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Abstract: Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are a universal
public health alarm frequently identified among humans, animals, and poultry. Livestock and poultry
production are a possible source of multidrug-resistant microorganisms, including ESBL-producing
Enterobacteriaceae, which confer antimicrobial resistance to different β-lactam antimicrobial agents.
From January to May 2020, a cross-sectional study was carried out in three dairy cattle farms and four
poultry farms in different districts of northern Egypt to assess the prevalence of ESBLs, AmpC beta-
lactamase-producing E. coli and Klebsiella in livestock, poultry, and human contacts, and to investigate
the genetic relatedness of the recovered isolates. In total, 140 samples were collected, including human
fecal samples (n = 20) of workers with intimate livestock contact, cattle rectal swabs (n = 34), milk
(n = 14), milking machine swabs (n = 8), rations (n = 2), and water (n = 2) from different cattle farms,
as well as cloacal swabs (n = 45), rations (n = 5), water (n = 5) and litter (n = 5) from poultry farms.
The specimens were investigated for ESBL-producing E. coli and Klebsiella using HiCrome ESBL
media agar. The agar disk diffusion method characterized the isolated strains for their phenotypic
antimicrobial susceptibility. The prevalence of ESBL-producing Enterobacteriaceae was 30.0%, 20.0%,
and 25.0% in humans, cattle, and poultry, respectively. Further genotypic characterization was
performed using conventional and multiplex PCR assays for the molecular identification of ESBL and
AmpC genes. The majority of the ESBL-producing Enterobacteriaceae showed a multi-drug resistant
phenotype. Additionally, blaSHV was the predominant ESBL genotype (n = 31; 93.94%), and was
mainly identified in humans (n = 6), cattle (n = 11), and poultry (14); its existence in various reservoirs
is a concern, and highlights the necessity of the development of definite control strategies to limit the
abuse of antimicrobial agents.
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1. Introduction

Antimicrobial resistance (AMR) has become an evolving hazard to public health
because of unnecessary antimicrobial exposure in human and veterinary medicine, predom-
inantly in unindustrialized countries like Egypt [1]. Antibiotics are utilized in livestock at a
global level of 63,000 tons, and this number is expected to rise to 105,000 tons in 2030 [2].
These acts contribute to the extensive proliferations of AMR pathogens in humans, cattle,
and the environment, resulting in a more extended hospitalization for patients, a financial
burden on the community, and lethal effects [2].

Diseases caused by drug-resistant Enterobacteriaceae have become a serious threat
worldwide. In particular, resistance to beta-lactam antibiotics is a significant concern in the
medical and veterinary sectors [3]. The principal resistance mechanism is the production of
the extended-spectrum lactamases (ESBLs), which can hydrolyze penicillin, broad-spectrum
cephalosporins, and monobactams produced from TEM, SHV, and CTX-M type enzymes,
which are inhibited by clavulanic acid and other B-lactamase antagonists [4]. ESBLs are
often found on plasmids that can be simply shifted across bacterial species and from
one strain to another [5]. The occurrence of ESBLs is rising in various places of the world.
Furthermore, AmpC-type β- lactamases are frequently isolated from many ESBL-producing
Enterobacteriaceae. AmpC β- lactamases, in contrast to ESBLs, hydrolyze extended-spectrum
cephalosporin but are not blocked by clavulanic acid or other β-lactamase inhibitors, and
are resistant to cephamycins such as cefoxitin and cefotetan [4].

The most commonly found ESBL-producing Enterobacteriaceae are Klebsiella and E. coli
spp, which frequently cause healthcare problems and society-acquired infections [6]. Clini-
cally related ESBL-producing Enterobacteriaceae are not limited to humans, and have also
been described in food-producing animals, poultry, and the environment [7]. Unfortunately,
there is no legislation regulating antimicrobial agents’ use in Egypt. Some antimicrobials,
such as beta-lactams, quinolones, and tetracycline, are still employed for purposes other
than treatment [8]. The irrational usage of antimicrobials causes the rapid emergence of
multi-drug-resistant species of Enterobacteriaceae in cattle and poultry. This plays a signifi-
cant part in disseminating bacteria which are resistant to antibiotics, which make their way
up the food chain to humans [9–11]. Furthermore, research has revealed that these resistant
bacteria are circulated via the food production chain or through immediate contact between
humans and cattle [12,13].

In Egypt, several reports have been created on ESBL-producing Enterobacteriaceae in
chickens, cattle, and humans [14,15]. However, little is known about AmpC β-lactamase-
producing Enterobacteriaceae in cattle or poultry. This work aimed to determine the existence
of ESBL (blaSHV, blaTEM, and blaCTX-M) and AmpC β-lactamase-producing E. coli and
Klebsiella spp in humans, cattle, and poultry in Egypt, and to investigate the genetic
similarity of isolates from the various hosts.

2. Results

Of the 140 samples, 33 (23.57%) E. coli and Klebsiella samples were recovered on
HiCrome ESBL media agar, distributed as six (30%) isolates from humans, 12 (20%) from
cattle, and 15 (25%) from poultry (Table 1). All 33 E. coli and Klebsiella isolates were tested
for their antimicrobial susceptibility. Of the examined 33 isolates, 28 (84.85%) were resistant
to cefotaxime and ceftazidime, seven (21.21%) were resistant to amoxicillin/clavulanic acid,
20 (60.61%) were resistant to levofloxacin, three (9.1%) were resistant to imipenem, and 23
(69.7%) were resistant to cefepime (Table 2).
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Table 1. The prevalence of ESBL-producing Enterobacteriaceae in humans, cattle, and poultry farms.

Sources of samples Samples No. of
samples

E. coli Klebsiella Total

Positive % Positive % Positive %

Farm workers samples
Fecal samples 20 4 20.0 2 10.0 6 30.0

Total 20 4 20.0 2 10.0 6 30.0

Cattle farm samples

Calves rectal swabs 17 2 11.76 1 5.88 3 17.65

Cows rectal swabs 17 2 11.76 2 11.76 4 23.53

Milk 14 2 14.28 1 7.14 3 21.43

Milking machine swabs 8 1 12.5 1 12.5 2 25.0

Ration 2 0 0.00 0 0.00 0 0.00

Water 2 0 0.00 0 0.00 0 0.00

Total 60 7 11.67 5 8.33 12 20.0

Poultry farms samples

Cloacal swabs 45 5 11.11 3 6.67 8 17.78

Ration 5 1 20.0 2 40.0 3 60.0

Water 5 1 20.0 1 20.0 2 40.0

Litter 5 1 20.0 1 20.0 2 40.0

Total 60 8 13.33 7 11.67 15 25.0

Table 2. Results of the antimicrobial susceptibility testing of ESBL-producing Enterobacteriaceae among
humans, cattle, and poultry.

Antibiotics
E. coli Klebsiella Total

Type Number Resistant % Type Number Resistant % Type Number Resistant %

Cefotaxime

Human 4 3 75.0 Human 2 1 50.0 Human 6 4 66.67

Cattle 7 5 71.43 Cattle 5 5 100.0 Cattle 12 10 83.33

Poultry 8 7 87.5 Poultry 7 7 100.0 Poultry 15 14 93.33

Total 28/33 84.85

Ceftazidime

Human 4 2 50.0 Human 2 2 100.0 Human 6 4 66.67

Cattle 7 7 100.0 Cattle 5 4 80.0 Cattle 12 11 91.67

Poultry 8 7 75.0 Poultry 7 6 85.71 Poultry 15 13 80.0

Total 28/33 84.85

Amoxyclavulanic

Human 4 1 25.0 Human 2 0 0.00 Human 6 1 16.67

Cattle 7 1 14.28 Cattle 5 1 20.00 Cattle 12 2 16.67

Poultry 8 2 25.0 Poultry 7 2 28.57 Poultry 15 4 26.67

Total 7/33 21.21

Levofloxacin

Human 4 2 50.0 Human 2 2 100.0 Human 6 4 66.67

Cattle 7 2 28.57 Cattle 5 2 40.0 Cattle 12 4 33.33

Poultry 8 6 75.0 Poultry 7 6 85.7 Poultry 15 12 80.0

Total 20/33 60.61

Imipenim

Human 4 1 25.0 Human 2 0 0.00 Human 6 1 16.67

Cattle 7 0 0.00 Cattle 5 1 20.0 Cattle 12 1 8.33

Poultry 8 1 12.5 Poultry 7 0 0.00 Poultry 15 1 6.67

Total 3/33 9.1
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Table 2. Cont.

Antibiotics
E. coli Klebsiella Total

Type Number Resistant % Type Number Resistant % Type Number Resistant %

Cefepime

Human 4 3 75.0 Human 2 2 100.0 Human 6 5 83.33

Cattle 7 4 57.14 Cattle 5 3 60.0 Cattle 12 7 58.33

Poultry 8 6 75.0 Poultry 7 5 71.43 Poultry 15 11 73.33

Total 23/33 69.7

The 33 suspected ESBL-producing isolates were then subjected to the double-disk
synergy test method (DDST), which confirmed 30 isolates as ESBL-producers and three
as non-ESBL-producers. The PCR screening of the isolates to β -lactam resistance genes
revealed that blaSHV (31/33, 93.94%) was the predominant gene, followed by blaTEM (29/33,
87.88%) and blaCTX-M (23/33, 69.7%). The multiplex PCR assay detected 15.15% AmpC
genes (n = 5) among the E. coli and Klebsiella isolates (Table 3). Based on phenotypic and
genotypic resistance profiles, the generated heatmap clustered the isolates into four groups
(A–D). Group C was the largest, comprising 15 isolates sourced from the three hosts (human,
cattle, and poultry). Identical profiles of antimicrobial resistances were found among three
pairs of isolates from different hosts: two pairs from cattle and poultry (Ec9 and Ec18, and
Kl3 and Kl10), and one pair from humans and cattle (Ec2 and Kl5). Seven isolates (five
isolates from poultry: Kl12, Kl11, Ec17, Ec15, Ec16; one isolate each from cattle Kl4 and
human Kl1) also had identical phenotypic and genotypic resistance profiles. Another pair
of isolates belonging to poultry (Kl8 and Kl9) showed identical profiles of antimicrobial
resistances (Figure 1).

Table 3. Distribution of ESBL-encoding genes in the isolated E. coli and Klebsiella, as well as their
antimicrobial resistance phenotype.

Isolates Origin
Resistance Gene Pattern

Antimicrobial Resistance
blaCTX-M blaSHV blaTEM AmpC

Ec1 Human + + + CTX, CAZ, AMC, LEVO, IPM

Ec2 Human + + CTX, CAZ, LEVO, FEP

Ec3 Human + + + CTX, FEP

Ec4 Human + FEP

Ec5 Cattle + CTX, CAZ, LEVO, FEP

Ec6 Cattle + + CTX, CAZ, LEVO, FEP

Ec7 Cattle + + + CTX, CAZ, FEP

Ec8 Cattle + CTX, CAZ, FEP

Ec9 Cattle + + CTX, CAZ,

Ec10 Cattle + + + + (blaFox & blaDHA) CAZ, AMC

Ec11 Cattle + + CAZ

Ec12 Poultry + + CTX, LEVO, IPM, FEP

Ec13 Poultry + + + CTX, CAZ, AMC, LEVO, FEP

Ec14 Poultry + + + (blaFox & blaDHA) CTX, CAZ, AMC, FEP

Ec15 Poultry + + + CTX, CAZ, LEVO, FEP

Ec16 Poultry + + + CTX, CAZ, LEVO, FEP

Ec17 Poultry + + + CTX, CAZ, LEVO, FEP
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Table 3. Cont.

Isolates Origin
Resistance Gene Pattern

Antimicrobial Resistance
blaCTX-M blaSHV blaTEM AmpC

Ec18 Poultry + + CTX, CAZ

Ec19 Poultry + + CAZ, LEVO

Kl1 Human + + + CTX, CAZ, LEVO, FEP

Kl2 Human + + CAZ, LEVO, FEP

Kl3 Cattle + + + CTX, CAZ

Kl4 Cattle + + + CTX, CAZ, LEVO, FEP

Kl5 Cattle + + CTX, CAZ, LEVO, FEP

Kl6 Cattle + + + + (blaFox & blaDHA) CTX, CAZ, AMC

Kl7 Cattle + + + CTX, IPM, FEP

Kl8 Poultry + + + + (blaACC) CTX, CAZ, AMC, LEVO, FEP

Kl9 Poultry + + + + (blaACC) CTX, CAZ, AMC, LEVO, FEP

Kl10 Poultry + + + CTX, CAZ

Kl11 Poultry + + + CTX, CAZ, LEVO, FEP

Kl12 Poultry + + + CTX, CAZ, LEVO, FEP

Kl13 Poultry + + + CTX, CAZ, LEVO

Kl14 Poultry + + + CTX, LEVO, FEP

Total
NO. 23 31 29 5

% 69.70 93.94 87.88 15.15

CTX, Cefotaxime; CAZ, Ceftazidime; FEP, Cefipime; LEVO, Levofloxacin; AMC, Amoxyclavulanic acid.

The correlation analysis determined the relationship between the antimicrobial re-
sistance genes and phenotypic antimicrobial resistances among the isolates. Significant
positive correlations were observed for the co-occurrence of resistance genes and pheno-
typic resistance to their corresponding antimicrobials. The AmpC genes blaFOX, blaDHA,
and blaACC were significantly and positively correlated with AMC, and the correlation
coefficients (r) were 0.61, 0.61, and 0.49, respectively. Furthermore, the blaTEM gene showed
a significant positive association with CTX (r = 0.36). On the other hand, significant nega-
tive correlations were found between resistance genes and antimicrobials other than the
corresponding ones, i.e., blaFOX and blaDHA genes with LEVO (r= −0.39). Concerning the
gene/gene relationship, a significant positive correlation was observed for the co-existence
of blaTEM and blaCTX-M genes (r = 0.36). In contrast, significant negative correlations were
found between AmpC genes, blaFOX and blaDHA, and the blaSHV gene(r= −36) (Figure 2).

Six representative CTX-M amplified sequences were chosen from E. coli and Klebsiella
positive isolates from each host species for sequence analysis with other ESBL-producing
Enterobacteriaceae strains. The selected samples were named KHF, KCF, KPF, EHF, ECF,
and EPF. The sequencing results were submitted to GenBank (accession no. MZ461491,
MZ461492, MZ461493, MZ461494, MZ461495 and MZ461496), as shown in Table 4. CTX-M
15 was the most prevalent enzyme in the sequenced isolates.
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Figure 1. A heatmap supported by a dendrogram showing the distribution of the antimicrobial
resistance genes and resistance phenotypes among the examined Escherichia coli and Klebsiella isolates
from humans, cattle, and poultry. Dark blue squares indicate resistance genes and phenotypic
resistance; gray squares indicate absent genes and phenotypic susceptibility. Four clusters (A–D) are
indicated in the figure.

Table 4. Selected E. coli and Klebsiella isolates for genetic analysis.

Isolates ID Origin GenBank Accession
No.

Klebsiella KHF Human MZ461491

Klebsiella KCF Cattle MZ461492

Klebsiella KPF Poultry MZ461493

E. coli EHF Human MZ461494

E. coli ECF Cattle MZ461495

E. coli EPF Poultry MZ461496
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Figure 2. Correlation analysis determines the associations between resistance genes and antimicrobial
resistance phenotypes among Escherichia coli and Klebsiella isolates from humans, cattle, and poultry.
The blue and red colors of the boxes indicate positive and negative correlations, respectively. The
strength of the color corresponds to the numerical value of the correlation coefficient (r). Significance
was calculated at p < 0.05, and boxes with non-significant correlations were left blank.

3. Discussion

Resistance to antimicrobials is a significant public health concern because the resistant
bacteria and their movable genetic elements (plasmids, transposons, and integrons) dis-
seminate among humans, animals, and the environment with consequential worldwide
spreading [16,17]. Specifically in developing countries, the appearance and re-emergence of
diseases caused by antibiotic-resistant pathogens are primarily due to ineffective hygienic
strategies, immediate contact with animals, and unhygienic food handling and consump-
tion practices [18]. For these reasons, a universal effort called One-Health was established
to create an integrated attitude to work in a supportable way, in order to focus on the
surveillance of antimicrobial-resistant organisms at the human–animal interface.

In particular, the resistance of Enterobacteriaceae to extended-spectrum cephalosporins
is a global issue [19], and is primarily caused by ESBL production. This problem is ex-
acerbated by the production of extra-beta lactamases (AmpC). Besides this, the presence
of the AmpC genes is regularly linked with multiple-drug resistance [20]. The global
dissemination of ESBL-producing strains of Enterobacteriaceae provides a high significance
to the study of the co-existence of these strains in humans, cattle, and poultry in Egypt.

Our study showed that the overall percentage of ESBL-producing bacteria was (23.57%)
in our study. This finding was somewhat in line with that recorded by Egbule and collabo-
rators [21], who noticed that the occurrence of ESBL E. coli isolated from humans, cattle, and
poultry in Pakistan was 19.3 %, and [22] reported that the prevalence of ESBL-producing
Enterobacteriaceae ranged from 11 to 72% in humans, was 0% in cattle, and ranged from 11
to 36% in poultry. On the contrary, these results differed from those [22] which found that
the overall prevalence of ESBL-producing Enterobacteriaceae was 86.7% in Germany.

The percentage of ESBL-producing bacteria in human samples was 30%, which was
higher than that found in [23], which reported that the percentage of ESBL producers
was 6.8% in farm workers. In summary, this carriage rate of ESBL producers could be
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attributed to factors such as the low socioeconomic status of farm workers, the lack of
hygienic practices, and close contact between humans and animals. Furthermore, selective
antibiotic pressure caused by the extensive use of third-generation cephalosporins [24] may
be the reason for this human carriage rate in our study in Egypt.

Our findings revealed a high percentage of fecal carriage of ESBL-positive isolates
recovered from cattle. The current results (20.6%) were higher than a report from Burgundy
in France in 2012, which revealed only a low occurrence—about 5%—of ESBL-producing
bacteria in fecal specimens from the examined farms [25]. In contrast, the results were
lower than those documented by [8], who found that the level of ESBL-producing E-coli
was 42.8% in rectal swabs from apparently healthy cattle in Egypt. In addition, two
records from Germany described the frequency of ESBL-producing bacteria in apparently
healthy animals [12,13]. Schmid et al. [13] collected 598 specimens that contained 196 ESBL-
producing E. coli (32.8%). Moreover, Dahms et al. [12] examined various farms for ESBL-
producing bacteria and recorded that 70.6% of the tested farms were positive for ESBL-
producing bacteria. This percentage of ESBL-producing E. coli in apparently healthy animals
shows the considerable zoonotic risk for people who come in close contact with livestock.

The presented data in Table 3 showed that the blaSHV gene was the most predominant
in 31 isolates (93.94%), and this result was contrary to the results recorded by [26], who
found that the blaSHV gene was the least-often observed (6.52%). The high presence of
blaSHV may be the reason for the high phenotypic resistance to cephalosporin.

It was noticed that 21.21% of the isolates were phenotypically related to ESBL molecu-
lar class C. They showed more activity on extended-spectrum cephalosporins with the usual
resistance to clavulanic acid (beta-lactamase inhibitor). This expression could be attributed
to numerous enzymes such as AmpC enzymes (blaACT-1, blaCMY-2, blaFOX-1, blaMIR-1, blaGCI,
and blaCMY-37) or class A ESBL enzymes (blaTEM-50, blaTEM-30, and blaSHV-10) [27]. The five
isolates (two from cattle and three from poultry) harbored AmpC genes; blaFOX, blaDHA, and
blaACC were also found with phenotypic resistance to amoxicillin/clavulanic acid, besides
other cephalosporins (cefotaxime, ceftazidime, and cefepime). A substantial contribution to
this high spread of ESBL/AmpC-producing strains is the extensive usage of third genera-
tion cephalosporins, particularly on farms, keeping healthy and diseased livestock together
nearby, and poor sanitation.

The high fecal carriage rate of ESBL-producing bacteria in cattle raises the question of
how to dispose of highly contaminated feces. Feces are well known for their use as fertilizers
in agriculture. Multidrug-resistant microorganisms could enter the food chain in this way,
either directly through meat consumption or indirectly through cattle feeding on fertilized
fields, posing a serious threat to the environment and the human population. Carbapenem-
resistant isolates were also phenotypically retrieved. It is unknown whether carbapenems
are used in the veterinary field, suggesting that this resistance may be transmitted through
gene transfer from the human to the cattle population. This finding was compatible
with [28], who detected a resistance phenotype against imipenem (42%), ertapenem (35%),
doripenem (30%), and meropenem (28%) in cattle fecal samples. The recognition of the
carbapenem-resistant phenotype and the risk of multiple drug-resistant pathogens ending
in food (e.g., milk and dairy products) increase the dangerous threats to human health.
The most frequently responsible enzymes for carbapenem resistance are molecular class
A (KPC-2, IMI-1, SME-1) followed by class B metallo-β-lactamases (IMP-1, VIM-1, CcrA,
IND-1, L1, CAU-1, GOB-1, FEZ-1, CphA, Sfh-1), along with class D (OXA-23, OXA-48) [27].

Poultry is one of the most broadly consumed foods worldwide, and several antimicro-
bials are used throughout poultry production in many countries. The threat of increasing
antimicrobial-resistant organisms in the poultry environment may cause danger to human
lives [29]. In our report (17.78%), ESBL producers were predominantly detected from cloa-
cal swabs, and this result followed [30] the identified 13.7% of ESBL-positive isolates from
poultry. Our findings suggested that antibiotics are extensively used in broiler production
in Egypt, and have also been given as growth promoters rather than treatment.
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The findings of the heatmap analysis and hierarchical clustering (Figure 2) based on
genotypic and phenotypic resistance profiles revealed the clustering of isolates belonging
to different hosts. Besides this, pairs of isolates sourced from the three hosts (human, cattle,
and poultry) showed identical genotypic and phenotypic resistance profiles. This was
not surprising, as the shared resistance genes in these isolates—including blaTEM, blaSHV,
and blaCTX-M—are plasmid-mediated genes that can be transferred between human and
animal-derived isolates [31].

The data shown in Table 4 represent the samples selected for sequence analysis based
on the CTX-M gene. It was found that all of the samples were genetically related to CTX-
M-15, while only one E. coli sample isolated from humans was associated with CTX-M-14.
This high rate of CTX-M-15-containing isolates is a potential risk. This genotype is evolving
worldwide, and is linked with multidrug-resistant pathogens, causing community and
hospital-acquired infections [32,33]. This high detection rate of blaCTX-M-15–containing
isolates agreed with the preceding records on blaCTX-M-15 being the most frequent ESBL
in the Middle East and North Africa [34]. This high prevalence of the blaCTX-M-15 allele
might owe itself to the potent ability of its gene products (CTX-M-15 and its variants) to
break the structure of ceftazidime, cefotaxime and aztreonam, which possibly provides the
bacteria with a selective advantage, especially when various antibiotics are concurrently or
successively prescribed. This high genetic matching can suggest the zoonotic transmission
of strains between human and animal populations. This finding was in harmony with [35],
who identified the same type of CTX-M (blaCTX-M-15) among ESBL-E in Egypt, and [36],
who detected blaCTX-M-14, -15, -27, and blaCTX-M-55 variants in various animal species;
their presence could be an indication of transmission between humans and animals because
these strains have been associated with the global spread of blaCTX-M in human clinical
isolates [7]. Figure 3 displays the phylogenetic tree of the current CTX-M type class A β-
lactamase and other published CTX-M sequences showing high genetic similarities (99%
identity), which may explain the possibility of the exchange of this resistance gene between
species in some Egyptian districts.
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4. Material and Methods
4.1. Ethical Declaration

This research was performed following the Ethics of the Alexandria University Insti-
tutional Animal Care and Use Committee guidelines (ALEXU-IACUC, 3312020, Egypt).
There was a comprehensive discussion with each worker before sample collection, and
each signed a declaration of consent to participate in this research study. The ethics state-
ment was not required regarding the cattle and poultry specimens because the swabs
were collected by a non-invasive method, and no experiments were conducted for this
surveillance study.

4.2. Sample Collection

Samples were collected from various humans, cattle, and poultry in several districts of
the Behera and Alexandria Governorates in Egypt from January to May 2020 (see Figure 4).
One hundred and forty specimens were gathered from human contact workers, dairy cattle,
and broiler chickens, including human fecal samples (n = 20) from the workers, rectal swabs
(n = 34), milk (n = 14), milking machine swabs (n = 8), rations (n = 2) and water (n = 2) from
the cattle farms. Furthermore, cloacal swabs (n = 45), rations (n = 5), water (n = 5) and litter
(n = 5) were taken from poultry farms. All specimens were taken and transferred in an ice
box to the Animal Hygiene and Zoonoses Department laboratory, Faculty of Veterinary
Medicine, Alexandria University for bacteriological analysis.
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4.3. Isolation and Identification of ESBL- Producing Enterobacteriaceae

The inoculated plates were incubated under aerobic conditions at 37 ◦C for 24–48 h.
The specimens (n = 140) were primarily streaked on MacConkey agar (Oxoid, Hampshire,
UK). The positive isolates were subcultured on Eosin Methylene blue agar (Oxoid, Hamp-
shire, UK); then, the positive isolates were finally cultured in HiCrome ESBL media agar
(Himedia), on which a presumptive ESBL producer produces bluish-green colonies. Sim-
mons Citrate Agar was used to differentiate between E. coli and Klebsiella. The colonies were
picked and preserved in aliquots of nutrient broth with glycerol for further microbiological
examination [37].

4.4. Testing for Susceptibility to Antimicrobials

Commercially available antibiotic disks (HiMedia) were used for antimicrobial suscep-
tibility testing. According to the Clinical Laboratory Standards Institute (CLSI) guidelines,
the disc diffusion method was used to assess the antimicrobial susceptibility. Samples
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were inoculated onto Muller–Hinton agar (MHA) (Oxoid). The following antibiotic disks
were used: ceftazidime (30 µg), amoxicillin/clavulanic acid (30 µg), cefotaxime (30 µg),
levofloxacin (30 µg), cefepime (30 µg), and imipenem (30 µg). After 24 hours of incubation
at 37 ◦C, the diameter of the inhibitory zone was measured [38].

4.5. Phenotypic Confirmation of ESBL

The phenotypic verification of the ESBL-producing Enterobacteriaceae was carried
out with a double-disk synergy test, as previously reported [39]. In brief, each isolate was
inoculated on the MHA plate. Then, an amoxicillin/clavulanic acid disk (AMC, 20/10 µg)
was placed 25 mm from the ceftazidime (CAZ) (30 µg) and cefotaxime (CTX) (30 µg) disks.
After incubation, the increase in the CAZ inhibition zone or CTX disks toward the AMC
disk (keyhole shape) was recorded as positive ESBL production.

4.6. DNA Isolation and Detection of ESBL and AmpC Type β-lactamase Genes

Bacterial isolates were cultivated in nutrient broth at 37 ◦C for 12 h; the bacterial
cultures were mixed with distilled water, and the suspension was centrifuged at 10.000× g
for 5 min. The bacterial pellet was resuspended in distilled water and boiled in a water
bath for 10 minutes, then centrifuged at 10.0000× g for 5 min. The DNA extraction was
performed using the boiled cell method [17]. Finally, the supernatant was collected and
used as a DNA template for PCR.

Conventional and multiplex PCR was performed using the primer sets in Table 5.
The reaction of the conventional PCR was conducted in a total volume of 10µL in order
to detect bla SHV, blaTEM, and blaCTX-M genes. In contrast, the reaction of multiplex PCR
was performed in a total volume of 40µl in order to detect AmpC genes (blaMOX, blaCIT,
blaDHA, blaEBC, blaFOX, and blaACC), as shown in Table 6. The PCR products were analyzed
on ethidium-bromide-stained 1.5% agarose gel, and the bands were visualized under a
UV transilluminator.

4.7. DNA Sequencing

Based on CTX-M gene product, six isolates (3 klebsiella and 3 E-coli) were selected from
the three hosts for sequence analysis. The purified extracted PCR products were sequenced
in the forward and/ or reverse directions on an Applied Biosystems 3130 automated DNA
Sequencer (ABI, 3130, USA) using a ready reaction Bigdye Terminator V3.1 cycle sequencing
kit. (Perkin-Elmer/Applied Biosystems, Foster City, CA, USA, Cat. No. 4336817).

4.8. Phylogenetic Analysis of the Sequenced Genes

A comparative analysis of the sequences was performed using the CLUSTAL W
multiple-sequence alignment program, version 1.83 of the MegAlign module of Lasergene
DNA Star software Pairwise [40]. Phylogenetic analyses were conducted using maximum
likelihood, neighbor-joining, and maximum parsimony in MEGA6 [41].

4.9. Statistical Analysis

The data were collected and processed. The statistical analysis results are presented in
the tables and figures using SPSS statistical software, version 16.0. A correlation analysis
was performed to determine the association between the antimicrobial resistance genes
and phenotypic antimicrobial resistances among the isolates. The resistance phenotypes
and genotypes results were converted into binary data (0/1); the absence of resistance
genes or susceptibility to antimicrobials had scores of 0, while the presence of a resistance
gene or resistance to antimicrobials received scores of 1. Binary data were imported into
R software (version 3.6.1; https://www.rproject.org, accessed on 4 July 2022); with the
“corrplot” package, the correlations were determined at a significance of p < 0.05 using the
functions “cor” and “cor.mtest”. A heatmap with hierarchical clustering was also generated
using the R packages “heatmap” and “RColorBrewer”, in order to cluster the examined
isolates based on their phenotypic and genotypic resistance profiles.

https://www.rproject.org
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Table 5. Oligonucleotide primer sequences of the PCR assay.

Target Genes Nucleotide Sequence (5’to 3’) Amplicon Size (bp) Reference

Bla MOX-1, Bla MOX-2, bla CMY-1, bla
CMY-8 TO bla CMY-11

GCTGCTCAAGGAGCACAGGAT
CACATGACATA GGTGTGGTGC 520

[42]

Bla LAT-1 TO Bla LAT-4, Bla CMY-2 TO Bla
CMY-7, Bla BIL-1

TGGCCAGA CTGACAGGCAAA
TTTCTCCTGAACGTG GCT GGC 462

Bla DHA-1, Bla DHA-2
AACTTTCACAGGTGTGCTGGGT
CCGTACGCATACTGG CTT TGC 405

Bla ACC
AACAGCCTCAGCAGCCGGTTA
TTCGCCGCAATCATC CCT AGC 346

Bla MIR-1, Bla ACT-1
TCGGTAAAGCCGATGTTGCGG
CTTCCACTGCGGCTGCCAGTT 302

Bla FOX-1, Bla FOX-5 B
AACATGGGGTATCAGGGAGATG
CAAAGCGCGTAACCGGATTGG 190

Bla SHV
ATGCGTTATATTCGCCTGTG
TGCTTTGTTAT CGGGCCAA 747

[43]Bla TEM
TCGCCGCATACACTATTCTCG AATGA

ACGCTCACCGGCTCCA GATTTAT 445

Bla CTXM
ATGTGCAGYACCAGTAARGTK ATGGC

TGGGTRAARTARGTSACCAGAAYCAGCGG 593

Table 6. Preparations of the PCR reaction.

PCR Reaction Mixture
Reaction Volume

Conventional PCR Multiplex PCR

2x Taq Master Mix 5 µL 20 µL

PCR grade water 2 µL 3 µL

Forward primer 1 µL 6 µL

Reverse primer 1 µL 6 µL

Template DNA 1 µL 5 µL

Total 10 µL 40 µL

5. Conclusions

This study revealed the phenotypic and genotypic link of ESBL-producing Enterobacte-
riaceae isolated from humans, cattle, and poultry, suggesting that cattle and poultry could
be a potential reservoir host of those bacteria with a risk of infecting the human population.
Our results emphasize continuous monitoring and obtaining more samples to investigate
the genetic relationship between animal and human bacterial isolates. Moreover, advanced
molecular epidemiological studies, such as whole-genome sequencing, are required in order
to better understand the zoonotic potential of those bacteria at the human–animal interface.
Additionally, the dissemination of AMR should be checked thoroughly by introducing
surveillance programs on hospital sites and animal and poultry production farms. Besides
this, antibiotics should be appropriately used in Egypt’s veterinary and medical industries.
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