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Disabled-2 (Dab2) inhibits Wnt/b-catenin signalling
by binding LRP6 and promoting its internalization
through clathrin
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Canonical Wnt signalling requires caveolin-dependent

internalization of low-density lipoprotein receptor-related

protein 6 (LRP6). Here we report that the tumour suppres-

sor and endocytic adaptor disabled-2 (Dab2), previously

described as an inhibitor of Wnt/b-catenin signalling,

selectively recruits LRP6 to the clathrin-dependent endo-

cytic route, thereby sequestering it from caveolin-

mediated endocytosis. Wnt stimulation induces the casein

kinase 2 (CK2)-dependent phosphorylation of LRP6 at

S1579, promoting its binding to Dab2 and internalization

with clathrin. LRP6 receptor mutant (S1579A), deficient in

CK2-mediated phosphorylation and Dab2 binding, fails to

associate with clathrin, and thus escapes the inhibitory

effects of Dab2 on Wnt/b-catenin signalling. Our data

suggest that the S1579 site of LRP6 is a negative regulatory

point during LRP6-mediated dorsoventral patterning in

zebrafish and in allograft mouse tumour models. We

conclude that the tumour suppressor functions of Dab2

involve modulation of canonical Wnt signalling by regu-

lating the endocytic fate of the LRP6 receptor.
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Introduction

Wnt signalling is critical during various developmental and

physiological processes, and is implicated in human disease,

including cancer (Polakis, 2000; Clevers, 2006). Stabilization

and translocation of intracellular b-catenin into the nucleus

are essential in canonical Wnt signalling. In the absence of

Wnt, b-catenin is assembled in a multimeric b-catenin

destruction complex that contains Axin, adenomatous

polyposis coli (APC), casein kinase I (CKI) and glycogen

synthase kinase 3 (GSK3). In this complex, b-catenin is

sequentially phosphorylated by CKI and GSK3 and targeted

for degradation through the SCFb-TrCP-mediated ubiquitin-

proteasome pathway. In the presence of Wnt, activation of

the Frizzled (Fz) and low-density-lipoprotein receptor-related

protein co-receptors (LRP5/6/arrow) leads to destabilization

of the b-catenin destruction complex, inactivation of GSK3

and inhibition of b-catenin phosphorylation and degradation

(Fuerer et al, 2008). Stabilized b-catenin then enters the

nucleus and interacts with transcriptional regulators,

including leukocyte enhancer factor-1 and T cell factor, and

leads to Wnt responsive gene expression (MacDonald et al, 2009).

Mechanistic details of how Wnt stimulation leads to

b-catenin stabilization and GSK3 inactivation are emerging,

and it appears that receptor phosphorylation and internaliza-

tion play critical roles. Wnt induces clustering of Fz and

lipoprotein receptor-related protein 6 (LRP6) receptors on

aggregates of the scaffolding protein Dvl to form endocytic

‘LRP6 signalosomes’ (Bilic et al, 2007), leading to the

sequential phosphorylation of LRP6 co-receptor by a ‘dual

kinase’ mechanism involving GSK3 and CK1 at multiple

PPPSP sites. This phosphorylation of LRP6 promotes the

recruitment and engagement of LRP6 with Axin and the

b-catenin destruction complex (Davidson et al, 2005; Zeng

et al, 2005), ultimately leading to GSK3 inactivation and accu-

mulation of b-catenin. Wnt also stimulates the formation of

phosphatidylinositol 4, 5-bisphosphate, through Fz and Dvl,

to promote LRP6 aggregation and phosphorylation, as well as

Axin translocation (Pan et al, 2008). In addition, these

phospho-LRP6 signalosomes contain caveolin (Yamamoto

et al, 2006), a marker of caveolae (cholesterol-rich

invaginations of the plasma membrane), which colocalizes

with LRP6 and is required for Wnt-mediated LRP6

endocytosis and b-catenin accumulation. Subsequent

studies (Yamamoto et al, 2008) have shown that LRP6

internalization can occur through both caveolin- and

clathrin-dependent pathways in order to activate and inhibit

b-catenin signalling, respectively. Wnt3A stimulation induces

caveolin-dependent internalization of LRP6, as well as its

phosphorylation and recruitment of Axin to the plasma

membrane, ultimately leading to b-catenin accumulation. In

contrast, Dickkopf 1 (DKK1), which inhibits Wnt3A-

dependent stabilization of b-catenin, induced the

internalization of LRP6 with clathrin and failed to induce

LRP6 phosphorylation and b-catenin stabilization (Yamamoto

et al, 2008). In addition, noncanonical Wnt5a signalling

requires Fz2-induced internalization through clathrin to

activate Rac and inhibit b-catenin accumulation (Sato et al,

2010). More recent studies not only support the role of

endocytosis in Wnt-mediated signalling but also

mechanistically link receptor internalization to inhibition of

GSK3. Wnt signalling is shown to trigger the sequestration of

GSK3 from the cytosol into multivesicular bodies (MVBs) so

that the enzyme becomes separated from its cytosolic
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substrates. In such a model, the LRP6/GSK3-containing

signalosomes are internalized, presumably in caveolin-

containing vesicles, and recruited to the ESCRT (endosomal

sorting complex required for transport) complex and sorted

to vesicles destined for formation of MVBs, wherein GSK3 is

sequestered from cytosolic b-catenin, which accumulates,

enters the nucleus and engages in transcriptional activation

(Taelman et al, 2010).

Disabled-2 (Dab2) is a widely expressed endocytic adaptor

protein shown to be involved in several receptor-mediated

signalling pathways (Xu et al, 1995; Hocevar et al, 2001;

Prunier et al, 2004). Its expression levels have a significant

impact on cancer development and cellular differentiation

(Morris et al, 2002; Jiang et al, 2008). Aberrantly low levels of

Dab2 protein have been found in many tumour-derived cell

lines (Sheng et al, 2000) and its ectopic expression in these

cancer cell lines results in cell cycle arrest and a decreased

rate of cell proliferation (Zhoul et al, 2005). As such, Dab2

has been assigned the label of a tumour suppressor gene

(Tong et al, 2010). In addition, Dab2 plays a critical role in

cellular differentiation and lineage commitment. Its

expression is upregulated and essential during mega-

karyocytic differentiation (Tseng et al, 2001) and during

retinoic acid (RA)-induced differentiation of F9

teratocarcinoma cells into visceral endoderm-like cells

(Smith et al, 2001).

In the current study we confirm the concept of ‘two

endocytic routes-two outcomes’ proposed for Wnt signalling

(Yamamoto et al, 2008) and demonstrate that Dab2

expression levels regulate whether LRP6 is internalized

through the caveolin or clathrin endocytic pathways. We

show that LRP6 binds directly to Dab2 in a Wnt- and casein

kinase 2 (CK2)-dependent manner. Dab2 has no effect on the

rate of LRP6 internalization but rather regulates its

interaction with caveolin or clathrin. In the absence of

Dab2 LRP6 interacts with caveolin in a Wnt-dependent

manner, and in its presence Wnt stimulation leads to

sequestration of LRP6 with clathrin. Collectively, the data

suggest that the tumour suppressor functions of Dab2 involve

modulation of Wnt/b-catenin signalling by regulating the

endocytic fate of the LRP6 receptor.

Results

Caveolin-mediated endocytosis is essential for

Wnt/b-catenin signalling

To evaluate the role of endocytosis in Wnt/b-catenin signal-

ling, we employed a dominant-negative dynamin (DN) K44A

that acts as an inhibitor of both clathrin and caveolin-

dependent receptor endocytosis (Doherty and McMahon,

2009). Co-transfection of mouse F9 cells with the Wnt/

b-catenin TOPFlash reporter and increasing concentrations

of DN K44A results in dose-dependent inhibition of Wnt3A-

mediated transactivation (Figure 1A). To characterize the

endocytic pathway mediating Wnt3A-induced TOPFlash

transactivation, we treated cells with monodansyl-cadaverine

(MDC), known to block clathrin-mediated endocytosis, or

nystatin, which disrupts lipid rafts and inhibits caveolin-

dependent endocytosis (Yamamoto et al, 2008), prior to

stimulation with Wnt3A. The results (Figure 1B) demonstrate

that in F9 cells nystatin, and not MDC, inhibits Wnt3A-

induced TOPFlash transactivation. In addition, in F9 cells

ectopically expressing Dab2 (F9-Dab2 cells), TOPFlash trans-

activation was significantly abolished regardless of nystatin

or MDC treatment (Figure 1B). Further, F9 cells are demon-

strated to be Wnt signalling competent as shown by nuclear

b-catenin accumulation and cyclin D1 induction

(Figure 1C), whereas in F9 cells ectopically expressing

Dab2 (F9-Dab2 cells) Wnt/b-catenin signalling is attenuated

(Figure 1C). Confirming the TOPFlash transactivation

shown above, nystatin, and not MDC, treatment of F9

cells blocks Wnt3A-induced nuclear b-catenin accumulation

and cyclin D1 expression (Figure 1D), but in F9-Dab2 cells

Dab2 inhibits these Wnt3A-induced responses irrespective

of whether the caveolin (nystatin) or clathrin (MDC)

endocytic pathway is modulated (Figure 1E). To test this

further, we silenced both caveolin and clathrin in F9 and

F9-Dab2 cells by siRNA. The results demonstrate that

caveolin knockdown blocks Wnt/b-catenin signalling in

F9 cells, whereas clathrin knockdown attenuates the inhi-

bitory effect of Dab2 on Wnt/b-catenin signalling in F9-

Dab2 cells (Supplementary Figure S1). These results suggest

that Dab2 sequesters LRP6 towards clathrin, away from its

interaction with caveolin, and that its inhibitory effect does

not require LRP6 endocytosis.

Dab2 has no effect on the internalization rate of LRP6

To address the effects of Dab2 on LRP6 endocytosis more

directly, we labelled cell surface proteins with a reversible

biotinylating agent, Sulfo-NHS-SS-Biotin, prior to Wnt3A

treatment for various lengths of time to allow internalization

of cell surface proteins including LRP6. After treatment,

biotin was cleaved (reduced) or not (non-reduced) from all

remaining cell surface proteins using glutathione (Semënov

et al, 2008). Internalized cell surface proteins, including

LRP6, are protected from the biotin removal procedure. We

observed that total biotin-labelled LRP6 was not affected by

either Wnt3A treatment or Dab2 expression (Figure 1F; ‘non-

reduced’ lanes). We also observed a time-dependent inter-

nalization of LRP6 following Wnt3A treatment, which was

not effected by the expression of Dab2. In both F9 and

F9-Dab2 cells, LRP6 is rapidly internalized following Wnt3A

treatment, with maximal internalization observed at 1–2 h,

followed by its reappearance on the cell surface at 4 h

(Figure 1F; ‘reduced’ lanes). a-EGFR receptor immunoblot-

ting was used as a control, demonstrating its lack of inter-

nalization in response to Wnt3A stimulation. The results also

demonstrate that nystatin, and not MDC, blocks LRP6 inter-

nalization in F9 cells, whereas in F9-Dab2 cells MDC, and not

nystatin, blocks LRP6 internalization (Supplementary Figure

S2). Thus, Dab2 does not affect LRP6 internalization but

rather sequesters the receptor towards an interaction with

clathrin and not caveolin.

Alternatively, we also compared the amount of cell surface

LRP6 available for biotin labelling following Wnt3A-induced

internalization. The results (Figure 1G) demonstrate that in

the absence (F9 cells) or presence of Dab2 (F9-Dab2 cells)

LRP6 is rapidly internalized in response to Wnt3A (maxi-

mally between 1–2 h) and recycled to the cell surface for

labelling at 4 h. These Wnt3A-induced rates of LRP6 inter-

nalization are consistent with those presented above and,

importantly, demonstrate that Dab2 expression does not

affect the internalization rate of LRP6.
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Dab2 preferentially shunts LRP6 toward

clathrin-dependent endocytosis

Since Dab2 had no effect on the endocytic rate of LRP6,

we next examined, by co-immunoprecipitation analyses,

whether it might regulate LRP6’s internalization route. The

results (Figures 2A and B) demonstrate that in the absence of

Dab2 (F9 cells) LRP6 co-immunoprecipitates caveolin in a

Wnt-dependent manner, whereas in the presence of Dab2

(F9-Dab2 cells) LRP6 co-immunoprecipitates clathrin also in

a Wnt-dependent manner. Similar results were observed in
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Figure 1 Caveolin-mediated endocytosis is essential for Wnt/b-catenin signalling and Dab2 has no effect on the internalization rate of LRP6.
(A) Increasing concentrations of DN K44A were co-transfected into F9 cells with 0.5 mg of TOP/FOPFlash luciferase reporter construct and
luciferase activity assays were performed and quantitated. (B) F9 and F9-Dab2 cells were transfected with 0.5mg of TOP/FOPFlash luciferase
reporter constructs. Cells were pre-treated for 1 h with the indicated concentration of nystatin or MDC prior to Wnt3A stimulation and
luciferase activity determination. (C) F9 and F9-Dab2 cells were treated with Wnt3A conditioned media for the indicated times, and whole-cell
lysates (WCL) were immunoblotted with a–b-catenin, a-cyclin D1 and a-Dab2 antibodies. a-Hsp90 immunoblot is used as a loading control.
(D) F9 and (E) F9-Dab2 cells were pre-treated with nystatin (100mg/ml) or MDC (50mM) for 1 h prior to Wnt3A stimulation for the indicated
times. WCL were immunoblotted with a–b-catenin and a-cyclin D1 antibodies. (F) F9 and F9-Dab2 cell surface proteins were biotinylated using
a reversible biotinylation agent (cleavable Sulfo-NHS-SS-Biotin). Following labelling, cells were stimulated with Wnt3A for the indicated times
at 371C and cells were split into two groups. WCL from one group (non-reduced) were precipitated with avidin-agarose beads followed by
immunoblot analysis with a-LRP6 antibody. The other group of cells (reduced) was treated with a glutathione-containing solution to strip away
any biotinylated proteins remaining on the cell surface. WCL were prepared and internalized cell surface proteins protected from biotin
stripping were precipitated with avidin-agarose beads followed by immunoblotting with a-LRP6 antibody. EGF receptor endocytosis was used
as control (immunoblotting with a-EGF receptor antibody). (G) F9 and F9-Dab2 cells were stimulated with Wnt3A for the times indicated and
placed at 41C for a 1 h labelling with a biotinylation agent (non-cleavable Sulfo-NHS-LC-Biotin). WCL were prepared and biotin-labelled cell
surface proteins were precipitated with avidin-agarose beads and analysed by immunoblotting with a-LRP6 antibody. Figure source data can be
found with the Supplementary data.
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two different stable Dab2 F9 clones (Supplementary Figure

S3). To further examine this redistribution of LRP6 towards

clathrin by Dab2, we fractionated the lipid raft (caveolin-

containing) and nonlipid raft (clathrin-containing) fractions

by sucrose density gradient centrifugation. The detergent-

resistant membranes including caveolin-1 (Figure 2C, frac-

tions 3, 4 and 5) were present in the lighter-density fractions,

whereas the soluble membranous and non-membranous

materials including clathrin (fractions 7–10) were present in

the higher-density fractions. As depicted in Figure 2C, Wnt3A

stimulation had little effect on the relative distribution of

either caveolin or clathrin, either in the absence (F9 cells) or

in the presence of Dab2 (F9-Dab2 cells). LRP6 and phospho-

LRP6 (S1490) distributions, on the other hand, were signifi-

cantly impacted by the presence of Dab2. In the absence of

Dab2, in F9 cells, LRP6 is shown to co-sediment with the

lighter caveolin-containing fractions and Wnt3A stimulation

appears to promote this distribution. In the presence of Dab2,

in F9-Dab2 cells, LRP6 similarly co-sediments with the

caveolin-containing fractions; however, following Wnt3A

stimulation, LRP6 redistributes with the higher-density

clathrin-containing fractions (Figure 2C). Furthermore, phos-

pho-LRP6 (S1490, indicative of activated Wnt signalling),

which co-sediments with caveolin-containing fractions in
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Figure 2 Dab2 shunts LRP6 towards clathrin-dependent endocytosis. (A) Flag-tagged LRP6 (10 mg) was transfected into F9 and F9-Dab2 cells.
Following transfection, cells were treated with Wnt3A for the times indicated and WCL were immunoprecipitated with control a-IgG or a-Flag
antibody. Immunocomplexes were subjected to immunoblot analysis with a-caveolin, a-clathrin and a-Flag antibodies. WCL were also
immunoblotted with a-Dab2 antibody to demonstrate relative Dab2 levels. (B) Flag-tagged LRP6 (10mg) was transfected into F9 Dab2 cells and,
following transfection, stimulated with Wnt3A for the indicated times. WCL were subjected to immunoprecipitation with a-clathrin, a-caveolin
and a-Flag antibodies. Immunocomplexes were immunoblotted with a-Dab2 antibody to detect clathrin/Dab2, caveolin/Dab2 and Flag-LRP6/
Dab2 interactions. WCL were also immunoblotted with a-Dab2 antibody for demonstrating relative Dab2 levels. IgG antisera was used as
negative control for the various immunoprecipitations. (C) WCL from F9 and F9-Dab2 cells treated with or without Wnt3A for 1 h were
fractionated by sucrose density gradient centrifugation. Fractions were collected and aliquots of each were analysed by immunoblotting with
a-caveolin, a-clathrin, a-LRP6 and a-p-LRP6 (S1490). (D) Pooled sucrose gradient fractions (light fractions no. 3–5 and heavy fractions
no. 8–10) were immunoprecipitated with a-caveolin (left panels) and a-clathrin (right panels) antibodies. Immunocomplexes were
immunoblotted with a-LRP6, a-Axin, a-GSK3b, a-Dab2, and a-caveolin or a-clathrin. IgG antisera was used as negative control for the
various immunoprecipitations. Figure source data can be found with the Supplementary data.
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Wnt3A-stimulated F9 cells, is not present in F9-Dab2 cells

following Wnt3A stimulation. To further probe the activation

of Wnt/b-catenin signalling in the various gradient fractions,

we pooled the lower (fractions 3–5) and higher (fractions

8–10) density fractions and determined the relative associa-

tions and distributions of other b-catenin modulators

(Figure 2D). As shown in the figure, in F9 cells, a-caveolin

Ips co-immunoprecipitate LRP6, Axin and GSK3b in a Wnt-

dependent manner, whereas in F9-Dab2 cells, a-clathrin Ips

co-immunoprecipitate only LRP6 in a Wnt3A-dependent

manner, and not Axin or GSK3b. Collectively, these results

suggest that Dab2 regulates the localization of the LRP6

receptor following Wnt3A stimulation. In the presence

of Dab2, Wnt3A promotes LRP6 association with clathrin,

resulting in its failure to interact with and be phosphorylated

by the b-catenin destruction complex.

To directly observe the effects of Dab2 on the endocytic fate

of the LRP6 receptor, we carried out immunofluorescence

analyses of LRP6 colocalization with caveolin or clathrin in

the absence (F9 cells) or presence (F9-Dab2 cells) of Dab2.

The results show that LRP6 is primarily localized peripherally

along the cell surface and that caveolin is also membrane

associated, as well as found in other regions of the cell.

Wnt stimulation, in the absence of Dab2, promotes interna-

lization of LRP6 and its co-localization with caveolin

(Figure 3A). Quantitatively, B41% of the LRP6 puncta were

co-localized with caveolin and not clathrin (Supplementary

Figure S4A). In the presence of Dab2, although LRP6 is
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Figure 3 Subcellular distribution and co-localization of LRP6/caveolin and LRP6/clathrin in the absence and presence of Dab2.
Immunofluorescence of caveolin and LRP6 (A) and clathrin and LRP6 (B) in F9 and F9-Dab2 cells treated with or without Wnt3A for 1 h.
After treatment all cells were fixed and stained with a-LRP6, a-caveolin or a-clathrin antibodies. LRP6 is shown in green, and caveolin and
clathrin are shown in red. Co-localization of LRP6 with caveolin or clathrin is depicted by the yellow in the panels labelled ‘merge’. DAPI was
used to stain the nuclei. Scale bars, 5mm.
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similarly internalized following Wnt3A stimulation, it fails to

co-localize with caveolin (Figure 3A). Clathrin staining in F9

cells is primarily restricted to the cell surface (Figure 3B), and

following Wnt3A stimulation it fails to co-localize with the

LRP6 receptor. In contrast, in F9-Dab2 cells, Wnt3A treatment

promotes LRP6/clathrin co-localization in cytoplasmic punc-

ta (Figure 3B). Quantitatively, B44% of the LRP6 puncta

co-localize with clathrin and not caveolin (Supplementary

Figure S4B). Meanwhile, in F9 cells B57% of internalized

LRP6 co-localizes with Axin and B39% with GSK3b, con-

firming Dab2’s inhibitory effect on Wnt/b-catenin signalling

(Supplementary Figure S5). These immunocytochemical ana-

lyses confirm the biochemical assays and demonstrate that

Dab2 regulates the internalization of LRP6 and dictates

whether it is endocytosed through the caveolin or clathrin

pathways.

Dab2 interactions with LRP6

To further characterize Dab2/LRP6 interactions, we per-

formed co-immunoprecipitation analyses in F9-Dab2 cells

with LRP6 membrane-tethered intracellular domain con-

structs (Figure 4A). The results demonstrate that the full-

length intracellular domain of LRP6 (DN) containing the

5 PPP(S/T)P motifs is capable of immunoprecipitating Dab2

(Figure 4A). The DNG construct that contains the C-terminal

3 PPP(S/T)P motifs is also capable of interacting with Dab2.

Deletion and/or mutation of the N-terminal 2 PPP(S/T)P

motifs has no effect on Dab2 interaction. But for interaction

with Dab2, the C-terminal domain-containing 3 PPP(S/T)P

motifs are required (Figure 4A). Importantly, the data also

demonstrate that overexpression of these constructs, without

Wnt3A stimulation, is sufficient to induce interaction with

Dab2, supporting previous studies demonstrating that mere

overexpression of these motifs activates Wnt/b-catenin sig-

nalling (Tamai et al, 2004). Reciprocally, the N-terminal 247

amino acids of Dab2, including the phosphotyrosine-binding

domain (PTB), are required for interacting with endogenous

LRP6 (Figure 4B), and this interaction requires Wnt stimula-

tion, in that in the absence of Wnt3A treatment full-length

Dab2 could not co-immunoprecipitate LRP6 (Figure 4B; FL-).

Direct interaction of Dab2 with LRP6 is shown in Figure 4C,

demonstrating that a GST fusion of the PTB domain of Dab2

(GST-PTB) is capable of precipitating overexpressed intracel-

lular LRP6 (DN) and the C-terminal 3 PPP(S/T)P (DNG) LRP6

constructs ectopically expressed in cells. The C-terminal

phosphorylation motifs are required in that the DN1 con-

struct, lacking these, fails to bind the Dab2 PTB domain.

Thus, the PTB domain of Dab2 is required for binding directly

to the intracellular domain of LRP6.

Wnt-induced phosphorylation of LRP6 by GSK3 promotes

the engagement of LRP6 with the scaffolding protein Axin

(Zeng et al, 2005). To determine whether phosphorylation of

LRP6 is required for Dab2 interactions, we performed in situ

mutagenesis of all possible phosphorylation sites within the

DNG construct region of Flag-tagged full-length LRP6. We

mutated Ser, Thr and Tyr residues to Ala (Figure 4D and

Supplementary Figure S6A) in the context of the full-length

Flag-tagged LRP6 construct and one of the mutant constructs

containing Ala substitutions in all three of the C-terminal

PPP(S/T)P motifs (nos. 1572, 1590 and 1607). The data

demonstrate that of all the possible phosphorylation sites

within this region, the only mutant that completely inhibited

Wnt3A-induced Dab2/LRP6 interaction was the phospho-

mutant at Ser1579 (Figure 4D). When transfected in

F9-Dab2 cells with the TOP/FOPFlash reporter, this mutant

(S1579A) also failed to attenuate Wnt-induced transactiva-

tion of this promoter as efficiently as the other phospho-

mutant LRP6 constructs (Supplementary Figure S6B).

Analysis of this site (SAEE) suggests that it is conserved in

LRP5/6 and Arrow, and that it conforms to the CK2 phos-

phorylation consensus SxEE/D (Pinna, 2002).

Further support for CK2-mediated phosphorylation of LRP6

at S1579 is provided by the in vitro kinase assay using in vitro

transcribed and translated recombinant WT (wild type)-DNG

LRP6 or phospho-mutant S1579A DNG LRP6 as substrate and

either purified recombinant CK2 kinase or a-CK2 immuno-

precipitates as the source of kinase. As shown in Supple-

mentary Figure S7A (upper panel), when [35S]-methionine-

labelled substrate is employed, purified CK2 and Ips from

Wnt3A-stimulated cells promote the upward mobility shift of

the WT-DNG LRP6 and not the phospho-mutant S1579A DNG

LRP6. In the absence of purified CK2 or with a-CK2 Ips from

control, non-stimulated cells, neither the band corresponding

to WT-DNG LRP6 nor the phospho-mutant S1579A DNG LRP6

is upwardly shifted. When the in vitro assay is performed

with [32P]-g-ATP, again only the WT-DNG LRP6 and not the

phospho-mutant S1579A DNG LRP6 is directly phosphory-

lated by either purified CK2 or a-CK2 Ips from Wnt3A-

stimulated cells (Supplementary Figure S7A, lower panel).

Further, employing an in vitro kinase assay with specific CK2

peptide substrate, the data (Supplementary Figure S7B) de-

monstrate that Wnt3A stimulation of either F9 or F9-Dab2

cells results in a time-dependent induction of CK2 activity.

To test whether CK2-mediated phosphorylation of this site

modulated LRP6/Dab2 interactions, we transfected F9-Dab2

cells with Flag-tagged WT or S1579A phospho-mutant LRP6

constructs and treated the cells with apigenin, a selective

inhibitor of CK2, prior to stimulation with Wnt3A

(Figure 4E). WT-LRP6, and not the phospho-mutant S1579A

construct, is shown to co-immunoprecipitate Dab2 and cla-

thrin following Wnt3A stimulation (Figure 4E). Co-immuno-

precipitation of LRP6 with Dab2 and clathrin does not occur

in the absence of Wnt3A stimulation. The phospho-mutant

S1579A construct is still capable of co-immunoprecipitating

caveolin in Wnt3A-stimulated cells, suggesting that the S1579

site is specific for LRP6 association with Dab2 and clathrin

and not caveolin. Further, apigenin inhibits, in a dose-depen-

dent manner, Wnt3A-induced interaction of WT-LRP6 with

Dab2 and clathrin. These data are supported by the TOP/

FOPFlash luciferase data (Supplementary Figure S8) demon-

strating that, in F9-Dab2 cells, Dab2 inhibits reporter trans-

activation induced by the WT-LRP6 receptor but not by the

S1579A phospho-mutant LRP6 receptor. Further, Dab2 inhi-

bition of WT-LRP6-mediated reporter transactivation is sen-

sitive to apigenin whereas the S1579A phospho-mutant LRP6

is not. In addition, sucrose sedimentation analysis (Supple-

mentary Figure S9) demonstrates that in the presence of Dab2

(F9-Dab2), the phosphomutant S1579A LRP6 receptor fails to

shift towards the heavier clathrin fractions upon Wnt3A

stimulation as does the WT-LRP6 (compare with Figure 2C).

The distribution of the S1579A LRP6 receptor is similar
±Wnt3A stimulation in the absence (F9 cells) or presence

(F9-Dab2) of Dab2. This indicates that the mutant can inter-

act with caveolin and shift distribution towards the lighter
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ting with a-Dab2 antibody to detect LRP6/Dab2 interactions and with a-VSVG to detect the expression of the various constructs. (B) Schematic
of various Flag-tagged Dab2 constructs utilized. Lower panels: Dab2 constructs were transfected into F9 cells and, following transfection,
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Following treatment, cells were stimulated±Wnt3A for 2 h and WCL were immunoprecipitated with a-clathrin. The precipitated complexes
were analysed by immunoblotting with a-Dab2 and a-LRP6 to detect clathrin/LRP6 and clathrin/Dab2 interactions. (G) Relative protein
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found with the Supplementary data.
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caveolin fraction upon Wnt3A stimulation, whereas it fails to

interact with clathrin and fails to redistribute with the heavier

clathrin fractions upon Wnt3A stimulation. These data sug-

gest that Wnt3A-mediated phosphorylation of S1579 of LRP6

by CK2 is required for its association with Dab2 and clathrin.

To determine whether endogenous Dab2 can mediate LRP6/

clathrin interactions, we treated F9 and siDab2-F9 cells with

RA for 3 days to induce endogenous Dab2 expression (Jiang

et al, 2008). In siDab2 F9 cells, without Dab2, there is no

clathrin/LRP6 interaction even in the presence of Wnt3A,

while RA-induced endogenous Dab2 in parental F9 cells

mediates clathrin/LRP6 interactions in the presence of

Wnt3A and this interaction is abrogated by CK2 knockdown

(Figure 4F). The relative LRP6, Dab2, clathrin and CK2

expression levels in siDab2 F9 cell and F9 cells are shown in

Figure 4G). Confirming that endogenous Dab2 inhibits Wnt/b-

catenin signalling, Wnt3A-induced phospho-LRP6, Axin2 and

b-catenin accumulation are shown to be attenuated in

RA-treated F9 cells but not in RA-treated siDab2 F9

cells (Supplementary Figure S10). These data confirm that

endogenous Dab2 can mediate clathrin/LRP6 interactions

in the presence of Wnt and that these interactions are CK2-

dependent.

LRP6 S1579A mutant neutralizes Dab2 inhibition of

Wnt3A-mediated dorsoventral patterning in zebrafish

Previous studies have shown that ectopic expression of Dab2

phenocopies Axin overexpression, resulting in inhibition of

Wnt/b-catenin signalling and altered dorsoventral patterning

(Rui et al, 2007; Jiang et al, 2009). To determine whether

modulation of LRP6/Dab2 interactions, through the S1579

site of LRP6, mediates any effects on Wnt-mediated

dorsoventral patterning, we suppressed endogenous

zebrafish LRP6 expression, by antisense morpholinos, and

rescued LRP6 expression using human WTor S1579A mutant

LRP6, not targeted by the zebrafish-specific LRP6 anti-sense

morpholinos, in the absence or presence of Dab2. Injection of

antisense morpholinos specific for zebrafish LRP6 (MO

zLRP6), and not control morpholinos (control MO), into

fertilized one-cell-stage embryos resulted in two different

populations of abnormal embryos 24 h post fertilization

(Figure 5A). The ventralized phenotype is caused by injection

and accumulation of nucleotides in the future dorsal side,

whereas the dorsalized phenotype results from microinjec-

tion and nucleotide accumulation in the future ventral side

(Rui et al, 2007). Altered phenotypes of the zLRP6

knockdown (MO zLRP6) can be rescued by co-injection

with either the human WT LRP6 (WT hLRP6) or the

S1579A mutant LRP6 (hLRP6 S1579A), demonstrating

that human LRP6 can complement zLRP6 in mediating

dorsoventral patterning (Figure 5A). Rescue of the zLRP6

knockdown altered phenotype by WT hLRP6 is not observed

if microinjection is performed in the presence of Dab2 mRNA

(MO zLRP6þWT hLRP6þDab2). Injection of Dab2 mRNA

inhibits the ability of the WT hLRP6 receptor to rescue the

zLRP6 knockdown phenotype. In contrast, co-microinjection

of Dab2 mRNA with the S1579A LRP6 mutant has no

inhibitory effect on the ability of the hLRP6 S1579A receptor

to rescue the zLRP6 knockdown phenotype (MO zLRP6þ
hLRP6 1579AþDab2). These representative morphological

views are expanded and confirmed by the data shown in

Figure 5B, where dose-dependent effects of the various

morpholinos and microinjected mRNAs are shown demon-

strating that human WTand S1579A mutant LRP6 expression

can rescue the zLRP6 knockdown, and that only the human

WT LRP6 receptor, and not the S1579A mutant, is suscep-

tible to attenuation by Dab2. Appropriate expression of the

injected hLRP6 receptors and Dab2 mRNAs in oocyte ex-

tracts is shown in Figure 5C, and the levels of WT hLRP6,

hLRP6 S1579A mutant and Dab2 are quantitated and pre-

sented (Supplementary Figure S11). Collectively, the data

demonstrate that mutation of the phospho-Ser1579 site has

no effect on Wnt-mediated signalling, but that this site is

essential for LRP6/Dab2 interactions and for Dab2 to med-

iate its inhibitory activity on Wnt-mediated dorsoventral

patterning.

LRP6 S1579A mutant neutralizes Dab2 inhibition

of Wnt/b-catenin-mediated tumourigenesis

To determine whether LRP6/Dab2 interactions, and specifi-

cally interactions through S1579, might be involved in the

putative tumour suppressor functions of Dab2, we performed

orthotopic allograft tumour studies in athymic nude mice.

Initially, we established stable cell lines in the mouse F9

background ectopically expressing Dab2, the DNG

LRP6 receptor, DNG LRP6 receptorþDab2, DNG S1579A

mutant LRP6 receptor and DNG S1579A mutant LRP6

receptorþDab2. Ectopic expression of the LRP6 receptor

constructs in the presence or absence of Dab2 is shown in

Figure 6A. Confirming that expression of the intracellular

portion of the LRP6 receptor is sufficient to mediate Wnt/

b-catenin signalling (Tamai et al, 2004), stable expression of

either DNG LRP6 or DNG S1579A mutant LRP6 receptor

results in increased TOPFlash activity (Figure 6B) and cyclin

D1 accumulation (Figure 6C). Stable co-expression of Dab2

with the DNG constructs demonstrates that Dab2 inhibits

DNG receptor-mediated signalling but not that of the DNG

S1579A mutant LRP6 receptor (Figures 6B and C).

Next, the various cell lines were injected into the left-side

flanks of athymic nude mice and as a common control

F9-Dab2 cells were injected into the right-side flanks, 10

mice for each cell line. At 45 days post inoculation, tumour

growth was monitored photographically (Figure 6D) or by

tumour weight (Figure 6E). The data show (left-side flanks of

the mice in panel D) that parental F9 cells form small

tumours that reached a mean mass of B1 g. Injection of F9-

Dab2 cells (right-side flanks of the mice) failed to induce

tumour growth in either of the mice, indicating that Dab2

inhibits F9 tumour formation. F9 cells expressing either the

DNG or the mutant DNG S1579A LRP6 receptors induce

tumourigenesis, with tumours reaching a mean mass of

B3–4 g. Growth of tumours induced by expression of the

DNG LRP6 receptor can be inhibited by co-expression of Dab2

(F9DNG-Dab2), whereas tumours induced by the mutant

DNG S1579A LRP6 receptor cannot be abrogated by co-

expression of Dab2 (Figures 6D and E). Cells isolated from

the primary tumours and expanded in culture (Figure 6F,

‘cultured cells’), as well as extracts prepared directly from

excised tumours (Figure 6F, ‘primary tumour’), maintain

stable ectopic expression of the LRP6 constructs (a-VSVG

blot) and of Dab2 (a-Dab2 blot). Further, haematoxylin and

eosin (H&E) staining (Figure 7A; H/E) and immunohisto-

chemical (IHC) staining of tumour sections revealed an

increased expression of cyclin D1 and b-catenin (Figure 7B

Dab2 regulates clathrin-mediated endocytosis of LRP6
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and C), supporting our orthotopic allograft tumour studies.

These tumour studies confirm the cellular analyses and

demonstrate that Wnt/LRP6-mediated tumourigenesis is in-

hibited by Dab2 expression and that this inhibition requires

LRP6/Dab2 interactions through the S1579 site of LRP6.

Knockdown of CK2 levels inhibits the tumour

suppressor functions of Dab2

To confirm the role of CK2 in Dab2’s ability to modulate

LRP6-mediated tumourigenesis, we shRNA-silenced CK2

expression in F9-Dab2 cells and examined its effects on

Wnt/b-catenin signalling. Successful shRNA-mediated

silencing of CK2 was achieved (Figure 8A) and co-immu-

noprecipitation analysis (Figure 8A, middle panel) revealed

that Dab2 and LRP6 fail to interact in the CK2-attenuated

cells (F9-Dab2 CK2 KD) compared to the control shRNA

cells (F9-Dab2 cont.). We also compared Wnt/b-catenin

signalling in F9 and F9 CK2 knockdown cells, and no

significant differences were observed (Supplementary

Figure S12). Further, compared with F9-Dab2 cells, in the

CK2 knockdown (F9-Dab2 CK2 KD) Dab2 fails to attenuate

transactivation of TOPFlash (Figure 8A, right panels).
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Figure 5 Dab2 fails to attenuate phospho-mutant S1579A LRP6-mediated dorsoventral patterning during zebrafish embryonic development.
(A) Left panels: Control (MO) and zebrafish LRP6 anti-sense (zLRP6) morpholinos (3 ng) were injected into one-cell-stage fertilized zebrafish
embryos and 24 h post fertilization (hpf) photos were taken using a Leica MZ95 dissection microscope. Injection of zLRP6 MO yielded the
dorsoventralized phenotypes. Middle panels: Injection of zLRP6 MO (3 ng) together with human LRP6 mRNA (hLRP6; 300 pg) into one-cell-
stage zebrafish embryos rescued the dorsoventralized phenotypes (MO zLRP6þWT hLRP6). Injection of zLRP6 MO (3 ng) and hLRP6 mRNA
(300 pg) and Dab2 mRNA (400 pg) resulted in the dorsoventral phenotypes. Right panels: Co-injection of zLRP6 MO (3 ng) with the hLRP6
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found with the Supplementary data.
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Silencing of CK2 also inhibits the ability of Dab2 to inhibit

tumourigenesis (Figure 8B). Compared with F9-Dab2 cells

that fail to form tumours following inoculation (injected in

the left flanks), F9-Dab2 cells in which CK2 has been

attenuated form tumours with a mean weight of B1 g

(right flanks). These data (Figures 8A and B) demonstrate

that CK2-mediated phosphorylation of LRP6 is required for

Dab2/LRP6 interactions and for Dab2’s ability to inhibit

Wnt3A-mediated signalling.

As depicted in our model (Figure 8C), the LRP6 receptor

has two endocytic fates following Wnt stimulation. In the

absence of Dab2, LRP6 is internalized in caveolin-containing

vesicles that presumably couple with and allow activation of

the b-catenin destruction complex. In cells that express Dab2,

Wnt3A-mediated activation of CK2 leads to LRP6 phosphor-

ylation at S1579, which promotes Dab2/LRP6 interactions

and shunting of the receptor to the clathrin endocytic path-

way. Wnt-mediated phosphorylation of LRP6 phosphoryla-

tion at S1490, postulated to be required for interaction with

and modulation of the b-catenin destruction complex, is not

observed when the receptor is internalized in clathrin-

containing vesicles. Thus, Dab2-mediated internalization of
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Figure 6 Dab2 fails to attenuate phospho-mutant S1579A LRP6-mediated tumourigenesis. (A) WCL from the indicated stably transfected cell
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using a-cyclin D1 antibody. (D) Subcutaneous inoculation of 5�105 cells of the indicated stably transfected cell lines in the left hind flank of
6-week-old BalbC athymic nude mice (nu/nu) was performed. Each animal was also inoculated with 5�105 cells of the F9-Dab2 cell line in the
right hind flank serving as a control. Images were taken 45 days post injection. (E) Tumours were excised and tumour weight was evaluated as
a box-and-whisker plot to analyse differences between mean tumour weights among the various cells used. Data are presented as
means±s.e.m. for n¼ 10 samples per group. (F) Protein extracts from cultured cells established from the excised tumours (cultured cells)
or the primary tumours themselves (primary tumours) were analysed by immunoblot analysis using a-VSVG and a-Dab2 to detect relative
expression levels of Dab2 and VSVG-tagged DNG and DNG S1579A. Figure source data can be found with the Supplementary data.
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LRP6 through the clathrin pathway fails to couple with the

destruction complex.

Discussion

We provide evidence that the tumour suppressor Dab2 med-

iates antagonistic effects on Wnt/b-catenin signalling through

its effects on LRP6 internalization. In the absence of Dab2,

Wnt induces the internalization of LRP6 through caveolin-

mediated endocytosis, resulting in Wnt/b-catenin signalling,

whereas in its presence Dab2 binds LRP6, in a Wnt and CK2-

dependent manner, and shunts LRP6 towards clathrin-

mediated endocytosis and suppression of b-catenin signalling

(Figure 8C). We postulate, therefore, that cellular Dab2 levels

modulate Wnt/b-catenin signalling by regulating the endocy-

tic fate of the LRP6 receptor.

Dab2 is an adaptor involved in endocytosis and protein

trafficking (Bonifacino and Traub, 2003). Dab2 binds to

clathrin and the clathrin adaptor AP-2 and displays a

punctate ‘dot-like’ staining pattern in cells suggestive of its

association with intracellular vesicles (Morris and Cooper,

2001). On the basis of these data, and recent reports

demonstrating that internalization of Wnt receptor

complexes, through either caveolin or clathrin-mediated

routes, is critical for regulating Wnt signalling (Yamamoto

et al, 2008), we did observe an interaction between Dab2 and

LRP6. This interaction requires activation of Wnt signalling

or mere overexpression of the intracellular domain of LRP6.

Dab2 interaction with LRP6 does not involve the five

reiterated ‘PPPS/TP’ sites required for LRP6 to interact with

Axin (Tamai et al, 2004), but rather requires the highly

conserved Ser site at 1579. The data demonstrate that

phosphorylation of this site by CK2, in response to Wnt,

promotes binding of Dab2 and LRP6. Dab2/LRP6 interactions

do not affect the endocytic rate of LRP6, in that in the

presence or absence of Dab2 LRP6 receptors are

internalized with similar kinetics. Rather, Dab2’s binding to

LRP6 shunts the receptor away from its interaction with and

endocytosis by caveolin, and promotes its binding to and

endocytosis by clathrin. Mutation of S1579 does not abrogate

LRP6/Wnt-mediated signalling but prevents LRP6’s ability to

be phosphorylated by CK2, its interaction with Dab2 and its

shunting toward the clathrin endocytic pathway, and thus

inhibits Dab2’s antagonistic effect on Wnt/b-catenin

signalling. Significantly, in our allograftic tumour studies

attenuation of Wnt signalling and tumour growth by Dab2

is observed only with the WT LRP6 DNG and not with the

phospho-S1579A LRP6 mutant DNG that fails to interact with

Dab2. Thus, S1579 of LRP6 represents a significant negative

regulatory point of Wnt/b-catenin signalling and suggests

that mutation of this site may be targeted in tumourigenesis.

Our findings also corroborate previous studies by

Yamamoto et al, demonstrating that S1490 phosphorylation

is independent of LRP6 internalization but is essential for

b-catenin accumulation. Indeed, we did not observe Axin and

GSK3b in the LRP6 complex in the presence of Dab2, suggest-

ing that LRP6’s association with components of the b-catenin

complex, and ultimately b-catenin accumulation, occurs

downstream of LRP6 internalization in caveolin-containing

vesicles. In the presence of Dab2 and CK2 phosphorylation of

LRP6, the co-receptor is internalized through clathrin-

containing vesicles and fails to couple and modulate the

b-catenin destruction complex. Thus, although LRP6 is inter-

nalized, it fails to mediate accumulation of b-catenin in the

presence of Dab2.

DKK1, similarly to Dab2, inhibits Wnt3A-dependent stabi-

lization of b-catenin. However, while both DKK1 and Dab2

inhibit Wnt/b-catenin signalling by promoting LRP6 interna-

lization through the clathrin pathway, their inhibitory actions

differ in several important aspects: (1) whereas Dab2 inter-

acts with LRP6’s intracellular domain, DKK1 interacts with

the extracellular domain of LRP6; (2) mere expression of

DKK1 in cells induces internalization of LRP6 (Yamamoto

et al, 2008), whereas Dab2 expression has no effect on basal

or Wnt3A-induced LRP6 internalization. DKK1 does not

suppress Wnt3A-induced accumulation of b-catenin when

clathrin-mediated endocytosis is disrupted using MDC or in

clathrin knockdown cells (Yamamoto et al, 2008), suggesting

that DKK1-dependent internalization of LRP6 through

clathrin is required for its inhibitory effects on b-catenin

signalling. In contrast, Dab2’s inhibitory effects on
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b-catenin accumulation do not require LRP6 internalization

in that the MDC inhibitor does not attenuate Dab2’s

inhibitory effect; only clathrin knockdown inhibits Dab2’s

attenuation of Wnt signalling. Presumably, in the absence of

clathrin, Dab2 sequestration of LRP6 does not occur and the

receptor is free to internalize and signal through the caveolin

pathway upon Wnt3A stimulation. This indicates that Dab2’s

inhibitory effect requires interaction with clathrin and LRP6

resulting in sequestration of the receptor from the caveolin

pathway, and not LRP6 internalization.

There is now accumulating evidence that Wnt-induced

endocytosis is not only an obligatory step for b-catenin

signalling (Blitzer et al, 2006; Taelman et al, 2010) but is

also necessary for PCP signalling (Gagliardi et al, 2008;

Ohkawara et al, 2011). A ‘two endocytic routes–two out-

comes’ model for canonical Wnt/b-catenin signalling has
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been proposed whereby LRP6 internalization can occur

through caveolin- or clathrin-dependent pathways resulting

in activation or inhibition of b-catenin, respectively

(Yamamoto et al, 2008). Our results confirm this concept

and show that the endocytic adaptor Dab2 regulates the

sequestration of LRP6 towards clathrin-mediated

endocytosis. Thus, Dab2, presumably through its binding to

clathrin and the AP2 adaptor (Morris and Cooper, 2001), links

LRP6 to the endocytic machinery, while a similar adaptor

molecule linking LRP6 with the caveolin endocytic machinery

has yet to be identified. It appears, from our data, that

although LRP6 is internalized with similar kinetics in the

presence or absence of Dab2, once internalized the

endocytic fate of the receptor is distinct. In Dab2/clathrin-

containing endosomes, Wnt3A-mediated phosphorylation of

LRP6 at S1490 does not occur, suggesting that after being

internalized these Dab2 vesicles fail to engage the b-catenin

destruction complex and its associated CKI and GSK3b
kinases to phosphorylate LRP6. Presumably this endocytic

pathway is involved in receptor recycling, but whether it

mediates other Wnt signalling remains to be determined. On

the other hand, caveolin-containing endosomes, once

internalized, appear to couple with the b-catenin destruction

complex in that LRP6 phosphorylation at S1490 is observed.

Collectively, these data not only highlight the significance of

LRP6 internalization in Wnt/b-catenin signalling but also

support the so-called ‘signalling endosome’ model whereby

endosomal vesicles serve as intracellular platforms for the

assembly of regulatory molecules and effectors that confer

signalling specificity and diversity. Perhaps the composition of

endocytic adaptor molecules such as Dab2 within these

endocytic platforms regulates signalosome formation and

thus signalling outcomes.

Materials and methods

Preparation of cell lysates, immunoblot analysis and
immunoprecipitation
For immunoprecipitation and immunoblot analysis, cells were lysed
in buffer D and immunoprecipitation was performed as described
previously (Jiang et al, 2008).

Biotin labelling of cell surface proteins and internalization
assays
For cell surface protein labelling, cells were treated in the presence
or absence of Wnt3A conditioned media at 371C for the times
indicated and washed three times with ice-cold phosphate-buffered
saline (PBS; pH 8.0) to remove any contaminating proteins. Cells
(2.5�107 cells/ml) were resuspended in PBS and 50 ml of 20 mM
Sulfo-NHS-SS-Biotin per millilitre of reaction volume was added.
Following a 1-h incubation on ice, cells were washed with Sulfo-
NHS-SS-Biotin blocking reagent (50 mM NH4Cl in PBS containing
1 mM MgCl2; 0.1 mM CaCl2) to quench free Sulfo-NHS-SS-Biotin,
followed by several ice-cold PBS washes. Cell lysates were prepared
in buffer D followed by NeutrAvidin agrose beads (Pierce) precipi-
tation. Precipitates were washed three times with buffer D and
analysed by SDS–PAGE and immunoblotting with a-LRP6 and
a-EGFR antibodies. For internalization assays, cell surface proteins
were biotin-labelled as described above at room temperature for 1 h,
followed by treatment with or without Wnt3A for the indicated
times at 371C. Following stimulation, cells were incubated with ice-
cold glutathione solution (60 mM glutathione, 0.83 M NaCl, with
0.83 M NaOH and 1% bovine serum albumin (BSA) added before
use) for two 30-min incubations, followed by ice-cold PBS washes
four times. Cells were collected and lysed with buffer D and
biotinylated proteins precipitated with immobilized NeutrAvidin
agarose beads followed by SDS–PAGE and immunoblot analysis
with a-LRP6 and a-EGFR antibodies.

Immunofluorescence and imaging
F9 and F9-Dab2 cells were treated with E1 A control media or
Wnt3A conditioned media for 1 h. Following treatment, cells were
fixed for 20 min in PBS buffer containing 4% (w/v) paraformalde-
hyde, followed by permeabilization with PBS containing 0.2%
(w/v) Triton X-100 and 2% BSA for 20 min. Cells were incubated
with primary antibodies a-LRP6/a-caveolin or a-LRP6/a-clathrin
for 1 h in permeabilization buffer followed by three washes with
PBS. Cells were incubated in secondary antibodies Alexa fluor 488
(green) goat a-mouse and Alexa fluor 568 (red) goat a-rabbit at
room temperature for 1 h followed by three washes with PBS before
being observed with confocal laser scanning on a Leica TCS SP2
confocal microscope (Leica Microsystems, Germany).

In vivo tumourigenecity studies
Tumourigenesis was performed using subcutaneous injection of F9,
F9-Dab2, F9-DNG, F9-DNG-Dab2, F9-DNG S1579A or F9-DNG
S1579A-Dab2 cells (5�105) into the hind left flank of 6-week-old
BalbC athymic nude mice (nu/nu), and F9-Dab2 cells were injected
into the hind right side as standard control. Ten animals were
used for each cell type. Post injection (45 days), all mice were
killed and images were taken. Tumours in mice were excised for
weight measurement and images taken. All experiments were
performed according to approved protocols of the Institutional
Animal Care and Use Committee (IACUC), Medical University of
South Carolina.

Immunohistochemistry
Immunohistochemistry was performed on paraffin-embedded sec-
tions as described (Hussey et al, 2011). Briefly, tissue sections were
incubated with primary antibody a–b-catenin (Cell Signalling
Technology, 1:100) or a-cyclin D1 (Cell Signalling Technology,
1:100) for 2 h at 251C. The sections were washed with PBS before
being incubated with the biotinylated secondary antibody for
30 min at 251C. The stain was developed with diaminobenzidine
tetrahydrochloride (DAB) chromogen. Haematoxylin/eosin staining
was carried out with Ehrlich haematoxylin/eosin solution (Sigma-
Aldrich). All slides were observed and photos taken under a Leica
DM 2000 microscope.

Zebrafish embryo microinjection
The WT AB zebrafish strain was maintained and bred under
standard conditions and embryo microinjection was performed
following the standard protocol (Westerfield, 2007). For more
detailed information, see Supplementary data.

Statistical analysis
All experiments were carried out at least three times. Data were
represented as mean±s.e.m. Significance of differences between
two groups was tested by Student’s t test or ANOVA. A P value less
than 0.05 was regarded as significant.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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