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ABSTRACT: Much of the genetic basis of complex traits is present on current genotyping products, but the individual variants
that affect the traits have largely not been identified. Several traditional problems in genetic epidemiology have recently been
addressed by assuming a polygenic basis for disease and treating it as a single entity. Here I briefly review some of these
applications, which collectively may be termed polygenic epidemiology. Methodologies in this area include polygenic scoring,
linear mixed models, and linkage disequilibrium scoring. They have been used to establish a polygenic effect, estimate genetic
correlation between traits, estimate how many variants affect a trait, stratify cases into subphenotypes, predict individual
disease risks, and infer causal effects using Mendelian randomization. Polygenic epidemiology will continue to yield useful
applications even while much of the specific variation underlying complex traits remains undiscovered.
Genet Epidemiol 40:268–272, 2016. Published 2016 Wiley Periodicals, Inc.∗
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The completion of genome-wide association studies (GWAS)
for hundreds of complex diseases and traits has created new
challenges for genetic epidemiologists as we seek to under-
stand the function of associated loci, using multiple emerging
technologies [Ziegler and König, 2014]. At the same time, the
realization that most if not all complex traits are polygenic—
that is, they are influenced by thousands of genetic variants
each having a small effect—has spurred the development of
methods that address traditional problems in genetic epi-
demiology by treating the entire polygenic basis as a single
entity. By dealing with the genetic basis en masse, these meth-
ods access more of the heritable component of complex traits
than is possible by single-variant approaches, and thus allevi-
ate much of the missing heritability problem that has recently
so exercised genetic epidemiologists [Maher, 2008]. Here I
briefly review several such applications, which together form
an emerging field of polygenic epidemiology.

The concept of a polygenic risk is well established in classi-
cal genetics and in humans has been applied for some time in,
for example, segregation analysis of complex diseases [Anto-
niou et al., 2002; Risch, 1990]. But only with the development
of genome-wide panels of SNP markers has it become pos-
sible to treat the polygenic basis explicitly. An early success
was in the recalculation of twin-based heritabilities using
observed, rather than expected, genetic similarity between
dizygous pairs [Visscher et al., 2008]. Two influential papers
then introduced complementary methods for demonstrating
evidence of a polygenic effect, and have each led to further
developments across a range of applications.
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The polygenic scoring method was applied by Purcell et al.
[2009] to argue that schizophrenia has a polygenic risk. Al-
though their GWAS identified few individually significant
SNPs, a small systematic increase in χ2 statistics was observed
across the genome, and could not be reduced by control for
population structure or genotyping error. The polygenic scor-
ing method uses a GWAS dataset, called the training sample,
to estimate effect sizes for each SNP, and to select SNPs ac-
cording to a P-value threshold. In a second dataset, called the
target sample, a polygenic risk score is calculated for each sub-
ject as the weighted sum of risk alleles at the selected SNPs,
with the weights being the effects estimated in the training
data. A polygenic risk would cause this score to be associated
for very liberal selection P-values. Purcell et al. observed sig-
nificant association of the score with a selection threshold as
high as P < 0.5, and used simulation to argue that this was
consistent with a polygenic effect; their argument has since
been strengthened by theory [Dudbridge, 2013; Yang et al.,
2011b].

Linear mixed models were used by Yang et al. [2010] to
show that much of the heritability of height can be explained
by current GWAS chips, even though very little could be ex-
plained by known associated variants. The approach derives
from methods of quantitative genetics used in crop and live-
stock breeding, in which the genetic value (or breeding value)
of an individual can be derived as a random effect by relating
the phenotypes of the study subjects to their known pedigree
structure. The innovation in human studies is that nominally
unrelated subjects can be used, by estimating their (distant)
relatedness from genome-wide marker data. By relating ge-
netic to phenotypic similarity across all pairs of subjects, the
variance of the genetic values can be estimated and taken as an
estimate of narrow-sense heritability. Because this depends
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upon the markers used to estimate relatedness, especially the
fact that they are usually selected to be common (e.g., >1%
minor allele frequency), this estimate is known as chip heri-
tability. A further advantage of using unrelated individuals is
that shared environmental effects are minimal and therefore
unlikely to bias the chip heritability.

Both polygenic scores and linear mixed models have been
used to infer a polygenic basis for a wide range of traits [Bush
et al., 2010; Lu et al., 2014; Speliotes et al., 2010; Visscher et al.,
2012], to the degree that it is now generally accepted that all
complex traits are polygenic. Much attention is now directed
at demonstrating and estimating the genetic correlation be-
tween pairs of traits. This can be done with polygenic scores,
by training the score on one trait and testing it against an-
other: if there is no shared genetic basis, the score will not be
associated. A bivariate linear mixed model may also be used,
modeling the genetic variance for two traits simultaneously
with their covariance. Both approaches have shown a shared
basis for schizophrenia and bipolar disorder, as well as for
other pairs of psychiatric disorders [Cross-Disorder Group
of the Psychiatric Genomics Consortium, 2013; Lee et al.,
2013; Purcell et al., 2009]. This indicates a common molec-
ular etiology for these conditions, which may prove useful
for developing novel treatments or identifying individuals at
risk, but may also suggest problems with current nosology
and diagnosis. A shared basis has also been demonstrated
for mammographic breast density and breast cancer, which
may in part explain the former as a risk factor for the latter,
by mediating some of the genetic risk of disease [Varghese
et al., 2012]. On the other hand, genetic correlation has not
been observed for some pairs of traits for which it might be
expected, especially in neurology [Goris et al., 2014]. Autism
appears to occupy a distinct position among psychiatric dis-
orders in that it has no genetic correlation with the other
major disorders studied, other than a low (16%) correlation
with schizophrenia [Lee et al., 2013].

Linear mixed models give immediate estimates of chip her-
itability and genetic correlation: inference of the polygenic
effect follows by testing these effects against their standard
errors [Visscher et al., 2014]. By contrast, polygenic scoring
gives a hypothesis test for the polygenic effect, without an
immediate estimate of chip heritability. However, methods
have been developed to infer chip heritability and genetic
correlation from the result of a polygenic score test [Palla and
Dudbridge, 2015; Stahl et al., 2012], by estimating under what
degree of chip heritability would the observed result be ex-
pected. These models also allow for a proportion of variants
with no effect on the trait; linear mixed models have also been
implemented with this feature [Meuwissen et al., 2001; Moser
et al., 2015; Zhou and Stephens, 2012]. A notable finding has
been that the proportion of variants affecting a complex trait
rarely exceeds 5%, even in heterogeneous samples [Palla and
Dudbridge, 2015]. Thus the classical infinitesimal model may
not hold in truth, although the traits remain highly polygenic.
This finding affects the interpretation of genetic correlation,
because the overall genetic correlation is determined by the
proportion of variants with effects on both traits and the

correlation of effects among those variants. A given genetic
correlation may be concentrated among a few variants with
highly concordant effects on both traits, or dispersed among
more variants with only weakly concordant effects. Although
the genetic correlation is informative at the whole subject
level, it is not in itself very informative at the single-variant
level. Chip heritability itself is only interpretable in the con-
text of an assumed model, usually (for disease traits) a liability
threshold model, and the population-specific environment
[Hopper and Mack, 2015]; however it is generally useful to
estimate the broad degree of genetic variance and correla-
tion, even if it is challenging to provide or interpret a precise
estimate.

A third approach to assessing chip heritability is linkage
disequilibrium (LD) scoring [Bulik-Sullivan et al., 2015a].
Its rationale is that the more variants a given marker is in LD
with, the higher is its (marginal) association statistic likely
to be. Regression of χ2 statistics for genome-wide markers
on their LD “scores” gives an estimate of chip heritability
(the slope of the regression) as well as of systematic bias due
to population structure (the intercept). An extension allows
the estimation of genetic covariance between traits [Bulik-
Sullivan et al., 2015b].

A further application is the estimation of chip heritability
within sub-groups of markers. Such “genome partitioning”
analyses have demonstrated that polygenic effects are spread
uniformly across the chromosomes, but variants with known
functional effects tend to explain more variation than others
[Visscher et al., 2007; Yang et al., 2011a].

Polygenic scores show promise for patient stratification and
subphenotyping. Hamshere et al. [2011] showed that, among
bipolar disorder cases, polygenic scores for schizophrenia risk
could distinguish schizo-affective cases from others, while
not distinguishing psychotic cases from nonpsychotic. In
inflammatory bowel disease, polygenic scores can distin-
guish cases with colonic from ileal Crohn’s disease, and
from those with ulcerative colitis [Cleynen et al., 2016].
Prostate cancer screening targeted to men with high polygenic
risk could reduce the rate of overdiagnosis [Pashayan et al.,
2015].

Ultimately we might hope for individual risk prediction
from polygenic analysis, which indeed first motivated the
polygenic scoring method [Wray et al., 2007]. The perfor-
mance of genetic prediction is bounded by the heritability
[Clayton, 2009], but early attempts fell well short of that
limit [Evans et al., 2009]. Furthermore, family history is an
informative marker for genetic risk, and any predictor based
on measured genotypes should exceed that benchmark to be
deemed worthwhile [Aulchenko et al., 2009]. It is now clear
that much larger samples are required to attain accurate pre-
diction from polygenic models, of the order of 105 subjects
[Chatterjee et al., 2013; Daetwyler et al., 2008; Dudbridge,
2013]. The reason is simply that as more variants enter the
prediction model (as is necessary to explain the genetic risk),
the greater is the sampling error in the total score, so the
latter must be kept extremely small at the single-variant level.
National biobanks and disease consortia are now beginning to
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Figure 1. P-values (−log10 scale) for selecting variants into a poly-
genic score such that the area under the receiver operator character-
istic curve (AUC) is maximized. A binary trait with prevalence 10% is
assumed, with variants selected from a case/control study with equal
number of cases and controls. Chip heritability of 40% (solid line) and
20% (dashed line) is distributed among 100,000 independent variants, of
which 5% have normally distributed effects and the rest have no effect.
The vertical line is at 50,000 cases and 50,000 controls, at which point
over 95% of the maximum AUC is achieved.

approach this scale [CardiogramPlusC4D Consortium, 2015;
Locke et al., 2015; Michailidou et al., 2013; Schizophrenia
Working Group of the Psychiatric Genomics Consortium,
2014], and the outlook for genetic prediction is becoming
more promising than has recently appeared.

A common practice is to perform genetic prediction us-
ing only variants that are robustly associated at genome-
wide significance [Mavaddat et al., 2015; Szulkin et al., 2015;
Talmud et al., 2015]. This is based on intuition that the risk
score contains genuine predictors and no “noise,” and could
therefore be easily conveyed to clinicians and policy makers.
However, precisely in line with the missing heritability prob-
lem, such predictors explain very little variation in disease
risk, and therefore have little predictive accuracy. Analytic
results [Dudbridge, 2013] suggest that, even at very large
sample sizes, prediction is optimized by selecting variants
with P-values as high as 0.001 into a risk score (Fig. 1). Per-
haps counterintuitively, it is possible to predict with accuracy
close to the theoretical maximum even while including many
neutral variants in the model. By the same token, as sample
sizes continue to grow it should be possible to achieve useful
levels of prediction even while many individually associated
variants remain to be discovered. In translating such predic-
tors into practice, it will be important to present the polygenic
risk as a single entity in order to allay concerns that it con-
tains many irrelevant variants. This is naturally achieved by
linear mixed models, which estimate a single genetic value for
each individual as a random effect, and these models are now

being extended to allow for subgroups of variants with no or
little effect [Moser et al., 2015; Speed and Balding, 2014].

As a final aspect of polygenic epidemiology discussed
here, Mendelian randomization studies are increasingly us-
ing composite genetic scores to draw causal inferences from
observational data [Nuesch et al., 2015; Thrift et al., 2015;
Voight et al., 2012; Zhang et al., 2015]. The advantages are
similar to those of individual prediction, in that a composite
score can predict the intermediate trait to a greater accuracy
than can single variants. A particular difficulty however is
that Mendelian randomization assumes that the genetic in-
strument only affects the outcome through the exposure of
interest. This assumption is increasingly likely to be violated
as more variants enter the model [Burgess and Thompson,
2013; Palmer et al., 2012]. There is a stronger argument for re-
stricting gene scores to robustly associated loci, but pleiotropy
can still violate the assumption [Holmes et al., 2015]. In a
highly polygenic score, variants with effects on the outcome
but not on the exposure can create substantial bias [Evans
et al., 2013]. Methods are now available to adjust Mendelian
randomization analyses for known [Burgess and Thompson,
2015; Burgess et al., 2015] and unknown [Bowden et al.,
2015] pleiotropic effects. Concerns about pleiotropy have so
far discouraged the application of linear mixed models to
Mendelian randomization, although in principle they could
improve precision over polygenic scores.

The small effects of individual variants have caused the
value of GWAS to be questioned [Manolio, 2013]. But bear-
ing in mind that most complex traits are strongly herita-
ble, the polygenic risk is highly informative taken en masse
as a single risk factor. Confirmation is appearing through
the applications of polygenic epidemiology discussed here,
and further applications—such as identifying interactions,
or mediation analysis—are sure to be developed in the near
future. So far, the field has mainly developed from psychi-
atric genetics, in which progress in identifying and following
up GWAS associations has been slower than in other areas.
However, as seen here, applications are becoming common
in cardiovascular, cancer, and immunological genetics. Other
areas will add further insights: for example, population ge-
neticists have used GWAS signals to demonstrate polygenic
adaptation [Berg and Coop, 2014]. Linear mixed models are
in principle the most powerful and accurate class of methods,
with the principal challenges being the correct specification
of the random effects distribution, and computational issues
in large samples [Ge et al., 2015]. Polygenic risk scores, and
LD scoring, offer simpler and faster approaches, requiring
only summary statistics from completed GWAS, and gener-
ally incurring only a moderate loss of precision compared
to linear mixed models. The variety of methods and applica-
tions now emerging in polygenic epidemiology will make this
field a fertile ground for development in the coming years.
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