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Biomineralized uniform and well-organized calcium carbonate microspheres were
synthesized for enzyme immobilization, and the immobilized enzyme was successfully
stabilized. The physicochemical parameters of calcium carbonate were studied using
scanning electron microscopy with energy-dispersive X-ray spectroscopy, particle size
analysis, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and surface
area measurement. Additionally, Barrett-Joyner-Halenda adsorption/desorption analysis
showed that the calcium carbonate microspheres provided efficient mesopore space
for enzyme loading. As a model enzyme, carboxyl esterase (CE) was entrapped and
then cross-linked to form an enzyme structure. In this aggregate, the cross-linked
enzymes cannot leach out from mesopores, resulting in enzyme stability. The hydrolytic
activities of the free and cross-linked enzymes were analyzed over broad temperature
and pH ranges. The cross-linked enzyme displayed better activity than the free enzyme.
Furthermore, the immobilized CE was found to be stable for more than 30 days,
preserving 60% of its initial activity even after being reused more than 10 times. This
report is expected to be the first demonstration of a stabilized cross-linked enzyme
system in calcium carbonate microspheres, which can be applied in enzyme catalyzed
reactions involved in bioprocessing, bioremediation, and bioconversion.

Keywords: enzyme immobilization, enzyme stabilization, biomineralization, calcium carbonate, cross-linking

INTRODUCTION

Enzymes are proteins that catalyze chemical reactions, reducing the initial energy input, by
increasing the reaction rate. Based on enzyme processes relevant to environment-friendly features
used in chemical transformation, enzymes are widely utilized in various fields such as food,
pharmaceuticals, biodiesel, and biofuels (Datta et al., 2013; Hwang and Gu, 2013; Jesionowski et al.,
2014). Additionally, enzymes usually function under mild conditions such as ambient temperature
and pressure. Therefore, industrial applications of enzymes are increasing (Schoemaker et al., 2003).
In industrial processes, free enzymes are destabilized, and it is difficult to reuse them efficiently
(Iyer and Ananthanarayan, 2008). Enzyme immobilization allows overcoming this drawback by
improving enzyme reactivity and stability (Mateo et al., 2007; Hanefeld et al., 2009). Immobilization
of an enzyme can prevent it from structural denaturation caused by the external environment; thus,
enzyme activity can be maintained from various reaction conditions by preserving storage stability.
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Besides, the immobilized enzyme can be easily separated from the
reaction solution, and it can be easily washed and reused after
measuring the activity (Hwang et al., 2012a, 2013).

Enzyme immobilization methods include physical adsorption,
ionic and covalent bonds, and various techniques such as binding,
entrapment, encapsulation, and cross-linking. Enzymes can be
immobilized on various organic and inorganic materials or
carriers. Synthetic organic polymeric beads such as Sepabeads
and Amberlite; a variety of biopolymers, mainly water-insoluble
polysaccharides such as cellulose, starch, agarose, alginate,
chitosan, and electrospun nanofibers; and polymeric membranes
are widely used as supports for immobilizing enzymes (Cantone
et al., 2013; Hwang and Gu, 2013; Zdarta et al., 2018; Rodriguez-
Abetxuko et al., 2020). Inorganic materials such as silica,
magnetic particles, inorganic oxides, clay, and graphene oxide
have been used for enzyme immobilization (Wang et al., 2014;
Zucca and Sanjust, 2014; Wu et al., 2015; Xia et al., 2020).
Among these, mesoporous materials have been applied to
accommodate enzymes and maintain their activity in the pore
space, owing to their pore size, connectivity, and high stability
(Wang and Caruso, 2004; Xu et al., 2019). However, simple
adsorption or entrapment into the pore space leads to rapid
release from the pores, and reduces stability (Hwang et al., 2012b;
Li and Wang, 2013).

To prevent the release of enzymes from mesoporous materials
and improve stability, the cross-linking method is used (Kim
et al., 2007). Cross-linking can be achieved via physicochemical
methods such as heat treatment, application of alkaline
conditions, mechanical agitation, photo-oxidation treatment,
and the use of chemical reagents with an enzyme catalyst (Heck
et al., 2013). A simple chemical reagent, glutaraldehyde (GA),
is most widely used in biocatalyst design, and is the most
powerful cross-linker (Barbosa et al., 2014). It has the advantage
of self-reaction. Owing to the successful application of enzyme-
immobilizing carriers, mesoporous silica has been widely used.
However, for preparation, the high cost of the process (heat and
solvent), mechanical stability under base conditions, size control,
use of toxic silica precursors, and aggregation during the drying
step can be disadvantages for its simple application in enzyme
immobilization studies. Contrary to the several weaknesses of
mesoporous silica, the advantages of calcium carbonate make
it a good alternative enzyme immobilization carrier (Hwang
et al., 2012a; Binevski et al., 2019). It can be used as an
adsorbent or template, and synthesized as spheres with various
particle sizes (Gower, 2008; Hwang et al., 2013). Moreover, it is
suitable for living organisms because it is natural, non-toxic, and
stable (Fakhrullin and Minullina, 2009). Furthermore, calcium
carbonate is cheap, eco-friendly, and easy to synthesize with a
simple scale-up process, in addition to being stable even under
basic conditions (Binevski et al., 2019). Calcium carbonate and
calcium carbonate–modified materials have previously been used
in enzyme studies as immobilizing carriers and delivery vehicles.
For example, several attempts have been made to encapsulate
enzymes such as superoxide dismutase, alkaline phosphatase,
pyruvate kinase, and lactate dehydrogenase and characterize
the encapsulated enzyme in terms of the enzyme loading
and efficiency, specific activity, and change in activity based

on the morphological changes of calcium carbonate (Donatan
et al., 2016; Muderrisoglu et al., 2018; Binevski et al., 2019).
Additionally, the release behavior from the calcium carbonate
particles has also been investigated (Roth et al., 2018; Abalymov
et al., 2020). However, these studies did not focus on the
stabilized enzyme system in calcium carbonate particles, the most
important compound in industrial enzymatic bioconversion.
In pharmaceutical and fine chemical industries, bioconversion
processes necessitate a specific reactor design and enzyme activity
for effective execution of the enzymatic processes.

Therefore, as a model study, we investigated enzyme
stabilization by immobilizing carboxyl esterase (CE) from
Rhizopus oryzae into the pores of biomineral calcium
carbonate microspheres. Biomineralized calcium carbonate
can be synthesized as a well-formulated uniform carrier. First,
Biomineralized calcium carbonate can be synthesized into well
formulated uniform carrier; The prepared mesoporous spherical
calcium carbonate microspheres with a size of 5.5 ± 1.8 µm
were fully characterized using scanning electron microscopy
(SEM). Energy-dispersive X-ray spectroscopy (EDS), particle
size analyzer (PSA), X-ray diffraction (XRD), Fourier-transform
infrared spectroscopy (FT-IR). Additionally, Brunauer-Emmett-
Teller (BET) was used to analyze the surface area, pore volume,
adsorption pore size, and desorption pore size. First, the CE
was adsorbed inside of the prepared calcium carbonate and
then cross-linked by treatment with GA to design stabilized
enzyme structures. It was found that the activity was preserved
for 30 days; the catalytic activity was stable even after 10 reuses,
exhibiting high storage stability and recyclability. This study
gives the applications of a stable and recyclable cross-linked
enzyme in calcium carbonate microspheres and will contribute
to practical enzyme-based process applications.

MATERIALS AND METHODS

Materials
Calcium chloride (Sigma), ammonium carbonate (Sigma),
sodium phosphate monobasic (Sigma), sodium phosphate
dibasic (Sigma), N,N-dimethylformamide (DMF) (Sigma), and
Tris–HCl (1 M, Bioneer, Alameda CA, United States) were
purchased. The model enzyme CE from Rhizopus oryzae
(Sigma) was used for immobilization, and the substrate
p-nitrophenyl butyrate (Sigma) was purchased from Sigma-
Aldrich. p-nitrophenol (Sigma) was used for the standard curve
for products by enzymatic reaction. Finally, a BCA protein assay
kit (Pierce, Rockford, IL, United States) for measuring enzyme
loading was purchased from Sigma.

Synthesis of Calcium Carbonate
Microspheres
To synthesize biomineralized calcium carbonate microspheres,
200 mM of CaCl2 solution (distilled water:acetone = 5:1) was
mixed for dissolution. (Na4)2CO3 solution (200 mM) was added
to CaCl2 solution with vigorous stirring for 10 min. After
synthesis, the sample was washed twice with ethanol to remove
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solution and then dried at 60◦C in a dry oven. After drying, the
powder samples were collected and stored at room temperature.

Characterization of CaCO3 Microspheres
The morphological and elemental analysis of CaCO3
microspheres was performed using FE–SEM equipped with
energy-dispersive X-ray spectroscopy (EDAX) (TESCAN,
Czech Republic). Pt sputtered coating was done before SEM
analysis. BET surface area and pore size were obtained using a
Tristar II (Micromeritics, United States). Pore-size distributions
and pore volume were calculated using the Barett–Joyner–
Halenda equation. FT-IR analysis was performed using an FT-IR
spectrometer (Jasco, United States) range of 650–4000 cm−1.
XRD patterns were analyzed by a Rigaku Mini Flex 600 (Rigaku,
Japan) using Cu Kα radiation (λ = 1.5418 Å) at scanning rate
of 5.00◦min−1. Particle size analysis was performed using laser
scatter particle size distribution analyzer LA-960 (Horiba, Japan).

Enzyme Immobilization
Immobilization of the enzyme into the calcium carbonate pores
was performed via two-step process. First, 1.5 mL CE solution
(0.66 mg/mL) was added to a glass vial containing 10 mg
of calcium carbonate and vortex strongly for 30 s. After the
sonication, the sample was incubated at 200 rpm for 30 min
to be adsorbed into the calcium carbonate pores. To cross-link
the adsorbed enzyme, 1.5 mL of 1% GA solution (diluted with
100 mM phosphate buffer, pH 8.0) was added to the enzyme and
calcium carbonate mixture samples. The sample was stored at
room temperature for 60 min without any movement, and then
incubated for 60 min at 200 rpm to prepare cross-link between
CE molecules. After that, 100 mM Tris–HCl (pH 8.0) was used
to remove unreacted GA by centrifugation. The sample was
consecutively washed thrice with buffer and stored in 100 mM
phosphate buffer (pH 8.0) at 4◦C until the next use. The amount
of CE loaded into calcium carbonate was measured by BCA
protein assay kit.

Activity and Stability Measurement
The activity of cross-linked CE in biomineral calcium carbonate
microspheres was determined using the concentration of
p-nitrophenol resulting from hydrolysis of p-nitrophenyl
butyrate substrate dissolved in N,N-dimethylformamide. For
activity measurement, p-nitrophenyl butyrate substrate was
dissolved in N,N-dimethylformamide to prepare 10 mM
concentration, and then added to 100 mM phosphate buffer
(pH 8.0) solution containing 0.042 mg of cross-linked CE in
CaCO3 to be 0.5 mM of final substrate concentration. The
enzyme reaction was performed by shaking for 12.5 min at
200 rpm with 2.5 min intervals during the reaction. At each
interval time, absorbance was measured at 400 nm. The activity
was calculated as the average of the slope values measured by
absorbance per reaction time in proportion to the concentration
of p-nitrophenol. After the measurement, the immobilized CE
was washed five times with 100 mM phosphate buffer (pH 8.0)
and stored at room temperature.

The effect of pH on the activity of free and immobilized CE
was performed over pH range 6.0–10.0 and at room temperature.

The effect of temperature on CE activity was carried out over 15–
55◦C, at pH 8.0. The activity was measured according to the above
experimental protocol. The results for pH and temperature are
presented in a normalized form with the highest activity of each
set assigned by the value of 100% activity.

The storage and recycling stability were measured using the
above experimental protocol, and the relative activity at each time
point was calculated as the percentage ratio of residual activity at
each time to the initial activity of each sample. All samples were
measured thrice for standard deviation. The standard deviation
is represented by error bars in the figure.

RESULTS AND DISCUSSION

Characteristics of the CaCO3
Microspheres
The calcium carbonate microspheres were successfully
synthesized based on the mineralization process as described in
Figure 1A. The fabricated CaCO3 were successfully characterized
using SEM with elemental analysis (EDS), PSA, FT-IR, XRD,
BET, and BJH adsorption/desorption. When analyzed, Figure 2A
shows the highly organized shape of calcium carbonate, as shown
in the SEM image, well-dispersed spherical structure with the
diameter of 4–6 µm. The particle size analysis obtained by PSA,
showing 5.5 ± 1.8 µm size distribution (Figure 2B), and EDS was
used to confirm CaCO3 surface (Figure 2C). The XRD patterns
of particle confirmed that well-crystallized mixed vaterite and
aragonite phase, with their characteristic diffraction peaks of 2θ

values at about 25.4 (1 0 1), 37.9 (0 0 4), 48.2 (2 0 0), 54.0 (1 0 5),
55.1 (2 1 1), and 62.9 (2 0 4), indicating nature of the calcium
carbonate, were obtained (Figure 2D). Additionally, FT-IR
spectrum indicated the typical CaCO3 peak coincident with the
broad band at 1394 cm−1 (υ3 asymmetric CO3

2−) and with the
sharp band at 871 cm−1 (υ2 asymmetric CO3

2−) (Figure 2E).
The spherical calcium carbonate with mesoporous property is
the key step to enzymes loading into the structured materials
for efficient enzyme immobilization. Therefore, the CaCO3
microspheres are also expected to have pore sizes and volume
enough for spaces without limitation. In fact, porous structure
was confirmed through BJH analysis using the representative N2
adsorption/desorption data, shown in Table 1A. The BET surface
area of the hybrid particles was 6.88 m2 g−1, and the fraction of
vacant mesopores provided pore volume of 0.048 m2/g, leading
to entrap enzyme. In addition, average pore size from adsorption
and average pore size from desorption of microspheres were
30.914 nm and 27.937 nm, respectively (Table 1A). These
unique structures are a suitable mesoporous material for enzyme
immobilization, which allows facile biocatalysis.

Enzyme Immobilization
For enzyme immobilization, CE was prepared via a two-step
process: enzyme adsorption and cross-linking into the prepared
biomineralized calcium carbonate microspheres as described in
Figure 1B. CE enzyme (1.0 mg) was dissolved in 1.5 mL buffer
solution under 200 rpm shaking condition at room temperature.
CE was adsorbed onto the exterior surface of the particles or
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FIGURE 1 | Schematic illustrations of (A) CaCO3 microsphere preparation and (B) enzyme immobilization.

in the inter-particle space. After washing with 100 mM sodium
phosphate buffer (pH 8.0), enzyme adsorption was completed.
To prevent the enzyme leaching in the calcium carbonate pores
space, adsorbed enzyme molecules were cross-linked via GA
chemical linker. The cross-linked CE improves loading quantity,
loading efficiency, and prevents denaturation and release of
enzymes, thus ensuring the stability of enzyme activity. The
enzyme loading efficiency and loading amount are different
depending on the concentration of enzyme and amount of
calcium carbonate used as a carrier. Therefore, the experiment
is optimized by keeping the amount of enzyme with 10 mg
of calcium carbonate microspheres. For measurement enzyme
loading, BCA protein assay kit was used. About 0.2 mg of CE was

immobilized in 10 mg of calcium carbonate microsphere during
adsorption and washing steps. Unfortunately, CE loading could
not be easily measured because cross-linked insoluble form of
CE aggregates and cannot be used for protein assay kit. For the
comparative studies, we assumed that enzymes are well retained
within the mesopores of calcium carbonate upon GA treatment
during immobilization. This means that about 20% of the enzyme
is loaded during the adsorption and additional GA cross-linking
process in the calcium carbonate pores.

Characteristics of Immobilized Enzyme
To characterize immobilized CE in the CaCO3 microspheres, we
investigated CE catalyzed hydrolysis enzymatic reactions. The
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FIGURE 2 | (A) SEM images, (B) particle size distribution, (C) energy-dispersive X-ray spectroscopy (EDS), (D) XRD patterns, and (E) FT-IR spectrum of the
prepared CaCO3 microspheres.

specific activities of free and cross-linked CE were 48.32 and
7.63 mM min−1 mg−1, respectively. The activity of free CE was
16% more than that of cross-linked CE (Table 1B), indicating
that the flexibility of the enzyme may reduce low diffusion rate
of the reactants and products, resulting in low activity values.
Most enzymes immobilized using traditional methods displayed
<10% of specific activity retention (Zhang et al., 2011); therefore,
16% represents a high retention of specific activity along with
maintaining this activity and preserving stability, thus preventing
the denaturation and autolysis of CE (Table 1B).

To investigate efficiency of immobilization, the stability of
free and cross-linked CE at different pH and temperature
conditions was examined. The effect of pH effect on the activity
was examined in the range of 6.0–10.0 at 25◦C, and the
highest CE activity was observed at pH 8.0. During the pH
study, immobilized CE was more stable compared to free CE,
indicating that enzyme activity is preserved after immobilization
(Figure 3A). These results could probably be attributed to
the stabilization of enzymes resulting from its multipoint
attachments on the surface of CE viaGA treatment. Furthermore,
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TABLE 1 | Characteristics of (A) CaCO3 microspheres, and (B) free CE and
cross-linked CE (A).

(A)

SBET V dad (average) dde (average)

(m2/g) (cm3/g) (nm) (nm)

CaCO3 microspheres 6.888 0.048 30.914 27.937

(B)

Specific activity Km Vmax

Sample (mM min−1 mg−1) (mM) (mM min−1)

Free CE 48.32 0.25 ± 0.02 2.82 ± 0.13

Cross-linked CE 7.63 0.94 ± 0.25 0.82 ± 0.16

SBET is the BET surface area; V is the total pore volume; pore size, dad and dde
were calculated using the BJH (Barett–Joyner–Halenda) method.

the microenvironment of the immobilized enzyme in inorganic
CaCO3 microspheres might lead to the displacements in the pH
activity profile arising from electrostatic interactions with the
negative charged hydrophobic CaCO3 surfaces (Vescovi et al.,
2016). During temperature profiling in the temperature range
of 15–55◦C, at pH 8.0, compared to free CE, immobilized
CE was found to be more stable. At 55◦C, the activity of
free CE reduced by 62%, whereas cross-linked CE exhibited
94% activity (Figure 3B). It shows that immobilized CE could
withstand higher temperature conditions compared to free CE
and temperature profile of immobilized CE is broader than
free CE activity at all temperatures. It was confirmed that the
abnormality was maintained, and the immobilization resulted in
an increase in the resistance of the CE to pH and temperature.
All range of pH and temperature, the activity of immobilized
CE was higher than that of free CE (Figure 3), indicating that

FIGURE 3 | Effect of (A) pH and (B) temperature on enzyme activity in comparison of free CE and cross-linked CE. The results were normalized with the highest
value of each set being assigned the value of 100% activity. (C) Recycling and (D) Storages stability of cross-linked CE. The relative activity was calculated based on
the initial activity value of 100%.
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enzyme activity is preserved after immobilization. The resistance
to temperature and pH was increased due to the effect of cross-
linking immobilization strategy in the pores of the calcium
carbonate microspheres.

Storage and Recycling Stability of
Immobilized Enzyme
The stability of immobilized CE was checked by measuring
time-dependent absorbance change in p-nitrophenol production
by CE catalyzed reaction when each sample was incubated in
100 mM sodium phosphate buffer (pH 8.0) under shaking at
200 rpm (Figures 3C,D). In our previous study, free CE activity
retained <1% residual activity within a week. Figures 3C,D
shows the results of the reuse and storage stability of the
immobilized enzyme in the pores of biomineralized calcium
carbonate microspheres. The relative activity of the cross-linked
CE is defined as a ratio to the initial activity value; therefore, the
initial activity value is assumed to be 100%. To investigate the
reuse and storage stability of the enzyme, after measurement of
enzyme activity, the immobilized enzyme was washed five times
with 100 mM phosphate buffer (pH 8.0) and stored at room
temperature. As shown in Figures 3C, after reusing the enzyme
10 times, >60% of the activity was maintained depending upon
the initial activity value. Therefore, cross-linked CE was able to
preserve high activity and stability compared to the initial activity
value even after repeated use. In addition, during the storage
period of 30 days (Figure 3D), immobilized CE maintained
high activity relative to the initial activity value and maintained
stability. The high stability of cross-linked CE can be preserved
because cross-linking prevents the release of enzymes, which
are adsorbed into the pores of calcium carbonate, and inhibits
the denaturation of the enzyme structure by inducing multiple-
point chemical linkages. The enzyme stabilization attained can
be explained by the “ship-in-a-bottle” mechanism. The cross-
linking of the enzyme prevents its leaching through the smaller
bottleneck pore structure of the mesoporous calcium carbonate
particles. The success with highly stable immobilized enzyme
in the CaCO3 has opened up a great potential for a variety of
enzymatic synthetic reactions to be practically realized based on
this biomineral based process design.

CONCLUSION

Biomineral calcium carbonate was fabricated and well
characterized using XRD, TEM, SEM, EDS, and BET surface
area, pore size, and volume of adsorption and desorption
pores. CE from Rhizopus oryzae was successfully immobilized
by adsorption, followed by cross-linking in the biomineral
calcium carbonate pores. During immobilization, 20% of the
CE enzyme was loaded in the pores of calcium carbonate,
and 16% of specific activity was maintained compare to
free CE. The enzyme retained >60% of relative enzyme
activity even after 10 reuses, when stored for 30 days at
room temperature, indicating high recycling and storage
stability. Therefore, this method, which successfully used
natural calcium carbonate to immobilize enzyme and confirmed
its stability as a biological resource, showed the possibility
of applying another enzyme. It can be used as a new
functional material.
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