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Abstract

Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of
age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB
serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a
replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic
methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23
amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites
defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in
group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a ‘‘flip-
flop’’ phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent
positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally
viable amino acids at specific amino acid sites.
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Introduction

Human respiratory syncytial virus (HRSV) is a leading cause of

severe acute respiratory infection in childhood worldwide [1] and an

important agent of acute respiratory infection in the elderly and

immunocompromised [2,3]. Initial studies with monoclonal antibod-

ies to the HRSV F and G proteins divided the virus into two major

groups (A and B) [4,5]. Sequencing studies based on several HRSV

genes have supported this major subdivision and lead to an additional

genotypic classification, mainly based on the G protein gene, for

epidemiological studies of HRSV. The genotypes of HRSVA and B

show complex fluctuating dynamics, since they may co-circulate

during a given season, with one or two dominant genotypes that are

then replaced in consecutive years [6,7,8,9,10,11].

The G protein is a target for neutralizing antibodies, interacts

with host cell receptors and is highly variable [12,13,14,15]. Most

changes in the G protein are localized at an ectodomain

containing two hyper-variable segments, separated by a highly

conserved region between amino acids 164 and 176, assumed to

represent a receptor-binding site [15]. Experimental data show

that the G protein is not required for virus infection in vitro under

appropriate conditions, but is necessary for efficient infection in

mice and humans [16]. It has been argued that the antigenic

variability of HRSV strains is one of the key features contributing

to the ability of the virus to re-infect people and cause large-scale

yearly outbreaks [17]. Moreover, several studies have shown that

the C-terminal hyper-variable region of the surface G glycoprotein

is immunogenic and contains multiple epitopes that are recognized

by both murine monoclonal antibodies and human convalescent

sera [18]. In addition, the deduced amino acid sequences of the G

protein are highly divergent, with a sequence identity of

approximately 53% between HRSVA and B, and 20% divergence

within the same antigenic group [14,19]. Despite this diversity, the

nature of the selection pressures acting on the G protein have not
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been explored in detail, and particularly using sequence data sets

that are of sufficient size to reveal the intricate nature of adaptive

evolution and with restricted spatial and temporal sampling. This

information is of particular importance since the ectodomain of

the G-protein is also a target site in vaccines that have so far met

with little success. To addresses these key issues we undertook the

largest analysis of HRSV sequences undertaken to date,

comprising both HRSVA and HRSVB, and utilizing detailed

temporal information.

Methods

Respiratory samples
A total of 3,496 respiratory samples were used in this study.

Nasopharyngeal aspirates and nasal swabs from 2,256 infants and

young children (1 week to 5 years of age) hospitalized with acute

respiratory lower infection (ARI) at University of São Paulo

Hospital, São Paulo, Brazil were used. Samples were collected

over 11 consecutive HRSV seasons (1995–2005). In addition,

1,240 respiratory samples from children with ARI were collected

in 2004 and 2005 in different cities in São Paulo State and enrolled

in the present study as part of the Viral Genetic Diversity Network

(VGDN) (http://www.lemb.icb.usp.br/LEMB/index.php?p = 11).

Informed consent was obtained from parents or guardians of

children enrolled in the study in the different cities according to a

protocol approved by their respective Institutional Review Boards.

HRSV screening
Specimens were collected in buffered saline and transported on

ice to the laboratory for processing within 4 hours. A commercial

immunofluorescence assay was used per manufacturer’s instruc-

tions (Chemicon Light Diagnostics, Millipore Corp, Inc., Teme-

cula, CA.), as previously described [20]. Clinical samples were

amplified by RT-PCR as described bellow.

RNA extraction and reverse transcription
Total RNA was extracted using guanidinium isothiocyanate

phenol (Trizol LS, InvitrogenH, Carlsbad, CA) according to the

manufacturer’s instructions. Extracted RNA was annealed with

50 pmol random hexanucleotide primer (InvitrogenH) at 25uC for

25 minutes, followed by reverse transcription with 200 U

SuperScript TM (InvitrogenH) at 42uC for 1 hour.

PCR and nucleotide sequencing
Partial HRSV G gene amplification was performed by a semi-

nested PCR procedure. cDNA was amplified with reverse primer

FV -59GTTATGACACTGGTATACCAACC 39 (based on

sequences complementary to nucleotides 186 to 163 of the F

protein gene messenger RNA strain CH18537 [21] – and the

forward primer GAB - 59YCAYTTTGAAGTGTTCAACTT

39(G gene, 504–524 nt). A semi-nested PCR was then performed

with primers F1AB -59CAACTCCATTGTTATTTGCC39 (F

gene, 3–22 nt) and GAB [8,9]. PCR assay was carried out in a

reaction mixture containing 2,5 mL of cDNA, 20 mM Tris-HCl,

50 mM KCl, 1,5 mM MgCl2, 0,2 mM dNTPs, 10 pmol of each

primer, 1,25 U of Taq DNA Polimerase (Taq-Gold, Applied

Biosystems Inc) in a final volume of 25 mL. Amplification was

performed in a GeneAmp PCR System 9700 thermocycler

(Applied Biosystems Inc.) with the following parameters: 94uC
for 5 minutes, followed by 35 cycles of 1 min at 94uC, 1 min at

55uC and 1 min at 72uC, and finally 7 min of extension at 72uC.

The semi nested PCR was carried under the same conditions, with

10 pmol of each primer on a final volume of 25 mL. Both cDNA

synthesis and PCR followed strict procedures to prevent

contamination, including redundant negative controls and segre-

gated environments for pre- and post-amplification procedures.

Amplified products of the G gene showing the expected size by gel

electrophoresis, were purified with a commercial kit (Concert Gel

Extraction Systems, InvitrogenH), according to the manufacturer’s

instructions, followed by cycle-sequencing on a GeneAmp PCR

System 9700 thermocycler (Applied Biosystems Inc). Sequence

reactions were subjected to electrophoretic separation for primary

data collection in ABI PRISM 3100 and 377 DNA sequencers

(Applied Biosystems Inc.), using a fluorescent dye terminator kit

(Applied Biosystems Inc.). Both strands were sequenced at least

twice.

Sequence editing and alignments
Sequences were assembled with the Sequence Navigator

program version 1.0 (Applied Biosystems Inc., EUA) resulting in

contigs of 270 nucleotides on average, corresponding to HRSV G

gene nucleotide 649–918 (group A, prototype strain A2) and 652–

921 (group B, prototype strain CH18537). Individual sequences

were aligned to HRSV G references sampled globally [8,9,10,11,

19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] with the Se-

Al - Sequence Alignment Editor [38], resulting in data sets with an

average length of 270 nucleotides.

Phylogenetic analyses
Because the strains A2 and Long (A group) and CH18537 and

Sw8/60 (B group) were both the most divergent and considered

prototype strains, they were included in the analysis as outgroup

sequences for the phylogenetic analysis. The best–fit model of

nucleotide substitution (GTR+C+I), and values for the shape

parameter (a) for the distribution of among-site rate-heterogeneity

distribution (C) were selected by hierarchical likelihood ratio

testing using Modeltest Version 3.06 [39]. Using these models,

maximum likelihood (ML) phylogenetic trees were inferred by

heuristic searches using PAUP under sequentially the TBR (Tree

Bisection-Reconnection), SPR (Subtree Pruning Regrafting) and

NNI (Nearest Neighbor Interchange) perturbation procedures

[40], using as BioNJ tree as a starting phylogeny. Levels of

phylogenetic support for individual nodes were obtained by

Author Summary

As part of the Viral Genetic Diversity Network (VGDN), we
sequenced the second variable region (G2) of the G
protein of human respiratory syncytial virus (HRSV) A and B
from 568 patients sampled during 11 consecutive HRSV
seasons (1995–2005) in the state of São Paulo, Brazil. A
total of 933 HRSVA and 673 HRSB time-stamped sequenc-
es, including those sampled here and globally, was used
for phylogenetic inference and the analysis of selection
pressures. We identified 18 positively selected sites in both
HRSVA (9 sites) and HRSVB (9 sites) that tended to revert in
time to their previous codon state (i.e. exhibited a ‘‘flip-
flop’’ pattern). We argue that these common evolutionary
reversals are indicative of frequent positive selection,
reflecting the changing immune status of the human
population, coupled with a limited repertoire of functional
viable amino acids at specific sites. This information is of
particular importance since the ectodomain of the G
protein is also a target site in vaccines that have so far
proven unsuccessful and because it constitutes a signifi-
cant step towards describing and understanding the
immune-escape repertoire of this major human pathogen.

HRSV Evolutionary Reversals
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obtaining the majority rule consensus of the 100 best trees

collected near the likelihood maxima during both the SPR and

NNI branch-swapping procedures. Consensus values above 99%

were used to check for genotype monophyly. Moreover, since

samples had dates of sampling ranging a 30 year period, we also

generated maximum clade credibility (MCC) trees for HRSVA

and HRVB data using the Bayesian inference (BI) method in

BEAST v. 1.4.7 [41]. We used the best fit model (GTR+C4+I )

assuming an uncorrelated lognormal-distributed relaxed clock

with rates of change estimated from the data and using a Bayesian

skyline demographic model as a coalescent prior. To obtain

effective sampling sizes (ESS) above 100, MCC trees for HRSVA

and HRSVB were obtained by pooling five independent Markov-

chain Monte Carlo runs, each of which sampled from 10 million

chains after a pre-burning period of 30 million chains.

Analysis of selection pressures
To detect sites in the G protein that might be subject to positive

selection we used the Bayesian methods implemented in the

HyPhy program [42]. We employed the default

‘MG94xHKY85x3_4x2Rates with Rate heterogeneity, with 4

rate categories per parameter’ model. This estimates multiple

parameters that are free to vary over sites both dN and dS to have

distinct rates at a given site and to be sampled independently from

two separate distributions. For the MG94xHKY85x3_4x2Rates

model we used a Bayes factors .20 means that positive selection

explains the data approximately 20 times better than the

alternative model [42]. For comparison, we also used the less

computationally intensive Single Likelihood Ancestral Counting

(SLAC) and Fixed-Effects Likelihood (FEL) methods using the best

fit nucleotide model estimated with HyPhy for each data set. With

SLAC and FEL, all positively selected sites were estimated at the

95% confidence interval. We did not use the random effects

likelihood method (REL) because of major computational

constraints [42,43,44].

In addition, we obtained the most parsimonious reconstructions

(MPR) of the positively selected sites along both HRSVA and

HRSVB G protein trees using both the ‘accelerated transforma-

tion’ (ACCTRAN) method that maps character changes near the

root of the tree, and the ‘delayed transformation’ (DELTRAN)

method that maps character changes near the tips of the tree

implemented in MacClade v. 4.07 [45]. Because all sequences had

dates of sampling, allowing us to recover temporal patterns of

amino acid replacement, we adjusted the tips of the phylogenies in

time (i.e., tip-dated trees) with BEAST v.1.4.7 (http://beast.bio.ed.

ac.uk/).

Nucleotide sequence accession numbers
The nucleotide sequences from the Brazilian isolates were

deposited in the GenBank database under accession numbers

EU582054 to EU582483, EU635778 to EU635865, EU259652 to

EU259673, EU259675, EU259676, EU259678 to EU259690,

EU259693 to EU259696 to EU259704, EU 625735, EU241632

to EU241634 and AY654589.

Results

HRSV sequencing and genotyping
We obtained nucleotide sequences of the second region (G2) of

the HRSV G protein gene from (i) 432 random samples collected

over 11 seasons (i.e., from 1995 to 2005) from the city of São Paulo,

Brazil and (ii) 136 sequences from samples collected by VGDN

program from 2004 to 2005 from metropolitan area of the city of

São Paulo and from the city of Ribeirão Preto, also in São Paulo

state. Of a total of 568 sequences, 359 (63.2%) represented group

A and 209 (36.8%) group B.

The Brazilian isolates of HSRVA had a deduced G protein of

298 or 297 amino acids, which was confirmed by complete G

protein sequences obtained from several representative samples

used in this study (data not shown). Interestingly, three isolates

(Br89_2000, Br86_2000 and Br 206_2004) had a premature stop

codon at amino acid position 288, which has been observed

previously [46,47] and four Brazilian GA5 strains from 2000 had a

deletion of three bases, causing the loss of a serine residue at

position 270. All the Brazilian isolates of HSRVB had an inferred

G protein of 295 amino acids, except three isolates from 2000

season that had 299 amino acids due to a mutation in the first

nucleotide of the stop codon of G gene, and two strains from 1999

season that had a Threonine codon insertion at position 233,

leading to a G protein with 296 amino acids. Some strains isolated

during 2001, 2003 and 2004 have an exact duplication of 60

nucleotides starting after residue 791 (accounting for a 20 aa

duplication by insertion and resulting in a predicted protein of 312

to 319 aa). In 2005 this new genotype – denoted ‘GB3 with

insertion’ (see below) – became the predominant. The alignment

of partial amino acid sequences including the duplicated G

segment showed some amino acid substitutions in the duplicate

segment and in the 60 nucleotides immediately upstream. A total

of 933 HRSVA sequences and 673 HRSVB sequences, including

original and data compiled from GenBank, were used for further

evolutionary analysis (see Table S1 in supplementary material).

HRSV genotypes
Both the ML and MCC trees divided HRSVA into seven

monophyletic clusters with bootstrap or posterior probability

support above 99%; these were previously described as genotypes

GA1, GA2, GA3, GA4, GA6, GA5, GA7 and SAA1 [8,9,34]. The

MCC tree (Fig. 1) showed that genotypes GA2, GA3, GA4, GA6

and GA7 had a common ancestor not shared by GA5 and GA1.

GA2 strains fell into two distinct branches. One included the oldest

strains isolated from 1995 to 2000 in several regions globally (i.e.,

Brazil, South America, Belgian, United States and Africa). The

other branch grouped the most recently isolated strains (2000 to

2004) that also exhibited a very widespread distribution (i.e.,

Belgian, Brazil, China and Africa). Brazilian strains in this second

branch were characterized by five amino acid substitutions:

Leu215Pro, Arg244Lis, His266Tyr, Asp297Lys and the stop

codon at 298 reverting to Trp (Stop298Trp). These changes were

fixed in almost all 2003 to 2005 GA2 strains.

The MCC tree for HRSVB (Fig. 2) contained 8 clusters that

were previously described as genotypes JA1, GB1, GB2, GB3,

GB4, SAB1, SAB2, SAB3 and GB3 with insertion [8,9,33,34].

These same groupings were observed in the ML tree. GB3 was a

paraphyletic genotype and included both SAB3 and the GB3 with

the 60 nucleotide insertion.

Selective Pressures in HRSV
In total, we found 29 sites to be subject to elevated rates of non-

synonymous substitution (dN) in HRSVA, nine of which were

detected to be under positive selection by the three methods we

used and strongly suggesting that they are not false positives

(Table 1). By using the Long 1956 prototype strain as an outgroup

sequence, the most parsimonious reconstruction of the positively

selected amino acid changes along the HRSVA tip-dated tree

revealed that 22 mapped to the basal node (Fig. 1). That these 22

putatively positively selected sites included the replacement

substitutions that defined the different genotypes and lineages

within genotypes confirmed that they have reached a high

HRSV Evolutionary Reversals
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Figure 1. The most parsimonious reconstructions of positively selected sites on the HRSVA phylogeny rooted with the Long and A2
and GA1 strains (not shown for clarity) are depicted. Basal positively selected sites of HRSVA are indicated near the root of the tree. MPRs
along the tree supporting the main splits are also indicated near the nodes at the base of each genotype. Lineages that did not experience
evolutionary reversals were collapsed for the sake of clarity. For both A) and B) sites experiencing evolutionary mutations (Table 1) are indicated by
the symbols: . for the ‘forward’ (Fr) mutation and , for the ‘backward’ mutation (Br). The Fr I is indicated by blue quadrilateral ., and the Br I by
blue quadrilateral ,. The Fr II is indicated by pink quadrilateral . and the Br II by pink quadrilateral ,. The Fr III is indicated by blue circle . and the
Br III by blue circle ,. The Fr IV is indicated by green circle . and the Br IV by green circle ,. The Fr V is indicated by violet triangle . and the Br V by
violet triangle ,. The Fr VI is indicated by violet circle . and the Br VI by violet circle ,. The Fr VII is indicated by orange quadrilateral . and the Br VII
by orange quadrilateral ,. The Fr VII is indicated by green triangle . and the Br VIII by green triangle ,. The Fr IX is indicated by black triangle . and
the Br by black triangle ,.
doi:10.1371/journal.ppat.1000254.g001
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Figure 2. The most parsimonious reconstructions of positively selected sites on the HRSVA phylogeny rooted with the CH18537
and SW860 (not shown for clarity) are shown. Basal positively selected sites of HRSVB are indicated near the root of the tree. MPRs along the
tree supporting the main splits are also indicated near the nodes at the base of each genotype. Lineages did not experience evolutionary reversals
were collapsed for the sake of clarity. For both A) and B) sites experiencing evolutionary mutations (Table 1) are indicated by the symbols: pink

HRSV Evolutionary Reversals
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frequency in the population again as expected of bona fide positively

selected sites rather than false-positives. Site 215 had a Leucine

(Leu) in all genotypes except in the non-circulating genotype GA1,

that had a Proline (Pro), and the non-circulating Long 1956

prototype strain, that possessed a Histidine (His). Interestingly,

most GA2 strains isolated after 2000 reverted to Pro at this site,

and most GA5 strains isolate since 2001 changed to Isoleucine

(Ile). Moreover, GA1 was basal to all other HRSVA genotypes and

since it had no reversals on positive selected sites it was excluded

from Fig. 1 for the sake of clarity (Fig. 1). The changes Phe265Leu,

Leu274Pro, Ser280Tyr, Pro286Leu, Ser290Pro and Pro293Ser

mapped to the split of two distinct branches; (i) one containing the

older samples including prototypes (A2 and Long) and non-

circulating genotype GA1 and, (ii) another containing the

remaining genotypes (GA5, GA2, GA3, GA4, GA6 and GA7)

(Fig. 1). Val225Ala, Pro256Leu, Thr238Leu and Leu274Thr

changes defined the GA5 genotype (Fig. 1). Moreover, positively

selected changes Pro289Ser, Pro226Leu, Ser269Thr and Pro290

Leu defined GA2 genotype, while Pro226Leu defined genotypes

GA3 and GA7 (Fig. 1).

A total of 23 sites had elevated non-synonymous rates (dN) in

HRSVB, thirteen of which were detected to be under positive

selection by the three methods we used (Table 2). As with

HRSVA, these sites defined lineages within genotypes, again

suggesting that they are not false-positive results. The substitutions

Pro216Ser and Pro219Ser defined the GB4 genotype, while

changes Leu237Pro and Pro219Leu defined genotype GB3, and

Thr255Ala defined SAB3 genotype. Moreover, site 277 changed

from Ser to Phe in genotype JA1 (isolated in Japan) and in the

SAB1 genotype. Finally, positively selected sites 242, 247, 255, 257

and 258 were located immediately upstream of the 20 amino acid-

long duplication region while sites 267, 269 and 270 were located

at the duplication region of the gene. The MPR of positively

selected amino acid changes along the HRSVB tip-dated tree

revealed that sites 222, 227, 255, 257, 276, 291 and 293 were

likewise associated with the split of two distinct branches; (i) one

containing the older samples including prototypes (CH18537 and

Sw860) and non-circulating genotype JA1 and, (ii) other

containing the remaining genotypes (SAB1, SAB2, SAB3 and

GB3) (Fig. 2).

However, perhaps the most notable observation of this analysis

was that 18 of the total of the 55 putatively positively selected sites

in HSRVA and B tended to revert, in time, to a previous codon

state, indicative of a reversible (i.e., ‘‘flip-flop’’) pattern of amino

acid replacement (shown in bold in Table 1 and 2, Fig. 1 and 2).

Eleven of these 18 reversible sites in RSVA and RSVB were found

to be positive selected under the most sensitive model

(MG94xHKY85x3_4x2Rates model) but most by more than one

models and by at least one model. Strikingly, such reversible

evolution occurred at nine sites independently in both HRSVA and

in HRSVB, although two sites in each virus group experienced

reversal without detectable positive selection. For example, site

290 in GA2 genotype reverted from Leu to Pro five times along

the tree (Table 1 and Fig. 1 and 3). Similarly, in some HRSV B

genotypes (GB3 with insertion, GB3 and SAB3) site 219 reverted

from Leu to Pro seven times along the tree (Table 2, Fig. 2 and 4).

Discussion

The Brazilian isolates of G protein sequences of HRSV A and B

demonstrated remarkable genetic flexibility, as noted previously at

the global scale [33,48,49,50,51,52]. Such a high level of genetic

variation may be associated with the fact the G protein plays a key

role in facilitating reinfections in HRSV – allowing evasion from

cross-protective immune responses – and hence in the fluctuating

patterns of viral circulation. As a consequence, describing the

complex patterns of amino acid change in both HRSVA and

HRSVB over time may help understand the evolution and

epidemiology of this important virus.

Our analysis revealed that the ectodomain of the G protein was

subject to strong positive selection, with 29 positively selected

amino acid sites in HRSVA and 23 amino acid sites in HRSVB.

The action of positive selection at these sites was also strongly

supported since 18 of the 52 putatively positive selected sites were

detected using all three forms of dN/dS analysis. Only 5 of the 29

positively-selected sites in HRSVA have described previously (215,

225, 226, 256, 274 and 290) [10,53,54]. Possibly, this difference is

due to the far larger data set available here and/or use of different

analytical methods. Further, many of the positively selected sites in

group A defined genotypes and lineages within genotypes, and

correlated well with known epitopes described in escape-mutants

selected with specific Mabs (sites 226, 237, 265, 274, 275, 284, 286

and 290) [25,49,51] or in natural isolates (sites 215, 225, 226, 265,

280, and 293) [13,25,46]. It is interesting to note that three of these

sites (226, 265, 290) defined genotypes and underwent frequent

reversals (Fig. 1). Site 237 was unique among positively selected

sites in group A in that it had a residue – Asn – with the potential

for N-glycosylation [14]. Moreover, six positively selected sites

(225, 227, 253, 269, 275, 287) were previously described to have

O-linked side chains [1]. The frequency and pattern of

glycosylation were important in defining the antigenicity of the

G protein, either by masking antigenic sites or by recognition of

specific antibodies [55,56]. Less is known about the effects of

amino acid replacements at other sites (222, 227, 230, 243, 246,

248, 249, 272, 279, 285 and 292), although they were located close

together to some of the epitopes involving in neutralizing the virus

(Fig. 3). Moreover, we observed differences in the length of the G

protein due to a stop codon mutation at site 298, and which was

associated with the split of the tree in different branches. In GA5,

Gln298 was maintained but changed to a stop codon (Gln298Stop)

in both GA1 and the lineages leading to all other genotypes GA2,

GA3, GA4, GA6 and GA7. Interestingly, the stop codon at 298

reverted to Trp in the GA2 branch that contains the most recent

isolates. This reflects amino aid replacements involved in the

presentation or elimination of multiple epitopes containing the

three last residues of the G protein (i.e., 296 to 298 C-terminal)

[57].

Although epitopes in HRSVB are not well characterized,

important differences in protein length between Brazilian strains

were observed (295 or 299 amino acids), due to differences in the

occurrence of the final stop codon (site 293). It was suggested that

this region presents an epitope, substitutions in which would

abolish the recognition of the G protein by strain specific

quadrilateral . and the Br I by pink quadrilateral ,. The Fr II is indicated by blue circle . and the Br by blue circle ,. The Fr III is indicated by green
circle . and the Br by green circle ,. The Fr IV is indicated by violet triangle . and the Br by violet triangle,. The Fr V is indicated by orange
quadrilateral . and the Br by orange quadrilateral ,. The Fr VI is indicated by red triangle . and the Br by red triangle ,The Fr VII is indicated by
green triangle . and the Br VII by green triangle ,. The Fr VIII is indicated by gray circle . and the Br VIII by gray circle ,. The Fr IX is indicate by dark
green quadrilateral . and the Br IX by dark green quadrilateral ,.
doi:10.1371/journal.ppat.1000254.g002
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Table 1. Twenty-nine codon-sites under positive selection in the G gene of HRSVA including nine flip-flop sites (shown in Roman
numerals) that were mapped in viral genealogy shown in Figure 1A, using three methods (Bayes factor .20 and p-value,0.05).

HRSVA

Flip-flops1 aa position Number of events Change MG94XHKY85 SLAC FEL

215 – Leu Pro * * *

222 – Pro Ser *

I 225 – Val *

FrI Val:Ala 1 Ala *

BrI Ala:Val

II 226 –Pro * * *

Fr II Pro:Leu 1 Leu

Br II Leu:Pro

227 – Thr Ala, Ile, Pro, Ser * *

230–Pro Ser,Leu,Thr * *

237– Asn His, Ser, Asp, Lys, Tyr * *

III 238 – Thr * * *

Fr III Thr:Ile 4 Ile, Ala

Br III Ile:Thr

243 –Ile Thr, Asn * * *

246 –Thr Ile, Met * * *

248 –Leu Phe, His, Val, Phe, Ile, Pro *

249 – Thr Ala, Ile, Asn, Ser * * *

253 –Thr Ala,, Ile *

IV 256 –Pro * * *

Fr IV Pro:Leu 4 Leu

Br IV Leu:Pro

V 265 –Phe *

Fr V Phe:Leu 2 Leu

Br V Leu:Phe

269 –Ser Thr *

VI 272 –Gly Asp, Val, Ser * * *

Fr VI 274 – Leu Pro, Thr *

Br VI Leu:Pro 2

Pro:Leu

275 –Ser Gly, Ile, Asn, Arg * *

VII 279 – Val * *

Fr VII Val:Ile 1 Ile, Phe

Br VII Ile:Val

280 –Ser Tyr * *

284 –Glu Gly, Lys * * *

285 – Tyr or His Asp, Phe, Asn, Ser * *

VIII 286 – Pro Leu *

Fr VIII Pro:Leu 1

Br VIII Leu:Pro

287 – Ser Leu, Pro * * *

289 –Pro Ser * *

IX 290 – Ser *

Fr IX Pro:Leu 6 Pro, Leu

Br IX Leu:Pro

292 – Pro Thr, Ser * *

293 – Pro Ser * *

1Fr- Forward replacements/Br – Backward replacements.
Sites detected by three methods are indicated by *.
doi:10.1371/journal.ppat.1000254.t001
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antibodies [50,54]. Moreover, the change at site 293 (stop

codon:Gln) divided the tree in two distinct branches, one that

included the ancient non-circulating strains and the other that

included the recent strains. In almost all the Brazilian HRSV GB3

with insertion strains isolated in 2005 we observed an evolutionary

‘‘flip-flop’’ between a glutamine at site 293 and a stop codon,

Table 2. Twenty-three codon-sites under positive selection in the G gene of HRSVB that were mapped in viral genealogy shown in
Figure 1B, using three methods (Bayes factor .20 and p-value,0.05).

HRSVB

Replacements1 aa position Number of events Changes MG94XHKY85 SLAC FEL

216 – Pro Ser * * *

I 219 – Pro * * *

Fr I Pro:Leu 7 Leu, Ser * *

Br I Leu:Pro

222 - Met Thr, Ala * *

224 – Lys Arg, Thr * *

II 227 – Ile * * *

Fr II Ile:Thr 2 Thr * *

Br II Thr:Ile

233 – Lys Arg, Glu *

III 235 – Pro * * *

Fr III Pro:Leu 1 Leu

Br III Leu:Pro

IV 237 – Leu Pro * * *

Fr IV Pro:Ser 3 Pro:Ser * * *

Br IV Ser:Pro

242 –Arg Gly *

246- Thr Ile *

247 – Ser Pro * * *

V 255 –Ile Thr * * *

Fr V Thr:Ala 1 Thr:Ala

Br V Ala:Thr

VI 257 – Pro * * *

Fr VI Pro:Ser 1 Ser

Br VI Ser:Pro

258 – Lys Asp, Asn, Gly * *

269" – Ser Leu, Pro, Phe * * *

VII 270" – Thr Ile * *

Fr VII Thr:Ile 2

Br VII Ile:Thr

285(265) – Ser Phe, Pro, Thr, Tyr * * *

VIII 286 (266) – Leu * *

Fr VIII Leu:Pro 1 Pro

Br VIII Pro:Leu

297 (277) – Ser Phe * * *

305 (285) –Glu Asp, Lys *

306 (286) –Pro Leu *

311 (291) –Pro Ser * * *

IX 313 (293) – Stop * *

Fr IX Stop: Gln 5 Gln

Br IX Gln :Stop

"Sites inside the 60 nt insertion. Positions between parentheses are position in sequences that do not have the 60 nt insertion. Sites 233, 246 and 275 were detected as
being under elevated dN/dS, but show only apical changes in the tree and were excluded.

1Fr- Forward replacements/Br – Backward replacements.
Sites detected by three methods are indicated by *.
doi:10.1371/journal.ppat.1000254.t002
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leading to a predicted G protein of 312 amino acid in length.

Remarkably, other sites experienced similar reversals, such as

amino acids 219, 227, 237 and 257, which defined new genotypes,

suggesting that there are a limited number of amino acid residues

at this site that allow successful virus attachment glycoprotein.

Indeed, HRSV escape mutants that differ in their last 81 residues

from the canonical Long prototype protein sequence, retain their

compositions and hydropathy profiles [25], strongly suggesting

that there may be indeed structural restrictions to changes in the G

protein, although this will need to be investigated further. Finally,

positively selected sites located in the 20 amino acid duplicated

region of the gene, and immediately upstream of it may influence

the expression of some important epitopes. For example, the

additional O-linked glycosylation residues in both the insertion

and duplication regions probably confers advantage of this new

variant over the other HRSVB genotypes. Of the 23 positively

Figure 3. Graphical representation of the third C-terminal hypervariable region of HRSVA G [Long strain], showing a partial
antigenic map. The amino acid changes associated with epitope loss in natural isolates and in escape mutants selected with specific Mabs are
indicated by arrows [4,15,24,40]. The positions, relative to the Long strain, of codons with evidence of positive selection that also experienced
evolutionary reversals are shown by Roman numbers and coloured arrows.
doi:10.1371/journal.ppat.1000254.g003

Figure 4. Graphical representation of the third C-terminal hypervariable region of HRSVB G (CH18537). The positions of the first amino
acid in the amplicon and that for the insertion are shown in relation to the CH18537 isolate. The codon positions of sites with evidence of positive
selective pressure that also experienced evolutionary reversals are indicated by Roman numbers and by coloured arrows.
doi:10.1371/journal.ppat.1000254.g004
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selected sites in HRSVB, only five were described previously by

Zlateva et al. 2005 (sites 219, 237, 247, 257 and 258) and, two by

Woelk and Holmes, 2001 (sites 227 and 257). Consequently,

HRSV appears to be subject to far greater positive selection

pressure than previously realized.

Our data also identified amino acid sites under positive selection

sharing positional homology in the two groups. For example, 11

positively selected sites in HRSVA (215, 226, 246, 256, 265, 274,

275, 284, 285, 290 and 292) had positional homologues in

HRSVB (216, 227, 247, 257, 266, 275, 276, 285, 286, 291 and

293). Some of these sites are known to harbor epitopes in HRSVA

(215, 226, 265, 275, 284 and 290). Moreover, some sites were

important in defining lineages in the phylogenetic tree, such as

sites 215, 265, 274, 286 and 290, specific to prototypes and non-

circulating GA1 genotypes and site 226 defining the GA2

genotype. Less is known about epitopes in HRSVB, but sites

227, 257, 276, 291 and 293, under positive selection, were

associated with the major division of the HRSVB phylogenetic

tree into two branches.

The most interesting observation from this analysis was that

both HRSVA and HRSVB experienced frequent evolutionary

reversals of amino acids at positively-selected sites Tables 1 and 2,

Figs. 1 and 2), which in turn mapped to known and possibly newly-

described epitopes (Figs. 3 and 4). That most of the sites

experiencing this ‘‘flip-flop’’ evolutionary pattern were also under

positive selection strongly suggests that they reflect the fluctuating

dynamics in the immune status of human populations, in which

patterns of cross-protective immunity ebb and wane. To be more

specific, the build-up of lineage-specific resistance in the host

population would drive the process of positive selection in key

immunological epitopes. Later, following the loss of herd

immunity to the previous viral epitope, coupled with constraints

which mean that only a limited number of amino acids are

functionally viable, a reversion mutation would be fixed by positive

selection in a newly susceptible human population. In sum, the

frequent evolutionary reversals observed in the G protein of

HRSV are a necessary consequence of a limited set of possible

replacements at HRSV epitopes. Without such a constraint on the

repertoire of functionally viable amino acids we would expect to

see a gradual diversification at these sites rather than frequent

reversals. This model agrees well with the spacing of temporal

events observed in both viral phylogenies, supporting the notion

that reversible evolution may contribute to the escape from the

human population immune response, thereby facilitating viral

transmission. A clearer understanding of the determinants of the

evolutionary reversals within the G protein could ultimately lead

to a better understanding of the viral immune-escape repertoire

and assist in the control of HRSV.
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Edimo G. de Lima.

Author Contributions

Conceived and designed the experiments: VFB PMdAZ AEG SEV TCTP

ELD. Performed the experiments: VFB MU EA KES TCTP JRRP ELD.

Analyzed the data: VFB PMdAZ EM. Contributed reagents/materials/

analysis tools: VFB PMdAZ MU EA AEG SEV KES TCTP LFJ

MIdMCP JRRP OAS ELD. Wrote the paper: VFB PMdAZ ECH.

Coordinated the Viral Genetic Diversity Network (VGDN) program n

Brazil that generated the study: PMdAZ. Collected pediatric samples: MU

EA AEG SEV. Organized sample collecting activities over 11 consecutive

HRSV seasons (1995–2006): KES. Coordinated the VGDN program: LFJ

MIMCP EM. Coordinated the HRSV task in the VGDN program: ELD.

References

1. Collins PL, Chanock RM, Murphy BR (2001) Respiratory syncytial virus, In

Kinipe DM, Howley PM, Griffin DE, Lamb RA, eds. Philadelphia, Pa:

Lippicncott Williams and Eilkins. pp 1443–1485.

2. Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE (2005) Respiratory

syncytial virus infection in elderly and high-risk adults. New England Journal of

Medicine 52(17): 1749–59.

3. Ison MG, Hayden FG (2002) Viral infections in immunocompromised patients:

what’s new with respiratory viruses? Curr Opin Infect Dis 15: 355–367.

4. Anderson LJ, Hierholzer JC, Tsou C, Hendry RM, Fernie BF, et al. (1985)

Antigenic characterization of respiratory syncytial virus strains with monoclonal

antibodies. J Infect Dis 151: 626–633.
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11. Zlateva KT, Lemey P, Moës E, Vandamme AM, Van Ranst M (2005) Genetic

variability and molecular evolution of the human respiratory syncytial virus

subgroup B attachment G protein. J Virol 79(14): 9157–67.

12. Cane PA, Thomas HM, Simpson AF, Evan JE, Hart CA, et al. (1996) Analysis

of human serological immune response to a variable region of the attachment

(G) protein of respiratory syncytial virus during primary infection. J Med Virol

48: 253–261.

13. Cane PA (1997) Analysis of linear epitopes recognized by the primary human

antibody response to a variable region of the attachment (G) protein of

respiratory syncytial virus. J Med Virol 51: 297–304.

14. Johnson PR, Spriggs MK, Olmsted RA, Collins PL (1987) The G glycoprotein

of human respiratory syncytial virus of subgroups A and B: extensive sequence

divergence between antigenically related proteins. Proc Natl Acad Sci USA 84:

5625–29.

15. Johnson PJ, Olmsted RA, Prince GA, Murphy BR, Alling DW, et al. (1987)

Antigenic relatedness between glycoproteins of human respiratory virus

subgroup A and B: evaluation of the contribution of F and G glycoproteins to

immunity. J Virol 61: 3163–3166.

16. Teng MN, Whitehead SS, Collins PL (2001) Contribution of the respiratory

syncytial virus G glycoprotein and its secreted and membrane-bound forms to

virus replication in vitro and in vivo. Virology 289: 283–296.

17. Sullender WM (2000) Respiratory syncytial virus genetic and antigenic diversity.

Clin Microbiol Rev 13: 1–15.

18. Melero JA, Garcı́a-Barreno B, Martı́nez I, Pringle CR, Cane PA (1997)

Antigenic structure, evolution and immunobiology of human respiratory

syncytial virus attachment (G) protein. J Gen Virol 78: 2411–2418.

HRSV Evolutionary Reversals

PLoS Pathogens | www.plospathogens.org 10 January 2009 | Volume 5 | Issue 1 | e1000254



19. Sullender WM, Mufson MA, Anderson LJ, Wertz GW (1991) Genetic diversity

of the attachment protein of subgroup B respiratory syncytial virus. J Virology

65: 5425–34.

20. Vieira SE, Stewien KE, Durigon EL, Török TJ, Anderson LJ, et al. (2001)

Clinical patterns and seasonal trends in respiratory syncytial virus hospitaliza-

tions in São Paulo, Brazil. Rev Inst Med Trop S Paulo 43: 125–31.

21. Zheng H, Peret TC, Randoph VB, Crowley JC, Anderson LJ (1996) Strain-

Specific Reverse Transcriptase PCR Assay: Means to Distinguish Candidate

Vaccine from Wilde-Type Strains of Respiratory Syncytial Virus. J Clin

Microbiol 34: 334–7.

22. Choi EH, Lee HJ (2000) Genetic diversity and molecular epidemiology of the G

protein of subgroups A and B of respiratory syncytial virus isolated over 9

consecutive epidemics in Korea. J Inf Disease 181: 1547–56.

23. Frabasile S, Delfaro A, Facal L, Videla C, Galiano M, et al. (2003) Antigenic and

genetic variability of human respiratory syncytial virus (group A) isolated in

Uruguay and Argentina: 1993–2001. J Med Virol 71: 305–12.

24. Galiano MC, Palomo C, Videla CM (2005) Genetic and antigenic variability of

human respiratory syncytial virus groups A and B isolated over seven

consecutive seasons in Argentina (1995–2001). J Clin Microbiol 43: 2266–2273.

25. Garcia O, Martin M, Dopazo J, Arbiza J, Frabasile S, et al. (1994) Evolutionary

pattern of human respiratory syncytial virus subgroup A: cocirculating lineages

and correlation of genetic and antigenic changes in the G glicoprotein. J

Virology 68: 5448–59.

26. Kuroiwa Y, Nagai K, Okit L, Yui I, Kase TNT, Tsutsumi H (2005) A

phylogenetic study of human respiratory syncytial viruses group A and B strains

isolated in two cities in Japan from 1980–2002. J Med Virol 76: 241–47.

27. Madhi SA, Venter M, Alexandra R, Lewis H, Kara Y, et al. (2003) Respiratory

syncytial virus associated illness in high-risk children and national characteriza-

tion of the circulating virus genotype in South Africa. J Clin Virol 27: 180–89.

28. Moura FEA, Blanc A, Frabasile S, Delfraro A, Sierra MJ, et al. (2004) Genetic

diversity of respiratory syncytial virus isolated during an epidemic period from

children of Northeastern Brazil. J Med Virol 74: 156–160.

29. Nagai K, Kamasaki H, Kuroiwa Y, Okita L, Tsutsumi H (2004) Nosocomial

outbreak of respiratory syncytial virus subgroup B variants with the 60

nucleotides-duplicated g protein gene. J Med Virol 74: 161–165.
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