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Proteoglycans (PGs), present in diverse environments, such as the cell membrane
surface, extracellular milieu, and intracellular granules, are fundamental to life.
Sulfated glycosaminoglycans (GAGs) are covalently attached to the core protein of
proteoglycans. PGs are complex structures, and are diverse in terms of amino acid
sequence, size, shape, and in the nature and number of attached GAG chains, and
this diversity is further compounded by the phenomenal diversity in GAG structures.
Chemokines play vital roles in human pathophysiology, from combating infection and
cancer to leukocyte trafficking, immune surveillance, and neurobiology. Chemokines
mediate their function by activating receptors that belong to the GPCR class, and
receptor interactions are regulated by how, when, and where chemokines bind
GAGs. GAGs fine-tune chemokine function by regulating monomer/dimer levels and
chemotactic/haptotactic gradients, which are also coupled to how they are presented to
their receptors. Despite their small size and similar structures, chemokines show a range
of GAG-binding geometries, affinities, and specificities, indicating that chemokines have
evolved to exploit the repertoire of chemical and structural features of GAGs. In this
review, we summarize the current status of research on how GAG interactions regulate
ELR-chemokine activation of CXCR1 and CXCR2 receptors, and discuss knowledge
gaps that must be overcome to establish causal relationships governing the impact of
GAG interactions on chemokine function in human health and disease.

Keywords: glycosaminoglycan, proteoglycan, chemokine, nuclear magnetic resonance, structure, heparan
sulfate, chondroitin sulfate, heparin

Abbreviations: CS, chondroitin sulfate; CXCL, CXC ligand; CXCR2, CXC chemokine receptor 2; DS, dermatan sulfate;
ECM, extracellular matrix; GAG, glycosaminoglycan; HA, hyaluronic acid; HS, heparan sulfate; ITC, isothermal titration
calorimetry; KS, keratan sulfate; MD, molecular dynamics; NMR, nuclear magnetic resonance; PCM, pericellular matrix; PG,
proteoglycan; Sdn, syndecan; SPR, surface plasmon resonance.
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INTRODUCTION

Proteoglycans (PGs), a diverse class of forty three members, are
expressed by most cell types and tissues and play vital roles in
human physiology and disease (1–5). PGs are classified into four
classes: cell-surface, pericellular, extracellular, and intracellular
(1). Sulfated glycosaminoglycans (GAGs) are a family of linear
polysaccharides covalently attached to core proteins, and are the
glycan part of PGs (6). Mammals express five sulfated GAGs
that differ in their backbone structure and sulfation pattern:
heparin, HS, CS, DS, and KS. Cell surface PGs consist of two
classes – transmembrane (TM) and glycosylphosphatidylinositol
(GPI) PGs, and both carry HS and/or CS chains (7, 8). Pericellular
and extracellular PGs are secreted and exist as macromolecular
complexes with other PGs and proteins (1, 9, 10). Pericellular PGs
predominantly carry HS, and extracellular PGs predominantly
carry CS (1). Intracellular PG consists of only one member,
serglycin, which serves as a storage for granule proteins. Whereas
serglycin in mast cells carries predominantly heparin, serglycin in
platelets carries CS and DS (1, 11, 12).

A PG can have one single GAG chain or hundreds of
GAG chains, and one or two types of GAGs; additionally, the
prevalence of the individual GAGs can vary, with HS and CS
being the most preferred. GAGs are intrinsically heterogeneous
due to differential sulfation and epimerization. Therefore, the
complexity of PG structures arise not only from their amino
acid sequence, size, shape, and the type and number of attached
GAG chains, but also from the diversity in GAG structures.
PG physiology is equally diverse and includes both structural
and functional roles that are highly context-dependent. Whereas
their structural role as a component of the ECM and PCM in
providing cellular and tissue integrity and stability is relatively
well understood, their functional roles – as a platform for binding
hundreds of proteins of various classes, from chemokines and
growth factors to proteases – are less well understood.

Humans express around 47 chemokines that share the
following fundamental properties. They are around 70 to 100
amino acids in length, have the same tertiary structure consisting
of three β-strands and an α-helix stabilized by disulfide bonds,
exist reversibly as monomers and dimers and occasionally as
higher order oligomers, bind GAGs, activate receptors of the
GPCR (G protein-coupled receptor) class, and mediate trafficking
of various immune and non-immune cells to distal and remote
locations (13–15). Fundamental to any given chemokine or cell
type, chemokine function must be highly regulated so that the
right number of cells reach their target site at the right time to
elicit the right response. For instance, seven human chemokines –
CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8,
all characterized by the conserved N-terminal “ELR” motif –
are agonists for CXCR1 and CXCR2 receptors. Whereas all
ELR-chemokine monomers are potent CXCR2 agonists, ELR-
chemokine dimers are differentially active for CXCR2, and
CXCL8 monomer alone functions as a potent CXCR1 agonist.
CXCR1 and CXCR2 are expressed in diverse cell types, including
neutrophils that combat infection, oligodendrocytes in spinal
cord patterning, and neuronal cells that regulate pain, in
addition to regulating trafficking and proliferation of cancer cells

(16–19). In this review, we focus on the structural basis and
molecular mechanisms by which GAGs regulate ELR-chemokine
activation of CXCR1 and CXCR2 receptors that are expressed
on neutrophils and other cell types. Insights from this subset of
chemokines and cell type reflect the current status and challenges
for the GAG interactions of the entire chemokine family at large.

To appreciate the diversity in PG structures, we discuss
syndecans as an example. Syndecans are cell surface PGs, and
vertebrates express four syndecans: syndecan-1, -2, -3, and -4 (3,
20, 21). Whereas syndecan-4 (Sdc-4) is widely expressed in most
tissues, Sdc-1 is expressed on epithelial and endothelial cells, and
Sdc-2 and Sdc-3 are expressed selectively in cells of mesenchymal
and neuronal origin, respectively. Studies using Sdc-1 and Sdc-
4 KO mice and cell-based assays show that Sdc-1 and Sdc-4
regulate chemokine-mediated neutrophil recruitment (22–29).
Chemokine binding to syndecans has been implicated in the
activation of signaling pathways, changes in actin cytoskeleton,
downregulation of gap junction proteins, and an increase in
permeability (30–32). Reorganization of endothelial PGs also
facilitates neutrophil adhesion, an early critical step that precedes
crossing the endothelium (33). However, Sdc-1 and Sdc-4 are
of varying molecular weights, show low amino acid sequence
homology in their ectodomains, and whereas Sdc-1 carries 3
HS and 2 CS chains, Sdc-4 carries only 3 HS chains. HS chains
are located close to the N-terminus at the distal end of the
ectodomains; therefore, HS-bound GAGs are more accessible for
interacting with infiltrating leukocytes. CS chains are closer to the
membrane surface, and thus CS-bound chemokine could play a
prominent role in mediating signaling events in the endothelium.
From biophysical studies that have shown chemokine binding
can induce crosslinking and clustering of GAGs, it has been
proposed chemokine binding to GAGs can result in clustering
and reorganization of the glycocalyx triggering endothelial
signaling (34).

The basic building block of HS consists of repeating
disaccharide units of D-glucuronic acid (GlcA) and N-acetyl-
D-glucosamine (GlcNAc). HS has a modular structure, with
sulfated sequences separated by non-sulfated regions, and is also
more diverse due to differential N-sulfation and O-sulfation. In
addition to N-sulfation, glucosamine can have 6-O sulfation, and
GlcA can have 2-O sulfation and epimerize at C5 to L-iduronic
acid (IdoA). The basic building block of CS consists of D-GlcA
and N-acetyl-D-galactosamine (GalNAc), and on average, the
disaccharide unit has one sulfate with O-sulfation either at C4 or
C6 of GalNAc. Knowledge of the manner in which differences in
CS and HS structures and fine structure of a given GAG impact
chemokine binding and function is necessary.

In response to infection or injury, ELR-chemokines released
by resident cells at the site of insult navigate across the epithelium,
ECM, and endothelium to the vasculature, and provide
directional cues by establishing haptotactic and chemotactic
gradients that direct neutrophils to the insult site (35–39).
GAG interactions impact most aspects of chemokine function,
including chemokine blood levels, lifetime by preventing
proteolysis and being washed away with blood flow, makeup
of chemokine gradients, and chemokine presentation to the
receptor on neutrophils (37–45). During an inflammatory
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FIGURE 1 | All ELR-chemokines share the same structural fold. Structures of CXCL5 dimer (A) and monomer (B) as a representative of ELR chemokines are shown.
The individual monomers in the dimer are shown in dark and light blue for clarity and different GAG-binding regions (N-terminal loop, 40s turn, and C-terminal α-helix)
are labeled.

response, neutrophils are observed in as early as an hour
and can last over a day or more; chemokine levels during
this period can vary by orders of magnitude as a function
of time and space (46–48). The chemokine concentration is
higher close to the membrane surface due to GAG interactions,
and fall steeply toward the center of the vessel; it is also
higher at sites where neutrophils extravasate into the tissue due
to small dimensions of the capillaries and high numbers of
endothelial venules.

ELR-chemokines reversibly exist as monomers and dimers
(Figure 1), and it is well established that the dimeric form
binds GAG with higher affinity (49–55). At any given time and
location, all four forms – monomer and dimer in solution and
in GAG-bound forms – must exist in dynamic equilibrium.
However, their relative amounts will depend on chemokine and
GAG concentrations and four equilibrium constants – between
monomer and dimer, monomer and GAG, dimer and GAG,
and monomer-bound GAG and dimer-bound GAG. Engineered
trapped monomers and dimers in animal models show distinctly
different neutrophil recruitment profiles, indicating that the
monomer-dimer equilibrium regulates recruitment (56–59).
These observations indicate that chemokine dimerization and
GAG interactions control chemotactic and haptotactic gradients
that are coupled to the flux, duration, and kinetics of circulating
neutrophil egress to the tissue. In disease situations, dysregulation
in chemokine expression and/or disruption in monomer/dimer
ratio could lead to either low or uncontrolled neutrophil
trafficking resulting in unresolved inflammation and significant
collateral tissue damage and disease.

Neutrophil trafficking is orchestrated by the interaction
of ELR-chemokines with the endothelial, ECM, PCM, and
glycocalyx PGs (Figure 2). Chemokines released at the site of
insult first encounter ECM PGs, then cross the rather thin
PCM located on the abluminal side of the endothelium, and
then the endothelium before interacting with the endothelial
cell surface PGs (60). Chemokines then enter the glycocalyx,
which is a specific form of PCM as it functions as an interface

between the endothelial cell surface and the blood flow (61).
The dimensions of the glycocalyx are much larger (∼1000 nm)
in comparison with the dimensions of a chemokine (∼3 nm),
syndecan ectodomain (<100 nm), or a typical GAG (∼80 nm)
(62). The glycocalyx, besides several PGs and proteins, also
contains the non-sulfated GAG HA, and syndecan ectodomain
and free HS generated upon cleavage by bacterial and endogenous
proteases during an inflammatory response (4, 63–66). HA,
which can be a few microns long, plays an important role in
keeping the components of the glycocalyx together. From the
perspective of chemokine interactions, endothelial PGs and the
glycocalyx must be considered as a continuum rather than as two
distinct compartments, and GAG interactions at this location are
crucial as they set the stage for the subsequent steps of neutrophil
trafficking to the target site. Chemokines then finally diffuse into
the vasculature, where they encounter neutrophils before being
washed away with the blood flow.

Understanding how PG interactions impact chemokine
function requires knowledge of the molecular mechanisms and
the structural basis, such as binding-interface residues, geometry,
affinity, and stoichiometry of both monomer and dimer binding
to different GAG types, as well as how PG structures and
distribution of GAGs in a given PG impact chemokine binding
interactions. There is no evidence that chemokines bind to the
protein component of the PGs, and so we confine our discussion
to binding to GAGs. A schematic of different GAG-chemokine
complexes that could exist during neutrophil recruitment at
different locations is shown in Figure 3. At low concentrations,
essentially a single chemokine monomer or dimer will bind
each GAG chain (models A and B). GAGs are long linear
polysaccharides; therefore, when chemokines are in excess,
multiple chemokines – either as monomers or dimers – can
bind a single GAG, like beads on a string (models C and D).
Model C will be sparsely populated as chemokines form dimers at
higher concentrations, and dimers bind GAG with higher affinity.
Because most proteoglycans carry two or more GAG chains,
binding could also occur due to proximity effects, as shown in
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FIGURE 2 | A schematic showing how proteoglycan interactions regulate chemokine-mediated neutrophil trafficking. Endothelial glycocalyx consists of a number of
secreted PGs and various proteins such as albumin that functions as a barrier between blood flow and the endothelium. Critical components of the endothelium and
glycocalyx are labeled. This figure is not drawn to scale, and its purpose is to illustrate different anatomical regions that are involved in chemokine-mediated
neutrophil recruitment to the insult site.

models E to H. HS has also been proposed to adopt horseshoe
geometry (model I) due to its modular structure (67).

MOLECULAR BASIS OF HEPARIN
INTERACTIONS

The molecular basis of the binding of human CXCL1,
CXCL5, CXCL7, and CXCL8 and of mouse KC/mCXCL1
and MIP2/mCXCL2 to heparin oligosaccharides has been
characterized using solution NMR spectroscopy (53–55, 68–72).
GAGs are acidic, and ELR-chemokines are basic, indicating that
electrostatic and H-bonding interactions play a major role in
driving the binding process. NMR chemical shifts of the backbone
amides are sensitive to their environment; therefore binding-
induced chemical shift changes were used to identify the GAG-
binding interface residues, which were then used in generating
models of the chemokine-GAG complex using HADDOCK
docking software. These studies used oligosaccharides from a
disaccharide to a 26 mer, and the results indicated that an
octasaccharide or longer is necessary for capturing the binding
interface. Shorter oligosaccharides were ineffective in identifying
all of the binding residues due to weaker binding, because

binding affinity decreases with decreasing size. These studies also
indicated that (i) dimerization and GAG binding are coupled and
that the dimer binds GAG with higher affinity; (ii) the binding-
interface is extensive and plastic; (iii) electrostatic and H-bonding
interactions mediate affinity and specificity; (iv) lysines (Lys)
dominate over arginines (Arg) at the binding interface; and (v)
GAG-binding geometries differ among chemokines.

GAG-BINDING SIGNATURE AND
BINDING INTERACTIONS

As ELR chemokines share a similar structural fold, any
differences in GAG interactions must be due to differences
in the amino acid sequence. NMR, mutagenesis, and in vivo
neutrophil trafficking studies have shown that GAG binding is
driven by conserved and chemokine-specific lysine, arginine,
and histidine residues located in the N-loop, 40s turn, and
C-terminal helix (Figure 4). A GAG-binding residue is labeled
as conserved if present in five or more of the seven human
sequences. Conserved GAG-binding residues, labeled B1 to B7,
are in red. Binding residues that are not conserved and unique
to a given chemokine are in blue. Whereas CXCL1, CXCL7, and

Frontiers in Immunology | www.frontiersin.org 4 April 2020 | Volume 11 | Article 660

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00660 April 22, 2020 Time: 19:17 # 5

Rajarathnam and Desai Proteoglycans and Chemokine Function

FIGURE 3 | A schematic showing possible GAG-bound ELR chemokine structures. In this schematic, a GAG corresponds to heparin or HS, monomer and dimer
corresponds to CXCL5 monomer and dimer, and GAG-binding residues are shown in yellow. (A,B) A single chemokine monomer or dimer binding a single GAG
occurs at low chemokine concentrations. With increasing concentration, dimer-bound GAG is favored due to higher binding affinity. (C,D) Chemokines bind GAGs
like beads on a string at high chemokine concentrations. Of the two, model (D) is favored due to higher binding affinity of the dimer. (E–H) Chemokines bind two
GAGs within a PG or between PGs. Of the different models, models E and G are unlikely as a monomer has only one GAG binding site. (I) Horseshoe model of HS
binding to a chemokine dimer. HS structure consists of sulfated regions (NS) interspersed with non-sulfated regions (NA). HS is of the form NS-NA-NS in the
horseshoe model.

CXCL8 have unique GAG-binding residues, CXCL5 has none.
The large numbers of unique GAG-binding residues in CXCL1
and CXCL8 are noteworthy. In CXCL1 alone, an N-terminal
arginine is involved in binding, and this arginine is absolutely
conserved and is critical for receptor activation in all ELR-
chemokines (66). Therefore this residue, from a GAG-binding
perspective, is labeled as a specific and not a conserved residue.

GAG interactions for CXCL2, CXCL3, and CXCL6 are not
known. Sequences of CXCL2 and CXCL3 are highly similar to
CXCL1 but are missing a basic residue at positions B4 and
B5, respectively, and CXCL6 is also distinct as it is missing
B3. Residues B2, B3, B6, and B7 are involved in binding in
both mouse chemokines (KC/mCXCL1 and MIP2/mCXCL2).
However, MIP2 is missing B1 and B4, but has two unique
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FIGURE 4 | GAG-binding residues in human and mouse ELR-chemokines. A GAG-binding residue is labeled as conserved if present in five or more of the seven
human sequences. Conserved GAG-binding residues are labeled B1 to B7 and are in red. Binding residues unique to a given chemokine are in blue.

GAG-binding residues whereas KC has none. These observations
collectively suggest that each member of ELR-chemokines has
a unique GAG-binding signature by differential combination of
conserved and chemokine-specific residues.

GEOMETRY OF BINDING

Mapping heparin-binding residues on chemokine structures
suggests multiple binding geometries. Therefore, to gain more
definitive insights into the binding geometry, we generated
structures of heparin-bound chemokine complexes using
HADDOCK modeling software, which uses residues implicated
in binding from NMR chemical shift changes as ambiguous
restraints, shape complementarity, and energetics to drive
the docking process (73). Three different HADDOCK runs
were performed to ensure that the input constraints did not
bias specific structural models, and that all possible binding
geometries within a monomer and across the dimer interface
were considered – binding of one heparin with constraints given
to both monomers of the dimer, binding of two heparins with
constraints given to both monomers of the dimer, and binding
of one heparin with constraints given to only one monomer
of the dimer. Models generated from these studies for CXCL1,
CXCL5, KC, and MIP2 are shown in Figure 5. For CXCL1,
modeling indicates two heparin chains span the dimer interface
that are located on opposite faces of the protein (defined as the
α-domain and β-domain). For CXCL5, modeling suggests two
models, of which only one model (model-I; in which CXCL5
binds within the monomer) is consistent with all of the NMR
data. In the second model, CXCL5 binds across the dimer
interface and does not involve 40s turn residues (model-II).
Isothermal titration calorimetry studies indicate two heparins
bind per CXCL5 dimer that are consistent only with Model-I
(71). Modeling studies for KC/mCXCL1 and MIP2/mCXCL2
also suggest two binding geometries, one within the monomer
and one across the dimer interface. NMR data are consistent

only with model-I, and ITC data also indicate a stoichiometry
of two heparins per dimer (54). Modeling studies for CXCL8
suggest three binding geometries within a monomer and one
across the dimer interface (74). Additional studies are required
to determine whether binding occurs across the dimer or
within the monomer. Modeling studies for CXCL7 also suggest
two binding geometries, one within the monomer and one
across the dimer interface (53). Additional studies are required
to unambiguously define whether binding occurs via one or
both interactions.

STOICHIOMETRY AND
THERMODYNAMICS

Knowledge of the stoichiometry is essential not only to validate
GAG-binding geometry but also to understand whether a
GAG-bound chemokine can bind its receptor. Unlike protein-
protein and protein-DNA complexes, defining the stoichiometry
for GAG-chemokine complexes is not straightforward. The
stoichiometry can vary because GAGs are linear polysaccharides
consisting of repeating disaccharide units resulting in multiple
binding sites (Figure 2). Further, the stoichiometry and the
number of species will vary with GAG size, chemokine:GAG
ratio, and experimental conditions such as pH and ionic strength.
Commonly used techniques such as SPR and fluorescence
spectroscopy report a binding constant and cannot provide
insights into the stoichiometry. ITC, in addition to providing a
binding constant and thermodynamic signatures (enthalpy and
entropy), also provides stoichiometry (75). ITC has additional
advantages: it is quite sensitive, does not require modification of
the protein or GAG, and can measure binding constants from
the micromolar (µM) to nanomolar (nM) range. Interestingly,
despite similar binding affinities, thermodynamic signatures
for KC and MIP2 are quite different. Molecular dynamic
(MD) simulations also indicate striking differences in binding
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FIGURE 5 | Structural models of heparin bound to (A) CXCL1 α-domain, (B) CXCL1 β-domain, (C) CXCL5, (D) KC/mCXCL1, and (E) MIP2/mCXCL2. Left column:
chemokine dimer structures are shown in ribbon presentation and heparin as sticks. Middle column: Heparin binding residues are highlighted on a space-filling
model. Right column: Heparin binding residues are shown as the electrostatic surface. In panels (A,B), two monomers of the dimer are shown in light and dark blue
(left column) and heparin-binding residues from both monomers are highlighted in light and dark blue (middle column). In panel (C), two monomers of the dimer are
shown in gray and black (left and middle columns), and GAG-binding residues are labeled only in the gray monomer. In panels (D,E), both monomers are shown in
gray, and only one monomer of the dimer is labeled.
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interactions at a residue-specific level, and suggest that binding
interactions are not additive but coupled, and that the binding
of any given residue is governed by the binding interactions
of all residues.

MOLECULAR BASIS OF HS
INTERACTIONS

In the context of in vivo function, chemokines interact with
HS and not heparin. Both HS and heparin share a repeating
disaccharide unit composed of glucosamine and hexuronic acid.
Heparin is preferred for structural and biophysical studies as
it is more uniformly sulfated and because of the availability
of size-defined oligosaccharides. Heparin is assumed to be a
good surrogate for describing HS interactions; this could be
an oversimplification considering that their solution structures
are different, and the fine structure of HS due to differential
sulfation cannot be captured by heparin (76–78). We recently
characterized the binding of heparin and HS polymers to CXCL1
and CXCL5 using NMR spectroscopy (79). Binding-induced
chemical shift changes for HS were similar to heparin, indicating
that the same basic residues mediate binding both GAGs and
that their binding geometry is the same (Figures 5, 6). Because
HS fine structure arises due to differential N- and O-sulfation,
HS variants that are either missing N-sulfate, 2-O sulfate, or
6-O sulfate were modeled for binding both chemokines. The
binding geometries of all variants were similar to that of
heparin, suggesting that the binding interface is plastic, and that
differences in sulfation do not impact the binding geometry (79).
In principle, a single HS polymer could bind both binding sites
as a horseshoe (Figure 3), but NMR studies cannot distinguish
between two HS chains binding two binding sites or a single HS
binding both sites. This is the first NMR study for any protein that
has characterized residue-specific binding interactions to heparin
and HS polymers, and it validates the premise that heparin is a
good surrogate at least for describing structural features such as
the binding interface. Whether this is universally applicable to all
HS binding proteins remains to be determined.

MOLECULAR BASIS OF CS AND DS
INTERACTIONS

Very little is known regarding the structural basis of the binding
interactions of CS, DS, or KS, or how the distribution of basic
residues in a given protein mediate binding different GAGs. To
address this knowledge gap, we characterized the binding of
CS and DS oligosaccharides to CXCL1 and CXCL5 using NMR
spectroscopy (79). DS can be considered a variant of CS, with the
difference arising from C5 epimerization of GlcA to IdoA. For
both chemokines, the dimer compared to the monomer bound
CS and DS with higher affinity similar to what was observed for
HS, the binding affinities were lower than for HS, and binding
interactions were quite different from HS. For both chemokines,
chemical shift changes were observed for N-loop and 40s turn
basic residues, but not for the helical residues, which is quite

striking, as helical residues in ELR-chemokines have long been
implicated as important in GAG binding. For CXCL1, CS and
DS bind a set of basic resides that lie within the monomer
(defined as the γ-domain) in contrast to two HS chains spanning
the dimer interface that are located on opposite faces of the
protein (Figure 6). For CXCL5, in addition to perturbation of
the N-loop and 40s turn basic residues, several N-loop and
30s loop non-basic residues were also perturbed, and modeling
studies indicated a binding geometry across the dimer interface
(Figure 6). CS exists in two forms with a sulfate at either 4-O
or 6-O position, and modeling studies indicate that their binding
interactions are similar (79). In contrast to CXCL1 and CXCL5,
an NMR study has reported that the binding interactions of CS,
DS, and heparin to CXCL8 are similar (80). Collectively, these
data demonstrate how differences in the participation of a few
basic residues and GAG backbone structure and sulfation pattern
can result in diverse binding interactions.

MOLECULAR BASIS OF
PROTEOGLYCAN GAG INTERACTIONS

Studies described so far have characterized chemokine binding
to free GAGs; the question therefore arises to what extent these
studies capture binding to in vivo PG GAGs. PG GAG chains
are assembled on serine residues in core proteins by a series
of glycosyltransferases and modification enzymes in the Golgi;
therefore all GAG chains have the same orientation within a
PG, and further, their mobility is restricted compared to free
GAGs due to its covalent linkage to the core protein. Biophysical,
cellular, and ex vivo studies have shown that a single GAG
can bind multiple chemokines, binding promotes chemokine
accumulation and GAG crosslinking, and that in vivo binding
occurs at distinct anatomical sites (34, 41, 81–83). A chemokine
dimer can bind a single GAG chain, bind two GAG chains within
a PG, and/or two GAG chains from different PGs (Figure 7).
For a chemokine dimer to bind two GAG chains within a PG,
the dimensions of the chemokine dimer must be compatible to
the distance between the GAGs. However, GAG binding sites in
the chemokine dimer are antiparallel due to two-fold symmetry,
and so GAG binding at the second site will not occur unless
GAG interactions are non-specific. Molecular modeling studies
indicate that GAGs show a preferred directionality (polarity).
Binding to two GAGs within a PG can occur if the binding surface
in two monomers of the dimer are different and are therefore
not restricted by symmetry considerations. A chemokine dimer
can bind two GAGs from two different PGs as it is not restricted
by symmetry considerations. Further, structures of the GAG
chains in the same PG are not necessarily equivalent or have
to be perfectly aligned as GAGs are dynamic and flexible.
Fluorescence recovery after photobleaching (FRAP) experiments
have shown CXCL12 dimer binding can induce crosslinking
of HS chain (84). In this setup, HS chains are immobilized
and so they have the same orientation. NMR studies show
heparin binds across the CXCL12 dimer interface suggesting
a stoichiometry of one GAG per dimer (85). Therefore, how
CXCL12 is able to crosslink HS chains is not clear, suggesting
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FIGURE 6 | Structural models of HS bound to (A,B) CXCL1 α-domain, (C,D) CXCL1 β-domain, and (E,F) to CXCL5; of CS bound to (G,H) CXCL1 γ-domain and to
(J,K) CXCL5; of DS bound to (I) CXCL1 γ-domain and to (L) CXCL5. In panels (A,C,E,G,J), CXCL1 and CXCL5 dimer structures are shown in ribbon presentation
and GAG as sticks. Two monomers of the dimer are shown in blue and cyan. In panels (B,D,F,H,I,K,L), GAG binding residues are highlighted on a space-filling
model. In panels (F,K,L), two monomers of the dimer are colored in light and dark gray. In panels (H–K), polar residues are in green. In panels (K,L), residues from
the second monomer are distinguished by the ′ symbol. HS binds across the dimer interface in CXCL1 and within the monomer in CXCL5; CS and DS bind within a
monomer in CXCL1 and bind both monomers of the dimer in CXCL5.
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FIGURE 7 | Binding of a chemokine dimer to PG GAGs. Monomers of the chemokine dimer are shown in different shades of gray. For illustrative purposes,
GAG-binding residues in each monomer of the chemokine dimer are labeled 1 to 4, which run in opposite directions because of two-fold symmetry about the dimer
interface (shown by a black dot). Schematic of an heparin octasaccharide with iduronate and glucosamine shown as an oval and rectangle, and N-sulfate (NS),
2-sulfate (2S), and 6-sulfate (6S) shown as spheres in different colors. Helical structure of heparin clusters the 3 sulfate groups on opposite faces of the helical axis
(44). (A) Binding of a chemokine dimer to two GAG chains within a PG. Direction of the GAG orientation are shown by arrows. The schematic shows GAG
interactions of the two monomers cannot be the same, and that binding to both GAG chains is only possible if the binding interactions of the two monomers are
different. (B) Binding of a chemokine to two GAG chains from two PGs. Direction of the GAG orientation are shown by arrows. In this case, two monomers of the
dimer can encounter GAG chains running in opposite directions and so similar interactions to both monomers are possible. Such binding could occur in PCM and
ECM due to some degree of motional freedom of the PGs.

the structural basis of binding cell surface GAGs could be
more complex. Experiments specifically designed to address
chemokine binding to PG GAGs both in the context of cell
surface and ECM environments are essential to address this
critical missing knowledge.

CAN A GAG-BOUND CHEMOKINE FORM
A TERNARY COMPLEX WITH ITS
RECEPTOR?

Functional studies show receptor activation involves interactions
between the chemokine N-loop/β3-strand and receptor
N-domain residues (defined as Site-I) and between the ligand
N-terminal and receptor extracellular/transmembrane residues
(Site-II) (16, 86, 87). For all ELR-chemokines, some of the
N-loop residues involved in GAG binding are also involved in
receptor binding (49, 68–72, 74, 79, Figure 8), indicating that
GAG interactions disrupt receptor binding. NMR experiments
have shown that a GAG-bound monomer cannot form a
ternary complex due to occlusion of receptor-binding residues,
indicating only the free monomer can activate the receptor (74,
88). Similarly, residues that mediate receptor interactions are

occluded in a chemokine dimer sandwiched between GAGs, and
a ternary complex cannot be formed. For a chemokine dimer
bound to a single GAG, the second receptor binding site is
available for receptor interactions, which is the case when the
chemokine dimer is bound at the edge of HS chains in syndecan
(Figures 9, 10). This model will only apply if GAG binding
occurs within a monomer; therefore, HS-bound CXCL1, or a
chemokine in which HS binds both monomers of the dimer like
a horseshoe cannot bind the receptor. Both Sdc-1 and Sdc-4
carry HS chains, and Sdc-1 also carries CS chains that are located
close to the membrane; therefore, CS-bound chemokines are
likely to be less important for CXCR2 activation. ECM and
PCM PGs and free HS and cleaved PG ectodomains in the
glycocalyx are not restricted by constraints of the membrane, and
a chemokine dimer bound to a single GAG chain can therefore
bind the receptor (Figure 10). However, direct experimental
evidence in support of GAG-bound dimer binding the receptor
is lacking. CC chemokines, in addition to dimers, also form
oligomers and polymers. However, their dimer interactions
involve N-loop residues, and so dimers and oligomers cannot
activate the receptor. CC oligomers also bind GAG with higher
affinity, and so it is very unlikely that receptor binding residues
are accessible in the GAG-bound form. Recently, it has been
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FIGURE 8 | Chemokine structures showing GAG and receptor binding regions. Receptor-binding domains are in red, GAG-binding domains are in blue, and
residues that are common to both are in yellow.

FIGURE 9 | Presentation of GAG-bound chemokine for receptor interactions.
Chemokine is shown as a red sphere, and shared residues for GAG and
receptor binding are shown in orange. (A) Chemokine monomer bound to the
receptor cannot bind the GAG. (B) Chemokine monomer bound to a GAG
chain cannot bind the receptor. (C) A chemokine dimer bound to a single
GAG chain. In this case, one monomer can bind the GAG and the second
monomer of the dimer is available for receptor interactions.

proposed that GAG-bound chemokine regulates a “cloud” of
solution phase chemokines within the glycocalyx (labeled as
“chemokine cloud” model), and that it is this soluble form for any
chemokine that interacts with leukocyte-bound receptors (89).
Our model is in agreement with the “chemokine cloud” model for
the ELR chemokine monomer but not necessarily for the dimer.
Structural features of ELR chemokine dimer allows GAG-bound

dimer to interact with the receptor (Figures 9, 10). The
availability of well-characterized trapped dimeric and monomeric
chemokines, such as those used in the NMR studies, would
be most useful in designing experiments that address how
chemokine dimers bind PG GAGs and whether PG GAG-bound
chemokine can access the receptor (53, 54, 74).

SPECIFICITY OF GAG-BINDING
RESIDUES

A characteristic feature of ELR-chemokines is the preference of
GAG-binding residues for Lys over Arg (Figure 4). In general,
arginines are enriched relative to lysines in protein-protein and
protein-DNA Interfaces (90, 91). The pKa of the surface Lys
amino and Arg guanidinium groups are >10, indicating that they
are always protonated and charged at physiological pH. Whereas
the Lys NH+3 group is symmetric and has a simple structure,
the guanidinium group of Arg is planar and asymmetric with
a more complex structure. The guanidinium group, compared
to the NH+3 group, can form stronger electrostatic interactions
with the sulfate anion (92). To understand the preference for
lysines, three of the lysines in CXCL8 known to be involved
in GAG interactions were mutated to arginine. The Lys to Arg
mutants bound heparin with higher affinity as expected, but
interestingly, exhibited highly impaired neutrophil recruitment
activity in a mouse model (93). Mutating these lysines to alanine
results in reduced GAG affinity and also reduced neutrophil
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FIGURE 10 | A schematic of the endothelial syndecans and glycocalyx.
Syndecans span the membrane and exist as dimers. Sdc-1 is larger (33 kDa)
compared to Sdc-4 (22 kDa), and the extracellular domains carry HS and CS
chains that are shown in blue and orange, respectively. Chemokine dimer
bound to HS chain on syndecans (A), and to free HS and syndecan
ectodomain in the glycocalyx (B,C) are accessible to the CXCR2 receptor on
neutrophils.

recruitment (59). These data make a compelling case that
the specificity imparted by a lysine cannot be replaced by an
arginine, and that enhanced GAG binding as a result of arginine
substitution is actually detrimental, and most likely impacts one
or more GAG-related functions, which in turn impairs neutrophil
recruitment function.

Lys NH – CαH – CβH2 – CγH2 – CδH2 – CεH2 – NζH+3
Arg NH – CαH – CβH2 – CγH2 – CδH2 – NεH – Cζ = (NηH2)+2

FUTURE DIRECTIONS AND
CHALLENGES

We contend that the current knowledge on GAG interactions
is just the “tip of the iceberg,” and there is still much to be

learnt if we were to compare to what is known for protein-
protein and protein-DNA interactions. In particular, knowledge
of how individual residues and their crosstalk with other binding
residues mediate GAG interactions, the role of dynamics, and the
relationship between structure, dynamics, thermodynamics, and
function is lacking. NMR, ITC, and MD studies of KC and MIP2
binding to heparin highlight the importance of such knowledge
for deeper and more quantitative insights (54). GAGs and Lys
and Arg side chains are conformationally dynamic (94–96),
and very little is known regarding how dynamic characteristics
of the protein and GAG drive binding interactions. NMR
studies tailored to probe lysine NH+3 , arginine guanidinium, and
histidine imidazole groups can provide crucial insights that are
not accessible based on backbone chemical shifts (69, 93, 97).
Chemical shifts of the lysine NH+3 group are not observed in
the free protein due to rapid exchange with the solvent, but are
observed in the bound form due to its interaction with GAG
acidic groups; these shifts are more sensitive than backbone
chemical shifts in defining whether a particular lysine is involved
in binding or not (69). Side chain chemical shifts are essential
for characterizing side chain dynamics, and such studies have
proven to be quite useful for describing the properties of the
individual lysines in protein-DNA complexes (96). The histidine
imidazole side chain can exist in three forms due to two titratable
nitrogens. NMR chemical shifts of the conserved histidine (B2)
in CXCL1 and CXCL8 indicate that the structural state and their
GAG interactions are different (97), emphasizing differences in
chemokine-specific and residue-specific interactions that could
not have been inferred from any other experiment. There
is evidence that GAG binding is also driven by H-bonding
interactions mediated by polar residues such as asparagine (Asn)
and glutamine (Gln) (98, 99). NMR and MD studies of several
ELR chemokines suggest Asn and Gln are involved in GAG
interactions (54, 100). Considering these residues form weak
H-bonds compared to lysines and arginines, the impact of
mutating these residues on affinity, geometry, and neutrophil
trafficking should give definitive insights into whether they play a
role in defining specificity or affinity or both.

Much less is known regarding how GAG backbone structure
and distribution of sulfates and carboxylates dictate binding.
NMR-based structural models provide such knowledge but need
to be independently validated. Whereas measuring binding-
induced chemical shifts of protein GAG-binding residues is
straightforward, the reciprocal experiment where binding-
induced changes in GAG chemical shifts or assigning it to a
specific sulfate and carboxylate is not trivial. Knowledge of
the structures of GAG-bound chemokine complexes allows
describing which sulfate and carboxylate interacts with
which protein residue. However, structure determination
of GAG-protein complexes, either by crystallography or
NMR spectroscopy, faces many challenges, including lack of
crystals suitable for crystallography and isotopically labeled
homogeneous GAGs for NMR methods. This is evident if we
consider that of the more than 100,000 structures deposited
in the protein data bank (PDB), only around 100 correspond
to those of protein-GAG complexes. The majority of these
structures correspond to select proteins such as proteases and
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growth factors bound to small heparin oligosaccharides. As far as
chemokines go, a crystal structure of chemokine CCL2 bound to
a heparin octasaccharide, and an NMR structure of CCL5 bound
to CS have been reported (101, 102). Homogeneous heparin and
HS oligosaccharides have been produced by chemoenzymatic
methods by a few select labs (103–105), but are not routinely
available for researchers. Glycan Therapeutics (106), founded
by academic researchers with the aid of a STTR grant from
the NIH, recently announced it will make homogeneous GAGs
including 13C-labeled oligosaccharides commercially available.
These will be a major boon not only for structural studies
using NMR and X-ray methods but also for studies focused
on understanding how GAG structural features impact binding
interactions and function.

Considering that there are tens of thousands of possible
structures of, say, an HS octasaccharide, synthesis of all HS
variants or their characterization is not realistic. However, in
principle, their interactions can be characterized in silico. In
recent years, much effort has gone into this arena, including
developing energy functions, MD and docking programs, and
user-friendly software that can be accessed by the GAG
community at large (107–112). Promising variants from this
exercise could then be tested by experimental methods. Advances
in structural and computational methods will also have a
major impact for GAG-based therapeutics. Heparin is used
extensively as an anticoagulant, and several heparin-based drugs
have shown protection in human diseases (113–115). Heparin
(unfractionated, low molecular weight and other derivatives)
has been investigated in clinical trials for various forms of
inflammation (116–119), although it is not clear which sequences,
if any, would offer the best response. A recent discovery
that a HS hexasaccharide selectively targets cancer stem cells
is exciting (120). Though HS is known to engage diverse
mitogenic factors, this observation suggests that one or more HS
oligosaccharides could display selectivity for a specific chemokine
and thereby exhibit a distinct anti-inflammatory phenotype.
However, heparin-based drugs have their own limitations,
including intrinsic heterogeneity, potential CS contamination
that could be detrimental, and an unknown mode of action
in vivo, as it binds a number of proteins (121). Hydrogels
based on heparin and heparin derivatives were also shown
to outperform the standard-of-care product Promogran, by
their ability to scavenge chemokines, and effectively reducing
neutrophil activity and alleviating disease symptoms in humans
(122). Therefore, advances in understanding GAG interactions
will also be useful for designing GAG-based drugs that

could have high clinical relevance for treating a number of
human pathologies.

CONCLUSION

There is now compelling evidence that GAG interactions and
binding geometries can be quite diverse for closely related
chemokines, indicating that GAG interactions are highly specific
and that this information is coded in the chemokine sequence.
Chemokines were first reported around 30 years ago, and the
fact that they are ligands for GPCRs and bind GAGs was
reported a few years later. Studies characterizing chemokines
and/or related to chemokines continue to be an area of active
research, which is evident if we consider a PubMed search for
the word “chemokine” results in >100,000 hits, with >5000 hits
for 2019 alone. Though all ELR-chemokines activate CXCR2,
animal models and clinical data provide convincing evidence
that they are not redundant and are selectively and differentially
expressed in different tissues for eliciting diverse physiological
roles. We propose that differences in GAG interactions play
important roles in defining the unique in vivo phenotype of
each chemokine. Continued advances in structural, biophysical
and computational methods for characterizing protein-GAG
and protein-PG complexes, and the availability of homogeneous
GAGs should lead to significant expansion of the knowledge base
on the many ways through which these fascinating biopolymers
orchestrate function in human pathophysiology.
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