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Abstract

Summary: ChIA-PET is rapidly emerging as an important experimental approach to detect chroma-

tin long-range interactions at high resolution. Here, we present Model based Interaction Calling

from ChIA-PET data (MICC), an easy-to-use R package to detect chromatin interactions from ChIA-

PET sequencing data. By applying a Bayesian mixture model to systematically remove random li-

gation and random collision noise, MICC could identify chromatin interactions with a significantly

higher sensitivity than existing methods at the same false discovery rate.

Availability and implementation: http://bioinfo.au.tsinghua.edu.cn/member/xwwang/MICCusage

Contact: michael.zhang@utdallas.edu or xwwang@tsinghua.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput sequencing technologies aiming to detect chroma-

tin interactions are rapidly developing these years. Among them,

ChIA-PET (Fullwood et al., 2009) can genome-widely detect chro-

matin interactions that are associated with the protein of interest. It

is suitable for studying physical interactions between regulatory

elements, such as enhancer–promoter interactions. However, ChIA-

PET experiment suffers from high levels of noises caused by chroma-

tin random collision events and random ligation in solution.

Therefore, it needs effective computational methods to process raw

ChIA-PET data.

Up to now, there are few tools in hand to deal with ChIA-PET

data. ChIA-PET tool (Li et al., 2010) is the first one freely available

to the public, which combines P-values from hyper-geometric test

and an arbitrary and strict threshold for no less than 3 Paired-end

tags (PETs) to identify chromatin interactions. However, this strat-

egy does not consider random collision noise, and the cut-off for

PET-count may result in losing some relatively weaker but non-

random interactions. Recently, another method called ChiaSig

(Paulsen et al., 2015) tries to take chromatin random collision events

into account. The authors showed an improvement than ChIA-PET

tool by comparing with 5C data. However, ChiaSig is much too

conservative, thus suffers from high false negative rate. Here we pre-

sent MICC, an easy-to-use R package to process ChIA-PET data. It

aims to detect chromatin interactions at a high sensitivity while con-

trolling false discovery rate (FDR) at a reasonable level. The input of

MICC is raw PET clusters derived from ChIA-PET data. The final

output of MICC includes: (i) a list of posterior probabilities that de-

scribe the PET clusters as true interaction clusters and (ii) the corres-

ponding FDR. MICC can always detect significantly more

interactions than ChIA-PET tool and ChiaSig at the same FDR on

different datasets. The interactions detected by MICC are also more

consistent between biological replicates.

2 Methods

Detailed description of MICC method could be found in supplemen-

tary methods. Here we briefly describe the principles. We first used

self-ligation PETs to call protein binding peaks and set them as an-

chor regions. Then inter-ligation PETs linking anchor regions were

grouped as PET clusters. For the sake of simplicity, from here on,

the phrase PET mentioned later is only referred to inter-ligation

PET. To infer a PET cluster (A, B), where A and B are two anchor

regions linked by at least one PET, to be a True interaction PET
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cluster (TiPC), a Random collision PET cluster (RcPC) or a Random

ligation PET cluster (RlPC), we used three types of features: (i)

PET-count cAB between anchor regions A and B, (ii) total PET-count

cA ðcBÞ in anchor region A (B) and (iii) genomic distance dAB be-

tween anchor regions A and B (dAB ¼ þ1 if A and B are in different

chromosomes). If (A, B) is an RlPC, cAB is modeled to follow a

hyper-geometric distribution (Li et al., 2010). If (A, B) is a TiPC or

RcPC, we modeled it as a discrete Pareto distribution, i.e. Zeta dis-

tribution (Jessen and Winter, 1935) since cAB follows power-law

when cAB is sufficiently large (cAB�3) (Supplementary Fig. S1). The

parameters of the Zeta distributions depend on dAB (Supplementary

Fig. S2) and we set it as a quadratic fractional function. It is noticed

that logðcAcBÞ is significantly larger for reproducible PET 3þ clus-

ters between replicates than that of those non-reproducible ones

(Supplementary Fig. S3). Thus we used cA and cB as features to esti-

mate the prior probability of an RcPC. The feature dAB is then used

to describe the prior probability for observing an RlPC to filter out

random ligation noise (Supplementary Fig. S4). The full model con-

sists of three components, each of which is the conditional probabil-

ity distribution of PET-count for TiPC, RcPC and RlPC,

respectively. The prior probability and parameters for each compo-

nent can be described by total PET-count in anchor regions and the

genomic distance between two anchors.

3 Application examples and comparison
with previous methods

We applied MICC on K562 Pol2 ChIA-PET data (Li et al., 2012).

First, we checked the performance to recover interactions detected

in higher-depth sequencing libraries from lower-depth sequencing

libraries between MICC and ChIA-PET tool (ChiaSig was not

included in this comparison as it detected much less interactions).

The lower-depth data were selected by randomly sampling 50%

PETs from each replicate for 100 times. For each higher-depth data,

interactions identified by both MICC and ChIA-PET tool were

defined as the total interaction set. As is shown in Figure 1A and

Supplementary Figure S5, top-ranked predictions by ChIA-PET tool

and MICC recovered similar amount of high-confidence inter-

actions, but MICC detected more true positives from weaker signals.

This suggests that MICC can give a more consistent performance be-

tween lower-depth and higher-depth sequencing libraries.

Next, the reproducibility between biological replicates was com-

pared among MICC, ChIA-PET tool and ChiaSig. We evaluated re-

producibility by overlapping top-ranked interactions from two

replicates for these methods. Inter-chromosomal PET clusters were

removed at first since ChiaSig could not deal with them. Again,

MICC shows the best performance, while reproducibility between

two replicates decreases very quickly for ChiaSig (Fig. 1B). These

observations suggest that MICC can remove ChIA-PET noises in a

more consistent way, thus improve the reproducibility between bio-

logical replicates.

Lastly, we made a further comparison between ChiaSig and

MICC by overlapping with 5C results, since ChiaSig paper (Paulsen

et al., 2015) showed that the method gives more precise results than

ChIA-PET tool by comparing with 5C data (Amartya et al., 2012).

Here PET clusters were derived from the original ChiaSig paper,

which mixed two replicates of K562 Pol2 ChIA-PET data. For both

methods, we used FDR 0.05 to call significant interactions. Among

267 MICC significant interactions that overlap with 5C anchors at

both ends, 53 can be validated by 5C significant interactions. For

ChiaSig, there is only 9 interactions can be validated by 5C while

the number of ChiaSig significant interactions that overlap with 5C

anchor regions at both ends is 41. The fraction of 5C validated inter-

actions is very similar between the two methods (P-value¼0.834),

but MICC can call significantly more interactions

(P-value¼2.82e�10) (Fig. 1C). Furthermore, we checked the sig-

nificance of MICC called PET 2-clusters (PET clusters with one or

two PETs) that overlap with 5C significant interactions. There are

24 MICC called significant interactions with PET-count less than 3

that can be validated by 5C data. This number is significantly higher

than that of the randomly sampled PET 2-clusters (P-value¼0.002,

Supplementary Fig. S6). It suggests that many of MICC detected

weaker interactions are likely true interactions.

Comparisons on MCF7 ER ChIA-PET data (Fullwood et al.,

2009) also showed MICC gave the best performance.

(Supplementary Fig. S7, S8).

4 Discussion

We proposed a new method, MICC, to call significant chromatin

interactions from ChIA-PET data. Compared with ChIA-PET tool,

MICC recovered a significantly greater fraction of interactions de-

tected in higher-depth sequencing library using a much lower-depth

sequencing library. It also gives a more consistent ranking for the

PET clusters, thus can improve the reproducibility between experi-

mental replicates. By comparing with 5C data, we showed that

MICC can detect significantly more validated interactions than

ChiaSig. Besides, the interactions with low PET-count detected by

Fig. 1. (A) Average fraction of interactions in two original sequencing libraries from lower-sampled libraries (average of 100 times). (B) Fraction of interactions

overlapped between top-ranked interactions from two Pol2 ChIA-PET replicates detected by ChIA-PET tool, ChiaSig and MICC, respectively. (C) Fraction of ChIA-

PET interactions validated by 5C (left), and fraction of total 5C validated ChIA-PET interactions that are predicted by either computational methods (right)
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DISCUSSION


MICC have a significant fraction of overlapping with 5C data, sug-

gesting MICC is feasible to search for weak interactions. These fea-

tures make MICC superior over other existing tools especially when

processing ChIA-PET data with less sequencing depth.
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