
Hindawi Publishing Corporation
Journal of Biomedicine and Biotechnology
Volume 2008, Article ID 518093, 10 pages
doi:10.1155/2008/518093

Research Article
Fast Parallel Molecular Algorithms for
DNA-Based Computation: Solving the Elliptic Curve
Discrete Logarithm Problem over GF(2n)

Kenli Li,1, 2 Shuting Zou,1 and Jin Xv2

1 Embedded System and Networking Laboratory, College of Computer and Communication, Hunan University,
Changsha 410082, China

2 Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Correspondence should be addressed to Shuting Zou, zst991221@163.com

Received 16 July 2007; Accepted 25 January 2008

Recommended by Daniel Howard

Elliptic curve cryptographic algorithms convert input data to unrecognizable encryption and the unrecognizable data back again
into its original decrypted form. The security of this form of encryption hinges on the enormous difficulty that is required to solve
the elliptic curve discrete logarithm problem (ECDLP), especially over GF(2n), n ∈ Z+. This paper describes an effective method to
find solutions to the ECDLP by means of a molecular computer. We propose that this research accomplishment would represent a
breakthrough for applied biological computation and this paper demonstrates that in principle this is possible. Three DNA-based
algorithms: a parallel adder, a parallel multiplier, and a parallel inverse over GF(2n) are described. The biological operation time
of all of these algorithms is polynomial with respect to n. Considering this analysis, cryptography using a public key might be
less secure. In this respect, a principal contribution of this paper is to provide enhanced evidence of the potential of molecular
computing to tackle such ambitious computations.

Copyright © 2008 Kenli Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

This paper proposes theoretical work that introduces pow-
erful algorithms of molecular computation that could po-
tentially compromise the security that is afforded by cer-
tain cryptography algorithms. Molecular computation [1]
involves biochemistry and DNA rather than silicon chips to
tackle formidable computations. Theoretical aspects of this
interdisciplinary field are important to develop the potential
and interest in this form of computation [2].

Elliptic curve cryptography (ECC) is a mathematical ap-
proach to public key cryptography using elliptic curves that
are typically defined over finite fields [3]. Elliptic curves [4, 5]
constitute a major area of current research that is particularly
important to number theory, for example, elliptic curves had
a role in the recent proof of Fermats last theorem. As ap-
plied to cryptography, not only has ECC become applied in
Diffie-Hellman key exchange but also in the digital signature
algorithm (DSA), a US federal government standard for digi-
tal signatures. It is known as the elliptic curve DSA (ECDSA)
or that variant of the DSA operating on elliptic curve groups.

The security of these cryptosystems relies on the diffi-
culty of solving the elliptic curve discrete logarithm problem
[6, 7]. If P is a point with order m on an elliptic curve, and
Q is some other point on the same curve, then the elliptic
curve discrete logarithm problem is to determine an l such
that Q = lP, where l is an integer and 0 ≤ l ≤ m − 1. If this
problem can be solved efficiently, then elliptic curve-based
cryptosystems can be broken efficiently.

In order to tackle such a problem, Feynman proposed
molecular computation in 1961 [8]. However, his idea was
not implemented experimentally for some decades. In 1994,
Adleman succeeded in solving an instance of the Hamilto-
nian path problem in a test tube, simply by the manipulation
of DNA strands [1]. Following this, Lipton demonstrated
that the Adleman techniques offered a solution to the sat-
isfiability problem (the first considered NP-complete prob-
lem) [9].

Recent advances in molecular biology [10, 11] have made
it possible to produce roughly 1018 DNA strands in a test
tube. Those 1018 DNA strands can be made to represent
1018 bits of information. In a distant future, if biological

mailto:zst991221@163.com

2 Journal of Biomedicine and Biotechnology

operations may be run error free using a test tube with 1018

DNA strands, then it would be possible to process 1018 bits of
information simultaneously. More details about test tube dis-
tributed systems are given in [2]. The objective for biological
computing technology is to provide this enormous amount
of parallelism for dealing with computationally intensive real
world problems [12–14].

Advancement in DNA computing has already been made
in many areas. In the field of cryptology, Boneh et al. have
cracked DES using identical principles to those of Adle-
man’s solution of the travelling salesman problem. Also,
Chang et al. have developed a way to factor integers. They
proposed three DNA-based algorithms: parallel subtractor;
parallel comparator; and parallel modular arithmetic unit
[15, 16].

In this paper, we take a step further with respect to
Chang’s work [16] in order to solve the elliptic curve discrete
logarithm problem. We develop DNA-based algorithms for
a parallel adder; a parallel multiplier; a parallel divider over
GF(2n) (i.e., a Galois field of characteristic 2); and a paral-
lel adder for adding points on elliptic curves. We accomplish
all of these by means of basic biological operations. We also
showed that cryptosystems based on elliptic curves can be
broken. Our work presents clear evidence of molecular com-
puting abilities to accomplish complex mathematical opera-
tions.

The paper is organized as follows. Section 2 gives a brief
background on DNA computing. Section 3 introduces the
DNA computing that solves the elliptic curve discrete loga-
rithm problem, for solution spaces of DNA strands. Conclu-
sions are drawn in the final section.

2. BACKGROUND

DNA (DeoxyriboNucleic Acid) is the molecule that plays the
main role in DNA-based computing. DNA is a polymer,
which is strung together from monomers called deoxyri-
boNucleotides. Distinct nucleotides are detected only with
their bases, which come in two sorts: purines and pyrim-
idines. Purines include adenine and guanine, abbreviated A
and G. Pyrimidines contain cytosine and thymine, abbrevi-
ated C and T. A DNA strand is essentially a sequence (poly-
mer) of four types of nucleotides detected by one of four
bases they contain. Two strands of DNA can form (under
appropriate conditions) a double strand, if the respective
bases are the Watson-Crick complements of each other—A
matches T and C matches G. Hybridization is a special tech-
nology term for the pairing of two single DNA strands to
make a double helix and also takes advantages of the speci-
ficity of DNA base pairing for the detection of specific DNA
strands (for more discussions of the relevant biological back-
ground, refer to [10, 11]).

In the past decade, there have been revolutionary ad-
vances in the field of biomedical engineering, particularly in
recombinant DNA and RNA manipulating. Due to the in-
dustrialization of the biotechnology field, laboratory tech-
niques for recombinant DNA and RNA manipulation are be-
coming highly standardized. Basic principles about recom-
binant DNA can be found in [17–20]. In the following, we

describe five biological operations that are useful for solving
the elliptic curve discrete logarithm problem.

A (test) tube is a set of molecules of DNA (a multiset of
finite strings over the alphabet {A,C,G,T}). Given a tube,
one can perform the following operations.

(1) Extract. Given a tube P and a short single strand of
DNA, S, the operation produces two tubes +(P, S) and
−(P, S), where +(P, S) is all of the molecules of DNA
in P which contain S as a substrand and −(P, S) is all
of the molecules of DNA in P which do not contain S.

(2) Merge. Given tubes P1 and P2, yield ∪(P1,P2), where
∪(P1,P2) = P1 ∪ P2. This operation is to pour two
tubes into one, without any change in the individual
strands.

(3) Amplify. Given a tube P, the operation Amplify
(P,P1,P2), will produce two new tubes P1 and P2 so
that P1 and P2 are totally a copy of P (P1 and P2 are
now identical) and P becomes an empty tube.

(4) Append. Given a tube P containing a short strand of
DNA Z, the operation will append Z onto the end of
every strand in P.

(5) Append-head. Given a tube P containing a short strand
of DNA, Z, the operation will append Z onto the head
of every strand in P.

3. FINDING THE DISCRETE LOGARITHM
ON ELLIPTIC CURVE OVER GF (2n)

3.1. Elliptic curve public key cryptosystem over GF(2n)

An elliptic curve is defined to be the set of solutions (x, y) ∈
GF(2n)×GF(2n) to the equation

y2 + xy = x3 + ax2 + b, (1)

where a, b ∈ GF(2n) and b /= 0, together with the point
on the curve at infinity O, (with homogeneous coordinates
(0, 0)).

The points on an elliptic curve form an Abelian group
under a well-defined group operation. The identity of the
group operation is the point O. For P = (x1, y1) a point on
the curve, we define −P to be (x1, y1 + x1), so P + (−P) =
(−P)+P = O. Now suppose P and Q are not O, and P /= −Q.
Let P be as above and Q = (x2, y2), then P + Q = (x3, y3),
where

x3 = μ2 + μ + x1 + x2 + a,

y3 = μ(x1 + x3) + x3 + y1,

μ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y2 + y1

x2 + x1
if P /= Q,

x2
1 + y

x1
if P = Q,

(2)

(refer to [21]).
In this paper, for convenience, use bn−1bn−2 · · · b1b0 to

denote the value of bn−1ωn−1 + bn−2ωn−2 + · · · + b1ω + b0

over GF(2n).

Kenli Li et al. 3

(1) For j = 0 to n− 1
(1a) T1 = +(T0, x1

p+ j) and T2 = −(T0, x1
p+ j)

(1b) T3 = +(T1, x1
q+ j) and T4 = −(T1, x1

q+ j)
(1c) T5 = +(T2, x1

q+ j) and T6 = −(T2, x1
q+ j)

(1d) T7 = ∪(T4,T5) and T8 = ∪(T3,T6)
(1e) Append (T7, x1

r+ j) and Append (T8, x0
r+ j)

(1f) T0 = ∪(T7,T8)
EndFor

EndProcedure

Algorithm 1: Procedure ParallelAdder (T0,n, p, q, r).

Let E be an elliptic curve defined over GF(2n), and let
G ∈ E be a fixed and publicly known point. The receiver B
chooses a randomly and publishes the key aG, while keeping
a itself secret. To transmit a message m to B, user A chooses
a random integer k and sends the pair of points (kG,Pm +
k(aG)). To read the message, B multiplies the first point in
the pair by his secret a, and then subtracts the result from the
second point in the pair. So, if a breaker can compute a from
public key G and aG, he can decrypt any encryption sent to
B (refer to [3]).

3.2. The construction of a parallel adder over GF(2n)

Over GF(2n), the additive operation on two numbers is just
doing XOR on each bit, respectively, without any carry. For
instance, (1101) + (1001) = (0100). For every bit xj , two dis-
tinct 15 base value sequences are designed. One represents
the value zero for xj and the other represents the value one
for xj . For convenience, we assume that x1

j denotes the value

of xj to be one and x0
j denotes the value of xj to be zero. The

following algorithm is used for parallel adding two n bits bi-
nary number in a strand with one starts from the pth bit and
the other one starts from the qth bit and appending the result
from rth bit (see Algorithm 1).

Consider that n = 3, p = 1, q = 4, and r = 7. That is, two
binary numbers to be added in parallel are both 3 bits, while
one from the 1st bit and the other one from the 4th bit in a
strand, and “append” operation starts from the 7th bit. We
then suppose, tube T0 = {110001, 010101, 001111, 100011}
which is regarded as an input tube for the algorithm Par-
allelAdder (T0,n, p, q, r). Because the value of n is 3, step
(1a) to step (1f) will be run 3 times. After the first ex-
ecution of step (1a) is finished, T1 = {110001, 100011}
and T2 = {010101, 001111}. Next, after the first execution
of step (1b) and step (1c) is performed, T3 = Φ, T4 =
{110001, 100011}, T5 = {010101, 001111}, and T6 = Φ,
while T0 = T1 = T2 = Φ. After first execution of step
(1d) is run, tube T7 = {110001, 010101, 001111, 100011} and
T8 = Φ. After first execution of step (1e) and step (1f) is run,
T0 = {1100011, 0101011, 0011111, 1000111}. Then, after the
rest operations are performed, the result of tube T0 is shown
in Table 1.

Lemma 1. The algorithm ParallelAdder (T0,n, p, q, r) is ap-
plied to finish the function of a parallel adder.

Table 1: Result of tube T0.

Tube The result is generated by ParallelAdder

T0 110001111, 010101111, 001111110, 100011111

Proof. The algorithm ParallelAdder (T0,n, p, q, r) is imple-
mented by means of the extract, merge, and append oper-
ations. Each execution of step (1a) is used to produce two
tubes T1 and T2, where all of the molecules of DNA in T1

contain x1
p+ j and all of the molecules of DNA in T2 contain

x0
p+ j . Each execution of step (1b) and step (1c) is used to pro-

duce four tubes T3, T4, T5, T6, where all DNA strands in T3

contain x1
p+ j and x1

q+ j , all DNA strands in T4 contain x1
p+ j

and x0
q+ j , all DNA strands in T5 contain x0

p+ j and x1
q+ j , and all

DNA strands in T6 contain x0
p+ j and x0

q+ j . According to the
additive theorem over GF(2n), the jth bit of the sum in T4

and T5 is 1 and the jth bit of the sum in T3 and T6 is 0.
From ParallelAdder (T0,n, p, q, r), it takes 3n extract op-

erations, 3n merge operations, 2n append operations, and 9
test tubes to finish parallel addition. A value sequence for ev-
ery bit contains 15 bases. Therefore, the algorithm will add
15n bases to all DNA strands in tube T0.

3.3. The construction of a parallel
multiplier over GF(2n)

Over GF(2n), the multiplicative operation runs as follows:
(
bn−1ω

n−1 + · · · + b1ω + b0
)(
b′n−1ω

n−1 + · · · + b′1ω + b′0
)

= bn−1ω
n−1(b′n−1ω

n−1 + · · · + b′1ω + b′0
)

+ · · · + b0
(
b′n−1ω

n−1 + · · · + b′1ω + b′0
)

= h2n−2ω
2n−2 + h2n−3ω

2n−3 + · · · + h2ω
2 + h1ω + h0,

h2n−2 = bn−1b
′
n−1,

h2n−3 = bn−1b
′
n−2 + bn−2b

′
n−1, . . . ,

hn−1 = bn−1b
′
0 + bn−2b

′
1 + · · · + b0b

′
n−1, . . . ,

h1 = b1b
′
0 + b0b

′
1,

h0 = b0b
′
0.

(3)

The algorithm ParallelMultiplier (T0,n, p, q) is used to
multiply two nbit binary numbers on every strand in par-
allel with one starts from the pth bit and the other one starts
from the qth bit. It runs as follows: at first, employ extract
operation to form two tubes: T1 and T2. The first tube T1

includes all of the strands on which xp = 1 and the second
tube T2 includes all of the strands on which xp = 0. Then,
we copy the bits from qth to (q + n − 1)th to the end of ev-
ery strand in tube T1 and append n bits 0 to the end of ev-
ery strand in tube T2. After these operations, the (q + n)th
bit to (q + n + n − 1)th bit show the coefficients of ω2n−2

to ωn−1. Using the same principle, we get the coefficients
of ω2n−3 to ωn−2, ω2n−4 to ωn−3, . . . ,ωn−1 to ω0. At last, call

4 Journal of Biomedicine and Biotechnology

algorithm ParallelAdder (T0,n, p, q, r) to compute the sum
of coefficients of ω2n−2, the sum of coefficient of ω2n−3, . . . ,
and so on. As a result, the length of every strand will increase
n× n + 2n− 1 bits.

From ParallelMultiplier (T0,n, p, q), it takes O(n2) ex-
tract operations, O(n2) merge operations, O(n2) append op-
erations, and O(1) test tubes to finish the function of a par-
allel multiplier.

3.4. The construction of a parallel shifter for
multiplicative result

Because over GF(2n), the exponent of ω cannot be beyond
n − 1, the result of parallel multiplying should be shifted
by a certain irreducible polynomial, called primitive poly-
nomial: ωn + bn−1ωn−1 + · · · + b1ω + b0 = 0 ⇔ ωn =
bn−1ωn−1 + · · · + b1ω + b0. The algorithm ParallelShifter
(T0,n, p), p representing that the multiplicative result starts
from the pth bit, is used to parallel shift the multiplicative
result b2n−2ω2n−2 + b2n−3ω2n−3 + · · ·+ b1ω+ b0 to legal form
bn−1ωn−1+bn−2ωn−2+· · ·+b1ω+b0 overGF(2n) which can be
designed as follows: appends the primitive polynomial’s co-
efficients from ωn−1 to ω0 to the end of every strand at first.
Employ the extract operation to form two test tubes T1 and
T2. Tube T1 includes all of the strands on which xp = 1 and
tube T2 includes all of the strands on which xp = 0. Then,
we add the coefficients, from item ω2n−3 to item ωn−2, to the
coefficients of irreducible polynomial in parallel in tube T1.
This forms the new coefficients from ω2n−3 to ωn−2 and has
deleted the ω2n−2 item. The coefficients from ωn−3 to ω0 are
without any change. For the T2 includes all of the strands
that have xp = 0, so just copy the coefficients from ω2n−3

to ω0 without any change. After all the executions before are
run, the highest exponent of ω is reduced to 2n − 3. Then,
merge T1 and T2 and begin new reduction. The principle of
rest reducing turn is all like this above. When this algorithm
is run out, the highest exponent of ω is reduced to n−1. This
algorithm will totally append n × n + (n − 1)(n − 2)/2 bits
more to every strand.

From ParallelShifter (T0,n, p), it takes O(n2) extract op-
erations, O(n2) merge operations, O(n2) append operations,
and O(1) test tubes to finish the function of a parallel shifter.

3.5. The mathematical principle of division on GF(2n)

Over GF(2n), to do a division operation for a dividend and
a divisor, one should get the divisor’s inverse first and then
multiply the dividend. For the primitive polynomial ωn +
bn−1ωn−1 + · · · + b1ω + b0 is irreducible, there exists a poly-
nomial g(ω) and a polynomial f (ω) that fit the equation (ac-
cording to Euclid algorithm):

g(ω)× divisor + f (ω)× (ωn+bn−1ω
n−1 +· · ·+b1ω+b0

)=1.
(4)

Because ωn + bn−1ωn−1 + · · · + b1ω + b0 = 0, g(ω) ×
divisor = 1, which is to say g(ω) is the inverse of the divi-
sor. To find g(ω) and f (ω), one can do as follows, which is
called Euclid algorithm, also called division algorithm; first,

(1) If (q − p > k − j) then
(1a) For m = 1 to q − p − (k − j)

(1a1) T3 = +(T0, x1
p+m−1)

(1a2) T1 = ∪(T1,T3)
EndFor

EndIf
(2) For m = q − (k − j)− p to q − p

(2a) T3 = +(T0, x1
p+m)

(2b) T4 = −(T3, x1
j+m−(q−p−k+ j))

(2c) T5 = −(T0, x1
p+m)

(2d) T6 = +(T5, x1
j+m−(q−p−k+ j))

(2e) T1 = ∪(T1,T4) and T2 = ∪(T2,T3,T6) and
T0 = ∪(T0,T5)

EndFor
EndProcedure

Algorithm 2: Procedure ParallelComparator (T0, p, q, j, k,T1,T2).

ωn +bn−1ωn−1 +· · ·+b1ω+b0 is divided by the divisor. If the
value of the remainder is 1, that is to say, (ωn + bn−1ωn−1 +
· · · + b1ω + b0) + g(ω) × divisor = 1 with g(ω) is the divi-
sion result and the inverse of divisor has found which is g(ω);
else let remainder be r(ω), let the divisor be the dividend and
r(ω) be the divisor and do division operation again. Repeat
the process until the remainder is 1. Because the highest ex-
ponent of ω of remainder reduces by 1 in each repeat, it is
at most repeating n − 1 times. So in the first time division,
the dividend is n + 1 bits and the divisor is n bits and the re-
mainder is at most n−1 bits, and in the second time division
the dividend is n bits and the divisor is n− 1 bits and the re-
mainder is at most n−2 bits, . . . , and in last time division the
dividend is 3 bits and the divisor is 2 bits and the remainder
is 1 bit. Then, trace back to get the g(ω).

3.6. The construction of a parallel comparator

Prior to each step of long division, comparison should be
done first. Suppose the divisor is n bits at that time. At first
compare the first two bits of dividend with divisor to deter-
mine that addition operation between first two bits of divi-
dend and divisor should be done or not, then compare the
first three bits of result with divisor, . . . , compare the first n
bits of result with divisor, the last time (finally), compare the
last n bits of result with divisor for this time the first bit of
result is 0. The following algorithm is used to compare the
divisor which is from pth bit to qth bit with the bits from jth
bit to kth bit in parallel, and forms tube T1 and T2. T2 con-
tains all strands on which add execution will be done and T1

contains all strands on which add execution will not be done
(see Algorithm 2).

Lemma 2. The algorithm Parallel Comparator (T0, p, q, j,
k,T1,T2) is applied to finish the function of parallel compara-
tor.

Proof. If q− p > k − j, that means the bits of divisor is more
than the bits of the result which are intended to compare this

Kenli Li et al. 5

(1) For j = 1 to n− 1
(1a) ParallelComparator (T0, p, p + n− 1, q + (j − 1)(n + 2), q + (j − 1)(n + 2) + j,T1,T2)
(1b) Append (T1, x0

q+n+1+(j−1)(n+2)) and Append (T2, x1
q+n+1+(j−1)(n+2))

(1c) For k = 0 to n
(1c1) T3 = +(T1, x1

q+(n+2)(j−1)+k) and T4 = −(T1, x1
q+(n+2)(j−1)+k)

(1c2) Append (T3, x1
q+ j(n+2)+k) and Append (T4, x0

q+ j(n+2)+k)
(1c3) T1 = ∪(T3,T4)

EndFor
(1d) ParallelAdder (T2, j + 1, q + (j − 1)(n + 2), p + n− j − 1, q + (n + 2) j)
(1e) For k = n− j down to 1

(1e1) T3 = +(T2, x1
q+(n+2) j−k−1) and T4 = −(T2, x1

q+(n+2) j−k−1)
(1e2) Append (T3, x1

q+(j+1)(n+2)−k−1) and Append (T4, x0
q+(j+1)(n+2)−k−1)

(1e3) T2 = ∪(T3,T4)
EndFor
(1f) T0 = ∪(T1,T2)

EndFor
(2) ParallelComparator (T0, p, p + n− 1, q + (n + 2)(n− 1) + 1, q + (n + 2)(n− 1) + n,T1,T2)
(3) Append (T1, x0

q+(n+2)n−1) and Append (T2, x1
q+(n+2)n−1)

(4) For k = 0 to n
(4a) T3 = +(T1, x1

q+(n+2)(n−1)+k) and T4 = −(T1, x1
q+(n+2)(n−1)+k)

(4b) Append (T3, x1
q+(n+2)n+k) and Append (T4, x0

q+(n+2)n+k)
(4c) T1 = ∪(T3,T4)

EndFor
(5) Append (T2, x0

q+(n+2)n)
(6) ParallelAdder (T2,n, q + (n + 2)(n− 1) + 1, p, q + (n + 2)n + 1)
(7) T0 = ∪(T1,T2)
EndProcedure

Algorithm 3: Procedure SimilarDiv (T0,n, p, q).

time. Step (1) considers the excessive bits of divisor and if
any one bit is 1, which means the divisor is “bigger” than the
bits of the result which are intended to compare this time
and pour the strands to T1. Step (2) considers the rest of the
bits of divisor and the bits of result which are intended to
compare this time. T3 contains all strands on which certain
bit of divisor is 1 and corresponding bit of the result is 1; T4

contains all strands on which certain bit of divisor is 1 and
corresponding bit of the result is 0; T5 contains all strands
on which certain bit of divisor is 0 and corresponding bit of
the result is 0; T6 contains all strands on which certain bit of
divisor is 0 and corresponding bit of the result is 1. So add
execution can be done over strands in T3 and T6, which can
not be done over strands in T4, and strands in T5 need more
consideration.

From ParallelComparator (T0, p, q, j, k,T1,T2), it takes
O(n) extract operations, O(n) merge operations, and O(1)
test tubes to finish the function of a parallel comparator.

3.7. The construction of a parallel long division

Suppose the divisor is n bits and is from pth bit and the div-
idend is n + 1 bits and is from the qth bit in each strand.
To do the long division, first compare the divisor with first
two bits of dividend using ParallelComparator to get the first
bit of the result of division and note down the result of first
time addition result. Then, compare the divisor with the first

three bits of the addition result last time to get the second bit
of the result of the long division, and note down the addition
result. Finally, compare the divisor with the last n bits of ad-
dition result last time to get the last bit of division result and
the remainder (see Algorithm 3).

Lemma 3. The algorithm SimilarDiv (T0,n, p, q) is applied to
finish the function of parallel long division.

Proof. Each execution of step (1) is to get each bit of the long
division result. The rest part is to get the last bit of the long
division result. Consider the first cycle of step (1), step (1a)
compares the divisor with the first two bits of the dividend,
and form two tubes T1 and T2 that T2 contains all strands on
which add execution can be done, contrarily the T1. Step (1b)
appends 0 to all strands in T1 and appends 1 to all strands in
T2. This bit is the first bit of the division result. Step (1c) just
finishes to append the dividend in tube T1. Step (1d) adds
the divisor and the first two bits of the dividend in T2. Step
(1e) copies the rest of the bits of the dividend in T2. Step
(1f) pours T1 and T2 together and finishes the first execution
of step (1) to get the first bit of the division result and the
first time addition result. The second execution of step (1)
is to compare the divisor with the first three bits of the ad-
dition result last time and get the second bit of the division
result. The principle of other cycles and the rest of the steps
are similar to the principle above. The length of each strand
will reach to q + n + (n + 2)n bits when this algorithm is run
out.

6 Journal of Biomedicine and Biotechnology

(1) ParallelMultiplier (T0,n,d, p)
(2) ParallelShifter (T0,n, p + n + n2)
(3) ParallelAdder (T0,n, t, p + M, p + n + M)
EndProcedure

Algorithm 4: Procedure Traceback (T0, t,d, p,n).

From SimilarDiv (T0,n, p, q), it takes O(n2) extract op-
erations, O(n2) append operations, O(n2) merge operations,
and O(1) test tubes to finish the function of a parallel long
division.

3.8. The construction of parallel traceback

Suppose the irreducible polynomial A(ω) = ωn + bn−1ωn−1 +
· · · + b1ω + b0 and suppose g(ω) and f (ω) satisfy that
g(ω) × divisor + f (ω)A(ω) = 1, for the purpose of find-
ing the divisor’s inverse, g(ω), we need to do sometimes long
division introduced in Section 3.7; let A(ω) be the dividend
and divisor mentioned above be the divisor in first time and
suppose the result is g1(ω), and if the remainder is 1, then
the division result g1(ω) is g(ω). Else, let the divisor last time
be the dividend and let the remainder last time be the divi-
sor and do the long division. Suppose the result is p(ω) and
g2(ω) = p(ω) × g1(ω) + 1, if the remainder is 1, the g2(ω) is
g(ω). Else, let the divisor last time be the dividend and let the
remainder last time be the divisor and do the long division.
Suppose the result is p(ω) and g3(ω) = p(ω)× g2(ω) + g1(ω),
if the remainder is 1, the g3(ω) is g(ω). Generally speaking,
we need to trace back after long division each time: first time,
the tracing result is the division’s result; the second time, the
tracing’s result is the sum of 1 and the product of the divi-
sion’s result and the tracing’s result last time; from the third
time, the tracing’s result is the sum of the tracing’s result last
second time and the product of the division’s result and the
tracing’s result last time. The following algorithm is used to
do tracing operation from the third time in which t, d, and
p mean that the tracing’s result last second time is from the
tth bit and the last tracing’s result is from the dth bit and the
division result is from the pth bit (see Algorithm 4).

Lemma 4. The algorithm TraceBack (T0, t,d, p,n) is used to
trace back after long division from the third time in order to get
the divisor’s inverse.

Proof. In this and following procedures, M = n2 + 2n − 1 +
n2 + (n − 1)(n − 2)/2, which represent the total number of
increased bits when ParallelMultiplier (T0,n, p, q) and Par-
allelShifter (T0,n, p) are called. Step (1) is used to multi-
ply the last tracing’s result from dth bit to the long division
result from pth bit in parallel. The result will be from the
(p + n + n × n)th bit to (p + n + n × n + 2n − 1)th bit. Step
(2) is to shift the result of multiplication to legal form which
will append ((n− 1)(n− 2)/2 + n2) bits to every strand. And
its result is from (p + M)th bit to (p + n + M − 1)th bit. Step
(3) is used to add the result to the last second time’s tracing’s
result in parallel.

From TraceBack (T0, t,d, p,n), it takes O(n2) extract op-
erations, O(n2) append operations, O(n2) merge operations,
and O(1) test tubes to finish the function of tracing back.

3.9. The construction of a parallel inverse

From the algorithms introduced above, we can find divisors’
inverses in parallel as follows: first pick out the strands on
which divisor equals to 1. Then, let the primitive polynomial
be the dividend and the divisor be the divisor and do long
division. Trace back to get the tracing’s result first time and
pick up the strands on which the remainder equals to 1 and
store them in tube T1. Then, let the divisor last time be the
dividend and the remainder last time be the divisor and do
long division. Collect the quotient and trace back. Pick up the
strands on which the remainder equals to 1 and store them
in tube T2, . . . , these executions, including long division, col-
lecting every bit of the quotient and tracing back, are run
n− 1 times at most. In the following algorithm, the parame-
ters n and p mean that the divisor is n bits and it starts from
pth bit in every strand. The last parameter r is used to rep-
resent that each strand in tube is r − 1 bit long and we begin
append operation from rth bit of every strand.

Among the algorithm, the procedure Picking (T0,n, p,
Ts) is used to pick out the strands on which the pth bit to
the (p+n−2)th bit are all 0 and the (p+n−1)th bit is 1 and
store them in Ts. It is easy to program, so just omitted here
(see Algorithm 5).

Lemma 5. The algorithm ParallelInverse (T0,n, p, r) is ap-
plied to find inverses over GF(2n) in parallel.

Proof. Step (2) is used to append n + 1 bits irreducible poly-
nomial, which is the dividend in first long division, to every
strand. The execution of step (3) calls the algorithm Simi-
larDiv (T0,n, p, r) to finish long division. Now the length of
strands is added up to r + n + (n + 2)n bits. Step (4) fin-
ishes the function of collecting every bit of quotient and will
add n bits to every strand. This is the first time tracing re-
sult. Step (5) calls the procedure Picking (T0,n, p,Ts) to pick
out the strands on which the remainder is 1 and store them
in tube T1. Step (6) finishes the operation of appending the
dividend, which is divisor last time, to the strands. Note that
s1 = n+1+(n+2)n+n. Step (7) calls the algorithm SimilarDiv
(T0,n, p, q) to accomplish the second time long division. Step
(8) employs the append operation to append a bit 0 in order
to make the quotient to be n bits. Step (9) finishes the func-
tion of collecting every bit of quotient and will add n− 1 bits
to every strand. Steps (10) and (11) call the algorithm Par-
allelMultiplier (T0,n, p, q) and ParallelShifter (T0,n, p). Step
(12) is used to add 1 to the product. These three steps accom-
plish the function of tracing back of the second time. Now the
length of every strand is r+s1 +n+(n+1)(n−1)+n+M+n−1.
Step (13) calls the algorithm Picking (T0,n, p,Ts) to pick out
the strands on which the remainder is 1 and store them in
tube T2. One execution of step (14) finishes the function of
long division and tracing back and picking out the strands on
which the remainder is 1. The step will be looped n−3 times,
because the long division should be done n−1 times to make

Kenli Li et al. 7

(1) Picking (T0,n, p,Tz)
(2) Append A(x) to the end of all strands in T0

(3) SimilarDiv (T0,n, p, r)
(4) For j = 0 to n− 1

(4a) Tm = +(T0, x1
r+n+1+(n+2) j) and Ts = −(T0, x1

r+n+1+(n+2) j)
(4b) Append (Tm, x1

r+n+1+(n+2)n+ j) and Append (Ts, x0
r+n+1+(n+2)n+ j)

(4c) T0 = ∪(Tm,Ts)
EndFor
(5) Picking (T0,n− 1, r + n + 1 + (n + 2)(n− 1) + 3,T1)
(6) For j = 0 to n− 1

(6a) Tm = +(T0, x1
p+ j) and Ts = −(T0, x1

p+ j)
(6b) Append (Tm, x1

r+s1+ j) and Append (Ts, x0
r+s1+ j)

(6c) T0 = ∪(Tm,Ts)
EndFor
(7) SimilarDiv (T0,n− 1, r + n + 1 + (n + 2)(n− 1) + 3, r + s1)
(8) Append (T0, x0

r+s1+n+(n+1)(n−1))
(9) For j = 0 to n− 2

(9a) Tm = +(T0, x1
r+s1+n+(n+1) j) and Ts = −(T0, x1

r+s1+n+(n+1) j)
(9b) Append (Tm, x1

r+s1+n+(n+1)(n−1)+1+ j) and Append (Ts, x0
r+s1+n+(n+1)(n−1)+1+ j)

(9c) T0 = ∪(Tm,Ts)
EndFor
(10) ParallelMultiplier (T0,n, r + n + 1 + (n + 2)n, r + s1 + n + (n + 1)(n− 1))
(11) ParallelShifter (T0,n, r + s1 + n + (n + 1)(n− 1) + n + n2)
(12) Add 1 to the product above which will result in n bits more to each strand
(13) Picking (T0,n− 2, r + s1 + n + (n + 1)(n− 2) + 3,T2)
(14) For j = 2 to n− 2

(14a) Copy dividend (divisor last time) to the end
(14b) SimilarDiv (T0,n− j, r + s1 + · · · + s j−1 + n + 2− j + (n + 3− j)(n− j) + 3, r + s1 + · · · + s j)
(14c) Append j bits 0 to the end
(14d) Collect n− j bits quotient of this division to the end
(14e) Traceback (T0, r + s1 + · · · + s j−1 − n, r + s1 + · · · + s j − n, r + s1 + · · · + s j + (n + 1− j) + (n + 2− j)(n− j),n)
(14f) Picking (T0,n− 1− j, r + s1 + · · · + s j + n + 1− j + (n + 2− j)(n− 1− j) + 3,Tj+1)

EndFor
(15) For j = 1 to n− 1

(15a) For k = 0 to s j+1 + · · · + sn−1 − 1
(15a1) Append (Tj , x0

r+s1+···+s j+k)
EndFor
(15b) For k = 0 to n− 1

(15b1) Tm = +(Tj , x1
r+s1+···+s j−n+k) and Ts = −(Tj , x1

r+s1+···+s j−n+k)
(15b2) Append (Tm, x1

r+s1+···+sn−1+k) and Append (Ts, x0
r+s1+···+sn−1+k)

(15b3) Tj = ∪(Tm,Ts)
EndFor

EndFor
(16) For j = 0 to s1 + · · · + sn−1 + n− 2

Append (Tz, x0
r+ j)

EndFor
(17) Append (Tz, x1

r+s1+···+sn−1+n−1)
(18) T0 = ∪(Tz,T1,T2, . . . ,Tn−1)
EndProcedure

Algorithm 5: Procedure ParallelInverse (T0,n, p, r).

sure that the remainder of each strand equals to 1 and long
division has been done twice before. Note that while j ≥ 2,
s j = n+ 2− j + (n+ 3− j)(n+ 1− j) + n+M + n. Step (15a)
is used to append certain bits 0 to each tube Tj to make sure
that strands in T1 to Tn−1 are all r+s1+· · ·+sn−1−1 bits long.
Step (15b) is used to append the inverse gotten before to the
last of every strand in T1 to Tn−1. Step (18) pours strands in

all tubes together to one tube T0. From all above, getting in-
verse one time needs increasing s1 + s2 + · · ·+ sn−1 +n bits to
every strand.

From ParallelInverse (T0,n, p, r), it takes O(n3) extract
operations, O(n3) append operations, O(n3) merge opera-
tions, and O(n) test tubes to finish the function of finding
inverse in parallel.

8 Journal of Biomedicine and Biotechnology

(1) ParallelInverse (T0,n, p, r)
(2) ParallelMultiplier (T0,n, q, r + s1 + · · · + sn−1)
(3) ParallelShifter (T0,n, r + s1 + · · · + sn−1 + n + n× n)
EndProcedure

Algorithm 6: Procedure ParallelDivision (T0,n, p, q, r).

3.10. The construction of a parallel divider

To do a division operation on GF(2n), first one should calcu-
late divisor’s inverse using above mentioned algorithm then
multiply the dividend. The following algorithm is used to fin-
ish the function of parallel division over GF(2n), where the
dividend begins with the qth bit and the divisor begins with
the pth bit, and current bit is the rth bit (see Algorithm 6).

Lemma 6. The algorithm ParallelDivision (T0,n, p, q, r) is
used to finish the function of parallel division over GF(2n).

Proof. Step (1) calls the algorithm ParallelInverse (T0,n, p, r)
to get the divisor’s inverse of every strand. The length of every
strand is r+s1+· · ·+sn−1+n−1 bits now with the inverse from
(r+s1+· · ·+sn−1)th bit to (r+s1+· · ·+sn−1+n−1)th bit. Step
(2) calls ParallelMultiplier (T0,n, p, q) to finish the function
of the inverse being multiplied by the dividend every strand
with the dividend starting from the qth bit. Now the length
of each strand adds up to r + s1 + · · ·+ sn−1 +n+n×n+ 2n−
1−1 bits. Step (3) shifts the product by calling ParallelShifter
(T0,n, p) and will add (n− 1)(n− 2)/2 + n × n bits to every
strand. Generally speaking, doing parallel division one time
need increasing the strands D = s1 + · · ·+ sn−1 + n+M bits.

From ParallelDivision (T0,n, p, q, r), it takes O(n3) ex-
tract operations, O(n3) append operations, O(n3) merge op-
erations, and O(n) test tubes to finish the function of parallel
division.

3.11. The construction of a parallel adder of two
points on elliptic curve

By far the addition, subtraction (the same to addition), mul-
tiplication, and division operations over GF(2n) have been
solved. Now consider how to execute addition of two points
on an elliptic curve y2 + xy = x3 + ax2 + b in biological ways.
We should consider five different cases: case 1, the first point
is O and the point of sum equals to the second point; case 2,
the second point is O and the point of sum equals to the first
point; case 3, one point is the inverse of the other one, and
the point of sum is O; case 4, one point equals to the other
one, and computes the sum as the formula in part 3.1; case 5,
computes the sum using the formula in part 3.1.

The algorithm AddTwoNode (T0,n, x1, y1, x2, y2, r) is
used to add two points. The first one’s position x starts
from the (x1)th bit and position y starts from the (y1)th
bit, and the second one’s position x starts from the (x2)th
bit and y starts from the (y2)th bit. The parameter r rep-
resents the current bit. In the procedure, it calls Pick-
ing01 (T0,n, x1, y1, x2, y2,T11) to pick out the strands on

which the first point is O and store them in T11, Picking02
(T0,n, x1, y1, x2, y2,T12) to pick out the strands on which
the second point is O and store them in T12, PickingIn-
verse (T0,n, x1, y1, x2, y2, r,T2) to pick out the strands on
which one point is the inverse of the other one and store
them in tube T2, and PickingEqual (T0,n, x1, y1, x2, y2,T3)
to pick out the strands on which one point equals to the
other one and store them in tube T3. These four algorithms
are easy to design, so omitted here. Note that PickingInverse
(T0,n, x1, y1, x2, y2, r,T2) will increase n bits to every strand
in T0 (see Algorithm 7).

Lemma 7. The algorithm AddTwoNode (T0,n, x1, y1, x2,
y2, r) can compute the sum of two points on elliptic curve.

Proof. Step (5) employs append operation to append M bits
0 to all strands in tube T0. Step (6) to step (8) are operations
on tube T0 to get μ of strands in T0. Step (9) to step (13)
are operations on tube T3 to get μ of strands in T3. Step (14)
pours T0 and T3 to T0 and the length of every strand in T0

now is r + n + n + M + n + D − 1 bits. Step (15) to step (21)
accomplish to compute the position x of point of sum and
the result is from (r +X)th bit. The execution of steps (22) to
(26) is used to get the position y of the sum which equals to
μ(x1 + x3) + x3 + y1. And now, the position y of the sum is
from (r +X +Y)th bit and the length is r +n+X +Y −1 bits.

Steps (27) and (28) are applied to append the value of
positions x and y of the sum of two points to the last of every
strand. Now, the length of every strand in T0 is r + n + X +
Y + 2n − 1 bits with the value x from the (r + n + X + Y)th
bit and y from the (r + n + X + Y + n)th bit.

From AddTwoNode (T0,n, x1, y1, x2, y2, r), it takes
O(n3) extract operations, O(n3) append operations, O(n3)
merge operations, and O(n) test tubes to finish the function
of a parallel adder for points on elliptic curve.

3.12. Breaking the elliptic curve cryptosystem

We have constructed the algorithm above for parallel com-
puting the point of the sum of two points. Then, we can solve
elliptic curve discrete logarithm problem as follows: consider
point P and Q are given, and l is what we want to get which
matches Q = lP. First, we amplify P into two tubes and add
P in one tube. Check if 2P equals to Q; if not, note down
the value of 2P and pour two tubes together. Then, amplify
the tube into two tubes and add 2P in one tube. Check if any
point equals to Q; if not, note down the value of 4P and pour
two tubes together, or we get the value of l. Then, amplify the
tube into two tubes and add 4P in one tube, . . . , while this
loop executes n times, the value from 1 to 2n for l will have
been checked, and the elliptic curve cryptosystem has been
broken by the solved elliptic curve discrete logarithm prob-
lem.

4. CONCLUSION

This paper is the first effort in literature that demonstrates
that the difficult problem for elliptic curve discrete logarithm
can be solved on a DNA-based computer. While Chang’s

Kenli Li et al. 9

(1) Picking01 (T0,n, x1, y1, x2, y2,T11)
(2) Picking02 (T0,n, x1, y1, x2, y2,T12)
(3) PickingInverse (T0,n, x1, y1, x2, y2, r,T2)
(4) PickingEqual (T0,n, x1, y1, x2, y2,T3)
(5) For j = 0 to M − 1

(5a) Append (T0, x0
r+n+ j)

EndFor
(6) ParallelAdder (T0,n, y1, y2, r + n + M)
(7) ParallelAdder (T0,n, x1, x2, r + n + M + n)
(8) ParallelDivision (T0,n, r + n + M + n, r + n + M, r + n + M + 2n)
(9) For j = 0 to n− 1

(9a) Tm = +(T3, x1
x1+ j) and Ts = −(T3, x1

x1+ j)
(9b) Append (Tm, x1

r+n+ j) and Append (Ts, x0
r+n+ j)

(9c) T3 = ∪(Tm,Ts)
EndFor
(10) ParallelMultiplier (T3,n, r + n, r + n)
(11) ParallelShifter (T3,n, r + n + n + n× n)
(12) ParallelAdder (T3,n, y1, r + n + n + M − n, r + n + n + M)
(13) ParallelDivision (T3,n, x1, r + n + n + M, r + n + n + M + n)
(14) T0 = ∪(T0,T3)
SUPPOSE U = n + M + n + D
(15) ParallelMultiplier (T0,n, r + n + U − n, r + n + U − n)
(16) ParallelShifter (T0,n, r + n + U + n× n)
(17) ParallelAdder (T0,n, r + n + U − n, r + n + U + M − n, r + n + U + M)
(18) ParallelAdder (T0,n, r + n + U + M, x1, r + n + U + M + n)
(19) ParallelAdder (T0,n, r + n + U + M + n, x2, r + n + U + M + n + n)
(20) For j = 0 to n− 1

(20a) Append (T0, xa,r+n+U+M+3n+ j)
EndFor
(21) ParallelAdder (T0,n, r + n + U + M + 2n, r + n + U + M + 3n, r + n + U + M + 4n)
SUPPOSE X = U + M + 5n
(22) ParallelAdder (T0,n, x1, r + n + X − n, r + n + X)
(23) ParallelMultiplier (T0,n, r + n + U − n, r + n + X)
(24) ParallelShifter (T0,n, r + n + X + n + n× n)
(25) ParallelAdder (T0,n, r + n + X + n + M − n, r + n + X − n, r + n + X + n + M)
(26) ParallelAdder (T0,n, r + n + X + n + M, y1, r + n + X + n + M + n)
SUPPOSE Y = n + M + n + n
(27) For j = 0 to n− 1

(27a) Tm = +(T0, x1
r+X+ j) and Ts = −(T0, x1

r+X+ j)
(27b) Append (Tm, x1

r+n+X+Y+ j) and Append (Ts, x0
r+n+X+Y+ j)

(27c) T0 = ∪(Tm,Ts)
EndFor
(28) For j = 0 to n− 1

(28a) Tm = +(T0, x1
r+n+X+Y−n+ j) and Ts = −(T0, x1

r+n+X+Y−n+ j)
(28b) Append (Tm, x1

r+n+X+Y+n+ j) and Append (Ts, x0
r+n+X+Y+n+ j)

(28c) T0 = ∪(Tm,Ts)
EndFor
(29) Append n + X + Y bits 0 to each strand in T11 and T12. Then, append values of x2 and y2 of each strand to

the end in T11, and append values of x1 and y1 of each strand to the end in T12

(30) Append X + Y + 2n bits 0 to every strand in T2

(31) T0 = ∪(T11,T12,T2,T0)
EndProcedure

Algorithm 7: Procedure AddTwoNode (T0,n, x1, y1, x2, y2, r).

work makes great progress in application of DNA computing
in cryptoanalysis [16], which is breaking RSA by factoring in-
teger, this paper proposes application of DNA computing in
another popular cryptosystem, ECC, which is more complex
and has more challenge in cryptoanalysis. Though the algo-

rithm is somewhat complex, it takes a series of steps that is
polynomial in the input size, so it is feasible in theory and in-
spirits the development of DNA computing. Simultaneously,
the paper also shows that humans’ complex mathematical
operations can directly be performed with basic biological

10 Journal of Biomedicine and Biotechnology

operations. The property for the difficulty of elliptic curve
discrete logarithm is the basis of elliptic curve cryptosystems.
However, this property seems to be incorrect on a molecular
computer. This indicates that the elliptic curve cryptosystems
are perhaps insecure if the technique of DNA computing is
skillful enough to run the algorithms efficiently as discussed
in this paper.

ACKNOWLEDGMENTS

The authors thank Daniel Howard (QinetiQ, Malvern Tech-
nology Centre, UK) for his great efforts in correcting this
paper. This work is supported by National Natural Science
Foundation (60603053) of China.

REFERENCES

[1] L. M. Adleman, “Molecular computation of solutions to com-
binatorial problems,” Science, vol. 266, no. 5187, pp. 1021–
1024, 1994.

[2] E. Csuhaj-Varjú, L. Kari, and G. Paun, “Test tube distributed
systems based on splicing,” Computers and Artificial Intelli-
gence, vol. 15, no. 2-3, pp. 211–232, 1996.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203–209, 1987.

[4] N. Koblizt, Introduction to Elliptic Curves and Modular Forms,
Springer, New York, NY, USA, 1984.

[5] S. Lang, Elliptic Curves: Diophantine Analysis, Springer, New
York, NY, USA, 1978.

[6] V. S. Miller, “Use of elliptic curves in cryptography,” in Pro-
ceedings of the 5th Annual International Cryptology Conference
(CRYPTO ’85), Santa Barbara, Calif, USA, August 1985.

[7] A. M. Odlyzko, “Discrete logarithms in finite fields and their
cryptographic significance,” in Proceedings of the 2nd Work-
shop on Advances in Cryptology: Theory and Application of
Cryptographic Techniques (EUROCRYPT ’84), pp. 224–314,
Springer, Paris, France, April 1985.

[8] R. P. Feynman, “There’s plenty of room at the bottom,” in Mi-
naturization, D. H. Gilbert, Ed., pp. 282–296, Reinhold, New
York, NY, USA, 1961.

[9] R. J. Lipton, “DNA solution of hard computational problems,”
Science, vol. 268, no. 5210, pp. 542–545, 1995.

[10] R. R. Sinden, DNA Structure and Function, Academic Press,
New York, NY, USA, 1994.

[11] G. Paun, G. Rozenberg, and A. Salomaa, DNA Computing:
New Computing Paradigms, Springer, New York, NY, USA,
1998.

[12] W.-L. Chang, M. S.-H. Ho, and M. Guo, “Molecular solutions
for the subset-sum problem on DNA-based supercomputing,”
Biosystems, vol. 73, no. 2, pp. 117–130, 2004.

[13] M. Guo, M. S.-H. Ho, and W.-L. Chang, “Fast parallel molec-
ular solution to the dominating-set problem on massively par-
allel bio-computing,” Parallel Computing, vol. 30, no. 9-10, pp.
1109–1125, 2004.

[14] M. S.-H. Ho, “Fast parallel molecular solutions for DNA-
based supercomputing: the subset-product problem,” Biosys-
tems, vol. 80, no. 3, pp. 233–250, 2005.

[15] D. Boneh, C. Dunworth, and R. J. Lipton, “Breaking DES using
a molecular computer,” Tech. Rep. CS-TR-489-95, Princeton
University, Princeton, NJ, USA, 1995.

[16] W.-L. Chang, M. Guo, and M. S.-H. Ho, “Fast parallel molec-
ular algorithms for DNA-based computation: factoring inte-

gers,” IEEE Transactions on Nanobioscience, vol. 4, no. 2, pp.
149–163, 2005.

[17] J. Watson, M. Gilman, J. Witkowski, and M. Zoller, Recombi-
nant DNA, Freeman, San Francisco, Calif, USA, 2nd edition,
1992.

[18] F. Eckstein, Oligonucleotides and Anologues, Oxford University
Press, Oxford, UK, 1991.

[19] J. Watson, N. Hoplins, J. Roberts, J. Steitz, and A. Weiner,
Molecular Biology of the Gene, Benjamin/Cummings, Menlo
Park, Calif, USA, 1987.

[20] G. M. Blackburn and M. J. Gait, Nucleic Acids in Chemistry and
Biology, IRL Press, Washington, DC, USA, 1990.

[21] M. Wiener and R. Zuccherato, “Faster attacks on elliptic curve
cryptosystems,” in Selected Areas in Cryptography, vol. 1556 of
Lecture Notes in Computer Science, pp. 190–200, Springer, New
York, NY, USA, 1999.

	Introduction
	Background
	Finding the Discrete Logarithm on Elliptic Curve over GF (2n)
	Elliptic curve public key cryptosystem over GF(2n)
	The construction of a parallel adder over GF(2n)
	The construction of a parallel multiplier over GF(2n)
	The construction of a parallel shifter for multiplicative result
	The mathematical principle of division on GF(2n)
	The construction of a parallel comparator
	The construction of a parallel long division
	The construction of parallel traceback
	The construction of a parallel inverse
	The construction of a parallel divider
	The construction of a parallel adder of two points on elliptic curve
	Breaking the elliptic curve cryptosystem

	Conclusion
	ACKNOWLEDGMENTs
	REFERENCES

