identified using flux-based
methods. However, when analyzing the predicted set of available
reactions in detail, we found differences in 25 of the 31 models. Due
to the definition of self-maintenance, the set of available reactions
is a subset of those predicted by flux-based methods. Thus, in all
25 cases, flux-based methods found reactions present in the limit
behavior that indeed could not maintain a positive flux in a long-term
simulation.

The reason for this difference closely follows a concept presented
in Kaleta et al. (2006): a steady-state flux in a network uses some
species that cannot be produced at a positive rate. In this flux,
these species might be interconverted into each other or act as
catalysts. Further assume that there is a reaction steadily draining
some of the unproducible species. Thus, they will finally vanish.
In consequence, this steady-state flux cannot be part of any steady
state of the complete network. If a particular reaction is present only
in such steady-state fluxes, it is predicted to be present in the limit
behavior of a reaction network by flux-based methods, while OT
correctly identifies it as absent since it correctly takes into account
the drain of the unproducible species. We will outline this concept
in more detail using BIOMD037, a model of the sporulation control
network in Physarum polycephalum by Marwan (2003) (Fig. 7).
While OT predicts 8 of the 12 reactions to be absent from the
limit behavior (Fig. 7A), flux-based methods identify only four such
reactions (Fig. 7B). The differentially predicted reactions account for
the interconversion of Pfr to Pr and Xi to Xa. Flux-based methods
find a flux where the conversion of Pfr to Pr and vice versa is in
equilibrium. However, this does not take into account that there is
also a reaction irreversibly converting Pr to Pi. Thus, a non-zero
concentration of Pr will be depleted by the conversion into Pi. In
consequence, there is no reactive organization containing Pfr and Pi.
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Additionally, we find an interesting case in the interconversion
of Xa to Xi and vice versa. The conversion of Xi to Xa requires
the presence of Pr. Flux-based methods identify an equal flux of
both reactions as a feasible flux, since Pr acts only as a catalyst.
However, the analysis using OT shows that such a flux also requires
the presence of Pr. Thus, both species cannot persist in the limit
behavior since Pr, required for the reaction of Xi to Xa, will vanish
over time. Since Xa is steadily converted to Xi, only this species
would finally remain. This demonstrates how our approach takes
the kinetic laws into account which is not possible using flux-based
methods.

In two of the models in which we identified inconsistencies,
BIOMD094 and BIOMD151, predictions for the presence of
reactions in the limit behavior between OT and flux-based methods
differ. In BIOMD151, OT predicts nine reactions to be present, while
flux-based methods identify 112 of the 114 overall reactions. As
outlined above, flux-based methods can predict only the same or
a larger set of reactions to be present in the limit behavior. Thus,
the search for inconsistencies is simplified by reducing the size of
the system to analyze if OT is used. This is also corroborated by
three models in the uncurated branch of the BioModels Database
containing inconsistencies. In all three models, flux-based methods
predict more reactions to be present in the limit behavior than OT
(see Supplementary Material for further details).

5 CONCLUSIONS
In this work, we demonstrated that information hidden in kinetic
laws affects the results obtained from chemical organization theory
(OT). We presented an approach that is able to uncover this
information. This approach enabled us to refine the chemical
organizations in 41 of the 185 models (22%) of the BioModels
Database. The Hasse diagram of organizations of the processed
model of a combined ERK/Wnt-signaling pathway took into account
the different levels of phosphorylation in the signaling cascade,
while the set of organizations of the unprocessed network did
not. Furthermore, the Hasse diagram of organizations demonstrated
several possible pathways for constant upregulation of this pathway,
an important event in carcinogenesis consistent with the results of
Kim et al. (2007).

Analyzing the 185 models of the BioModels Database, we
checked the behavior of the models during long-term simulation
(limit behavior). Thus, we found 31 models where several species
could not persist in a long-term simulation. Furthermore, we
identified five models in which some species could not be present
at all during simulation. This was due to inconsistent reversibility
constraints in two models, negative concentrations of some species
during simulation in other two models and a missing reaction in the
fifth model. In the non-curated branch of the BioModels Database,
we identified the models with modeling errors. Comparing the set of
species present and the reactions having a non-zero flux in the limit
behavior, we found OT able to predict those sets more accurately
in 25 models (14%) compared with flux-based methods like FBA,
elementary mode analysis and extreme pathway analysis. These
models account for 81% of the models in which the set of species
and reactions present in the limit behavior of the model did not
encompass the entire set of species and reactions. In five of the 8
models of both branches of the BioModels Database in which we

detected modeling errors, OT made more accurate predictions in
comparison to flux-based methods.

These results demonstrate that OT is a valuable tool in three
important aspects of network design and analysis. First, when
this approach is used to extract additional information from the
kinetic laws of the reactions, the set of organizations corresponds
to the potential steady state and growth states of a reaction
network. Thus, important information about the dynamic structure
of a reaction network can be uncovered. Second, OT can be
used in an iterative fashion to assist in model building by
identifying inconsistencies that need to be resolved. Third, OT
more faithfully identifies parts of a network whose maintenance
is not yet explained than flux-based methods. Thus, it is of
particular interest for identifying gaps due to missing knowledge
in large-scale metabolic networks as documented in Centler et al.
(2008). In consequence, it can be beneficial for methods aiming
to remove such inconsistencies (Kumar et al., 2007; Reed et al.,
2006). In the other direction, our approach could be extended
by these methods to automatically propose changes in order
to remove inconsistencies. However, computational constraints
currently prohibit the application of our deterministic algorithms
to very large networks (e.g. more than 500 reactions). An
approximation can be used for networks of this size, but the results
require manual checking. A more efficient algorithm that will enable
the application of OT to genome-scale networks is in development.
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