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Abstract

Autism Spectrum Disorders (ASD) is a spectrum of highly heritable neurodevelopmental disorders in which known
mutations contribute to disease risk in 20% of cases. Here, we report the results of the largest blood transcriptome study to
date that aims to identify differences in 170 ASD cases and 115 age/sex-matched controls and to evaluate the utility of gene
expression profiling as a tool to aid in the diagnosis of ASD. The differentially expressed genes were enriched for the
neurotrophin signaling, long-term potentiation/depression, and notch signaling pathways. We developed a 55-gene
prediction model, using a cross-validation strategy, on a sample cohort of 66 male ASD cases and 33 age-matched male
controls (P1). Subsequently, 104 ASD cases and 82 controls were recruited and used as a validation set (P2). This 55-gene
expression signature achieved 68% classification accuracy with the validation cohort (area under the receiver operating
characteristic curve (AUC): 0.70 [95% confidence interval [CI]: 0.62–0.77]). Not surprisingly, our prediction model that was
built and trained with male samples performed well for males (AUC 0.73, 95% CI 0.65–0.82), but not for female samples (AUC
0.51, 95% CI 0.36–0.67). The 55-gene signature also performed robustly when the prediction model was trained with P2
male samples to classify P1 samples (AUC 0.69, 95% CI 0.58–0.80). Our result suggests that the use of blood expression
profiling for ASD detection may be feasible. Further study is required to determine the age at which such a test should be
deployed, and what genetic characteristics of ASD can be identified.
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Introduction

Autism Spectrum Disorders (ASD) cover a broad spectrum of

developmental delays in social interaction, verbal and non-verbal

communication, and restricted repetitive patterns of behavior and

interests with onset before 3 years of age. ASDs include autistic

disorder, pervasive developmental disorder-not otherwise specified

and Asperger’s Disorder as sub classified in the Diagnostic and

Statistical Manual of Mental Disorders, 4th edition, Text Revision (DSM-

IV-TR) [1]. The prevalence of ASD has been reportedly

increasing in recent decades, with a current estimation at 1 in

88 [2]. There are long waiting lists for evaluation at most centers

with expertise and, despite the progress made in adopting

instruments such as the Autism Diagnostic Interview-Revised

(ADI-R) and the Autism Diagnostic Observation Schedule

(ADOS), there remains significant debate regarding the prognostic

value and accuracy of existing instruments [3,4]. Additionally, the

Centers for Disease Control have identified addressing the delay in

diagnosis of ASD (median age at diagnosis is currently 5.7 years) as

a public health priority [5,6]. Moreover, early diagnosis and
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behavioral intervention improve outcomes [7], highlighting a

continued need and interest in diagnostic tests or biomarkers that

can be used in primary pediatric care to reduce the time to

accurate diagnosis.

The high heritability of ASD, with 60–90% concordance

between identical twins vs. 0–10% in fraternal twins [8,9], has led

to the hope that a collection of DNA mutations can be used

diagnostically for ASD. Indeed, a range of mutations, from single

nucleotide changes to copy number variants (hundreds to millions

of bases affected) to karyotypically visible anomalies, have been

catalogued in patients with ASD. However, individually most of

these mutations account for less than 1% of autism cases and

collectively they account for less than 20% [8]. Chromosomal

microarray analysis (CMA), which detects 7–10% of children

diagnosed with ASD [10–12], has been recommended as a first-

tier genetic test for patients who may have ASD. Although DNA

sequence and chromosomal variants may provide mechanistic

insight, CMA characterizes genomic variants in only a minority of

children with ASD.

Gene expression microarrays enable the measurement of

messenger RNA for most of the thousands of known genes.

Specifically, they measure which part of the DNA in the genome is

transcribed for cellular function at a given time. Multivariate gene

expression–based prediction models developed from cases and

non-cases have been widely used for diagnosis, screening,

prediction of treatment response, and prognosis [13,14]. RNA

expression, across hundreds of genes in peripheral blood, has also

been shown to be perturbed in patients with ASD relative to

controls using gene expression microarrays [15–23]. How these

RNA expression differences translate into classification accuracy is

not yet known. Nonetheless, as RNA expression is controlled by

both the DNA code from which it is transcribed and the

physiological and environmental milieu, these early results are

encouraging. We performed the largest blood gene expression

study to date of ASD, designed specifically to provide insight into

the performance of a blood expression signature that classifies

children with ASD from controls, particularly after an increased

index of suspicion based on parent and/or pediatric assessment.

Validation of this signature utilized an additional cohort for

assessment of classification accuracy.

Results

ASD patients were recruited from the Developmental Medicine

Center, the Division of Genetics, and the Department of

Neurology at Children’s Hospital Boston (CHB) with additional

samples obtained from Boston Medical Center, Cambridge Health

Alliance, Tufts Medical Center, and Mass General Hospital in

collaboration with the Autism Consortium of Boston. Study

inclusion criteria consisted of a clinical diagnosis of ASD by DSM-

IV-TR criteria and an age.24 months. Patients with ASD

recruited for this study have undergone diagnostic assessment,

using ADOS and ADI-R, as well as comprehensive clinical testing

such as cognitive testing, language measures, medical history,

height and weight, head circumference, and behavioral question-

naires. Two independently collected data sets (hereafter P1 and

P2) consisted of 99 (66 ASDs and 33 controls) and 186 (104 ASDs

and 82 controls) individuals, respectively. The patients with known

syndromic disorders such as fragile X syndrome, tuberous

sclerosis, Landau-Kleffner syndrome, and Klinefelter syndrome

were not included in this study.

A total of 115 controls were enrolled concurrently. Collection of

control samples was performed through partnerships with both the

Division of Endocrinology of Boston Children’s Hospital (12

individuals from the P1 cohort) and Children’s Hospital Primary

Care Center (CHPCC) (21 individuals from P1, and all 82

individuals from P2). Patients enrolled from the outpatient

endocrine clinic were healthy children with idiopathic short

stature, including genetic short stature and constitutional delay of

growth, and were having clinical blood draws. We followed up on

the clinical blood draw results to confirm they had no abnormal

findings and those that did were withdrawn from the study.

Patients seen in the CHPCC for a well-child visit that involved a

routine blood draw (for example, to obtain lead levels) were

offered enrollment. A diagnosis of a chronic disease, intellectual

disability, ASD, or other neurological disorder acted as exclusion

criteria from our control group. Complete phenotypic information

is available with microarray data (Gene Expression Omnibus

identifier GSE18123). Each cohort’s clinical and demographic

information is shown in Table 1.

Written consent was obtained from the parent or guardian of all

children participating in the study, and was approved by the

Institutional Review Boards (IRB) of each participating institution.

Approval for the study as a whole was also obtained from the

Boston Children’s Hospital IRB.

Table 1. Characteristics of patients with autism spectrum
disorders and controls in the training set (P1) and in the
validation set (P2).

Training Set (P1) Validation Set (P2)

Characteristic ASD Control ASD Control

No. 66 33 104 82

Age - years

Mean 8.0 9.0 8.4 8.1

Interquartile range 5.5–9.7 4.0–13.1 5.0–11.0 4.1–12.3

Male - no. (%) 66 (100) 33 (100) 80 (77) 48 (59)

Diagnosis (Male %)

Autistic Disorder 31 - 40 (75) -

PDD, NOS 26 - 49 (76) -

Asperger’s Disorder 9 - 15 (87) -

Race - no.

Caucasian 60 13 96 33

Black 0 5 0 8

Asian 1 1 3 2

Mixed 5 1 4 8

Other - 4 - 21

Unknown 1 9 1 10

Ethnicity

Hispanic - no. 2 9 8 36

Unknown - no. 1 - - -

Developmental delay - no. 21 5 51 3

Learning Disorder – no. 9 - -

Psychiatric Disorder - no. 14 4 32 1

Neurological Disorder - no. 8 - 18 -

Gastrointestinal Disorder - no. 24 - 20 -

Autoimmune Disorder - no. - - 7 -

Cerebral Palsy - no. - - 1 -

doi:10.1371/journal.pone.0049475.t001
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There was no statistical difference in age between ASD cases

and controls in the P1 (Welch’s t-test P = 0.29) or P2 cohort

(P = 0.73). Ages of ASD samples between the P1 and P2

populations were also not different (P = 0.52). Thirteen of 66

patients with ASD in P1 and 42 out of 104 in P2 were evaluated

for verbal and non-verbal IQ. There was no significant difference

in average IQs between P1 and P2 (verbal IQ P = 0.872, non-

verbal IQ P = 0.624, and total IQ P = 0.929). One ASD patient in

P1 met the criteria of mild intellectual disability (verbal IQ = 69,

non-verbal IQ = 65, and total IQ = 67), and 5 males and 2 females

of P2 met the criteria of moderate to profound intellectual

disability.

The disease incidence in ASD is discordant between males and

females, with males 4 times more likely to develop disease.

Additionally, our preliminary analysis revealed higher heteroge-

neity in RNA levels in females with ASD than in males, possibly

due to the smaller number of females included in this study or to

the sexual dimorphism in the expression of the disorder [17].

Considering these factors, only males were included in the P1

cohort (both ASD and control samples), which was used to build a

prediction model for ASD. We subsequently tested the perfor-

mance of the predictive model in both males and females in the P2

cohort (although the number of female controls was higher than

that of female ASD—Fisher’s exact test P = 0.01 in P2).

Blood gene expression changes in ASD
Due to the time-span covered by this study, expression studies

were performed by microarray profiling using an earlier version of

the Affymetrix array (U133p2) for the P1 data set and a later

version (GeneST) for the P2 data set. After selecting the best

matching probesets between the two platforms (see Methods),

principal component analysis was performed to project samples

into the first two principal components. P1 and P2 samples did not

form two clusters after combining the two datasets, which were

centered and scaled independently (Fig. S1) [13].

There were 489 and 610 transcripts differentially expressed

between ASD cases and controls in the P1 and P2 datasets,

respectively (Welch’s t-test P,0.001, corresponding FDRs 0.029

(P1), and 0.023 (P2)) (Tables S1 and S2). Of these, 23 genes—

ARID4B, ARMCX3, C10orf28, CTBP2, DDX3Y, JRKL, MTERFD3,

NFYA, NGEF, PNN, RLF, RNF145, TIGD1, TUBB2A, UTY, YES1,

ZNF117, ZNF322, ZNF445, ZNF514, ZNF518B, ZNF540, and

ZNF763—were significant in both cohorts. To calculate the

significance of this overlap, we shuffled sample labels in both data

sets 200,000 times and counted the number of permutations with

as many or more overlapping genes. Out of 200,000 permutations,

only 2 had at least 23 overlapping genes between the two data sets,

yielding a permutation P = 1025. The overlap of 23 genes also

showed a significant trend using the hypergeometric distribution

(P = 0.0721) [24]. In the P2 dataset, 352 genes were significant for

male patients compared to male controls while 48 genes were

significant for female groups (Welch’s t-test P,0.001, correspond-

ing FDRs 0.028 (P2 males) and 0.60 (P2 females)). One gene –

POLR3H – was differentially expressed in both males and females.

Twelve of the 489 differentially expressed genes in the P1

dataset were selected for validation by quantitative RT-PCR. The

12 genes selected had an average fold change between ASD and

controls greater than 1.5 and a mean expression level on the array

greater than 150. These were CREBZF, HNRNPA2B1, KIDINS220,

LBR, MED23, RBBP6, SPATA13, SULF2, TMEM30A, ZDHHC17,

ZMAT1, and ZNF12. Eleven of 12 genes (all except ZMAT1) were

successfully validated using qRT-PCR (Table 2).

Out of 489 differentially expressed genes in P1, 10 genes (AFF2,

CD44, CNTNAP3, CREBBP, DAPK1, JMJD1C, NIPBL, PTPRC,

SH3KBP1, and STK39) were found in the expert-curated ASD

candidate-genes database (https://gene.sfari.org/) [25]. Addition-

ally, 44 genes mapped to reported copy number variation regions

(http://projects.tcag.ca/autism/) (Table 3) [12]. Interestingly, rare

mutations in or CNVs containing JMJD1C [26], PTPRC [27], and

SH3KBP1 [28] have been reported in a small numbers of cases.

For example, STK39 was identified as an ASD candidate gene

from linkage analysis of 334 families [29]. Two genes—CD44 and

DAPK1—were differentially expressed between 5 monozygotic

twins pairs who were discordant for clinical severity [30]. AFF2,

DOCK8, NIPBL, and RPS6KA3 were implicated in intellectual

disability. AFF2 encodes FRAXE-associated mental retardation

protein (FMR2) within which small changes were found in patients

with intellectual disability and developmental delay [31], and

significantly more frequent rare variants were detected in AFF2 by

massively parallel sequencing of males with ASD [32]. Heterozy-

gous changes in the DOCK8 gene have been previously reported in

two unrelated patients, one by deletion testing and one by a

translocation breakpoint; these disruptions are associated with

intellectual disability and developmental disability (MRD2, MIM

ID# 614113) [33]. Mutations in NIPBL result in Cornelia de

Lange syndrome (MIM ID# 122470), a disorder characterized by

dysmorphic facial features, growth delay, limb reduction defects as

well as intellectual disability [34]. Among the differentially

expressed genes in the P2 dataset, only ATRX was associated with

intellectual disability according to the Online Mendelian Inher-

itance in Man (OMIM) database [35].

When each diagnostic subtype was compared to controls in the

P1 dataset, 178, 56, and 3 genes were significant for autistic

disorder (AUT), pervasive developmental disorder-not otherwise

specified (PDDNOS), and Asperger’s disorder (ASP), respectively

(One-way analysis of variance (ANOVA) with Dunnett’s post hoc

test P,0.001, corresponding FDRs 0.076 (AUT), 0.24

(PDDNOS), and 1.0 (ASP)). Among the significant genes in

ASP, only one gene, PTPRE, overlapped with the AUT vs. control

or PDDNOS vs. control comparisons while 36 genes were in

common between AUT vs. control and PDDNOS vs. control (Fig.

S2).

Four of 66 ASD cases in the P1 dataset had mild intellectual

disability. When we compared the 4 ASD cases with mild

intellectual disability to the 62 ASD cases without intellectual

disability, we found 70 differentially expressed genes (P,0.001,

corresponding FDR 0.12), of which none has yet been implicated

in the intellectual disability process as reported in the OMIM and

Human Gene Mutation Databases [36]. The relation between

ASD and intellectual disability needs to be further explored in the

context of the genetic background that they share.

Expression profiling also identified chromosomal abnormalities.

For instance, we identified an affected male that had high

expression of the X-inactive-specific transcript (XIST); the

expression values were comparable to those of females. Subse-

quent karyotyping confirmed Klinefelter syndrome in this

individual, and the case was excluded in this study for further

analysis.

Perturbed biological pathways and identification of
heterogeneous subgroups

We used a modified Fisher’s exact test (i.e., Expression Analysis

Systematic Explorer [EASE] score) to see what biological

pathways were enriched with the differentially expressed genes

in P1 using the DAVID functional annotation system [37,38]. This

metric allowed us to calculate which processes were overrepre-

sented in the 489 differentially expressed genes in P1 relative to all

the processes annotated in the Kyoto Encyclopedia of Genes and

Blood Transcriptional Signature in Autism
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Genomes (KEGG) [39]. These results are detailed in Table 4. In

brief, the neurotrophin signaling pathway (KEGG pathway

identifier: hsa04722) was the most significant (EASE score

P = 0.00023, FDR 0.0026) among 22 overrepresented pathways

(EASE score P,0.05, corresponding FDR 0.44). The neurotro-

phin signaling pathway includes neurotrophins and their second

messenger systems such as the MAPK pathway, PI3K pathway,

and PLC pathway, which have been identified by others [40,41] as

important for neural development, learning and memory, and

syndromic ASDs such as tuberous sclerosis and Smith-Lemli-Opitz

syndrome. Interestingly, long-term potentiation and long-term

depression pathways were also significant (EASE score P = 0.011,

FDR 0.11, and P = 0.042, FDR 0.39 respectively). We grouped the

22 overrepresented pathways according to the number of shared

genes by calculating Cohen’s kappa score. Two enriched clusters

of 15 and 3 pathways were significant (Cohen’s kappa.0.5) with

progesterone-mediated oocyte maturation belonging to both

clusters. Five other pathways—notch signaling pathway, lysosome,

leukocyte transendothelial migration, endocytosis, and MAPK

signaling pathway—were not clustered with the others (Table 4).

Given that multiple pathways were significantly enriched with

the differentially expressed genes, we investigated the heterogene-

ity of perturbation across samples. All the significant genes in the

top 14 pathways, from neurotrophin signaling to the VEGF

pathway (Table 4), were grouped together as Pathway Cluster 1. A

majority of these genes were associated with immune response.

The genes in the long-term potentiation and long-term depression

pathways were grouped as Pathway Cluster 2. In this cluster,

synaptic genes were enriched. When the samples were plotted in a

multidimensional space corresponding to the two pathway clusters

(Fig. 1), four subgroups were distinct. The samples in quadrant I of

Figure 1 were perturbed in both Pathway Cluster 1 and Pathway

Cluster 2, while the majority of samples in quadrant III were not

significantly perturbed for either gene set. Interestingly, a

subgroup of ASD samples was only perturbed for Pathway Cluster

2 (quadrant II in Fig. 1), and some were only significant for

Pathway Cluster 1 (quadrant IV in Fig. 1). We also found 6

significant clusters of Gene Ontology biological process terms

grouped by the same approach as KEGG pathways (Cohen’s

kappa.0.5) from 428 overrepresented terms (Table S3), but the

heterogeneity in these terms was not as clear as in KEGG

pathways.

Prediction of autism using blood gene expression
signatures

To test whether peripheral blood gene expression profiles could

be used as a molecular diagnostic tool for identifying ASD, we

used a repeated leave-group out cross-validation (LGOCV)

Table 2. Quantitative RT-PCR validations of 12 differentially expressed genes.

qRT-PCR Microarray

Gene TaqMan Primer ID Fold change p-value Fold change p-value

CREBZF Hs02742201_s1 1.73 0.000127974 1.60 8.8516E-05

HNRNPA2B1 Hs00955384_m1 1.35 0.00119253 1.53 4.2587E-06

KIDINS220 Hs01057000_m1 2.16 8.44446E-10 1.57 2.674E-05

LBR Hs01032700_m1 2.50 7.55278E-10 1.63 5.85338E-05

MED23 Hs00606608_m1 2.24 1.95917E-09 1.51 0.000259037

RBBP6 Hs00544663_m1 1.98 0.000388767 1.58 0.000156489

SPATA13 Hs01128069_m1 1.61 0.000236786 1.56 6.07308E-05

SULF2 Hs01016476_m1 1.89 5.58742E-08 1.72 7.35118E-06

TMEM30A Hs01092148_m1 3.19 4.27915E-10 1.84 7.26489E-05

ZDHHC17 Hs00604479_m1 3.82 7.3983E-12 1.61 1.22144E-05

ZMAT1 Hs00736844_m1 0.60 0.413889282 1.86 8.81564E-05

ZNF12 Hs00212385_m1 2.35 9.12987E-09 1.54 1.86789E-06

We selected 12 significantly differentially expressed genes that had average fold change greater than 1.5 and mean expression levels greater than 150 in the P1 dataset,
and validated changes using quantitative RT-PCR. A total of 30 ASD and 30 control samples from the P1 population were run in replicates of four on the Biomark real
time PCR system (Fluidigm, CA) using nanoliter reactions and the Taqman system (Applied Biosystems, CA). We were limited to 60 samples because the other 39
samples did not have enough RNA for qRT-PCR. The housekeeping gene used for qRT-PCR normalization was GAPDH (Hs9999905_m1). The values shown are for 30 ASD
and 30 control samples from the P1 population, and fold changes refer to ASD/Control. P-values were calculated using Welch’s t-test. For microarray data, p-values and
fold changes were recalculated using the available samples. Eleven of 12 genes (all except ZMAT1) were successfully validated.
doi:10.1371/journal.pone.0049475.t002

Table 3. Differentially expressed genes in CNV regions previously linked to ASD.

Copy number variation Differentially expressed genes in P1 dataset

Gain ADAM10, AP1G1, CCNL1, CLIP1, DDX55, DOCK8, GRIPAP1, HIPK3, JMJD1C, KLHL2, MAPK8, MTMR10, PCGF3, RNF111,
SACS, SNX27, SPATA13, TAOK3, WDR7, ZNF268, ZZEF1

Loss ANTXR2, ATRN, FRMD4B, HECA, ING5, LIFR, OR10A4, SIN3A, UTRN, VAV3, ZC3H13, ZNF548, ZNF592

Gain and loss AHR, CRKL, DMXL1, KBTBD11, KIAA0947, KIAA1468, MAPK1, TRIO, ZBED4, ZNF516

doi:10.1371/journal.pone.0049475.t003
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strategy with P1 to build a prediction model. First, the training set

(P1) was utilized to determine a classification signature (i.e. a

combination of gene expression measurements) that was used to

classify ASD patients in P1 (compared to controls). We ranked the

489 differentially expressed genes according to their area under

the receiver operating characteristic (ROC) curve (AUC). Next we

excluded those genes with low expression, requiring the minimum

expression level across all samples to be at least 150. A total of 391

differentially expressed genes were then utilized in building the

prediction models, which were subsequently tested against the

samples in our independent validation cohort (P2). The top N

genes (where N ranges from 10 to 390 incremented by 5) were

used to build prediction models using a repeated 5-folds LGOCV

with a partial least squares (PLS) method [42,43], and AUCs were

calculated for each cross-validation instance (see Methods). The

prediction model using the top 55 genes was the most stable from

100-repeated LGOCV, having the smallest coefficient of variation

in AUCs from 100 trials (Fig. S3). The top 55 genes performed

significantly better than the 50-gene model (one sided t test

P = 0.00031). We chose the 55-gene prediction model because it

minimized description length—i.e., the number of predictor

genes—while maintaining good prediction performance, and used

it to evaluate the independent dataset, P2. The 55 significant genes

are listed in Table S4. The performance of PLS was comparable to

that of other prediction algorithms (Table S5); thus the classifi-

cation performance was not attributable to a specific prediction

algorithm.

The accuracy of this 55-gene set (hereafter referred to as

ASD55) within P1 was unsurprisingly high since it was the training

set (AUC 0.98, 95% confidence interval (CI), 0.965–1.000), but

ASD55 also had good performance when applied to the P2

validation population (AUC 0.70, 95% CI 0.623–0.773) (Table 5).

When generating a set of genes to classify samples, a tradeoff

between specificity and sensitivity must be considered to achieve

optimal results as shown by the ROC curves in Fig. 2A. To

address whether the ASD55 classifier performed better than

Table 4. Top 22 KEGG pathways enriched for differentially expressed genes in ASD (P1).

KEGG pathways Count
EASE score
P FDR (%) Genes

Pathway Cluster 1

Neurotrophin signaling pathway 13 0.00023 0.26 MAP2K1, PIK3CB, PIK3CD, KIDINS220, MAPK1, YWHAG, MAP3K5,
RPS6KA3, CRKL, MAPK14, SH2B3, MAPK8, CRK

Fc gamma R-mediated phagocytosis 9 0.00303 3.41 MAPK1, PTPRC, DOCK2, CRKL, VAV3, MAP2K1, PIK3CB, PIK3CD, CRK

Renal cell carcinoma 8 0.00307 3.45 MAPK1, CRKL, MAP2K1, PIK3CB, PIK3CD, CREBBP, EGLN1, CRK

Chemokine signaling pathway 12 0.01094 11.82 MAPK1, DOCK2, CRKL, VAV3, ROCK1, MAP2K1, GNAI1, PIK3CB, PREX1,
PIK3CD, CCR2, CRK

Regulation of actin cytoskeleton 14 0.01174 12.62 GNA13, VAV3, MAP2K1, ROCK1, PIK3CB, PIK3CD, SSH2, IQGAP2, ITGB2,
MAPK1, CRKL, ITGAV, PPP1R12A, CRK

mTOR signaling pathway 6 0.01358 14.47 MAPK1, RPS6KA3, PIK3CB, PIK3CD, CAB39, RICTOR

Chronic myeloid leukemia 7 0.01413 15.01 MAPK1, CRKL, CTBP2, MAP2K1, PIK3CB, PIK3CD, CRK

Fc epsilon RI signaling pathway 7 0.02189 22.35 MAPK1, VAV3, MAP2K1, PIK3CB, MAPK14, PIK3CD, MAPK8

B cell receptor signaling pathway 6 0.02773 27.48 MAPK1, VAV3, MAP2K1, PIK3CB, PIK3CD, PPP3CB

T cell receptor signaling pathway 8 0.02797 27.69 MAPK1, PTPRC, VAV3, MAP2K1, PIK3CB, MAPK14, PIK3CD, PPP3CB

Focal adhesion 12 0.02878 28.38 IGF1R, MAPK1, CRKL, VAV3, ROCK1, MAP2K1, PIK3CB, ITGAV, PIK3CD,
PPP1R12A, MAPK8, CRK

ErbB signaling pathway 7 0.02987 29.29 MAPK1, CRKL, MAP2K1, PIK3CB, PIK3CD, MAPK8, CRK

Natural killer cell mediated cytotoxicity 8 0.04051 37.66 IFNAR2, MAPK1, VAV3, MAP2K1, PIK3CB, PIK3CD, PPP3CB, ITGB2

VEGF signaling pathway 6 0.04888 43.6 MAPK1, MAP2K1, PIK3CB, MAPK14, PIK3CD, PPP3CB

Pathway Cluster 1 and 2

Progesterone-mediated oocyte maturation 9 0.00408 4.57 IGF1R, MAPK1, RPS6KA3, MAP2K1, GNAI1, PIK3CB, MAPK14, PIK3CD,
MAPK8

Pathway Cluster 2

Long-term potentiation 7 0.01054 11.4 MAPK1, RPS6KA3, GNAQ, MAP2K1, CREBBP, PPP3CB, PPP1R12A

Long-term depression 6 0.04209 38.82 GNA13, IGF1R, MAPK1, GNAQ, MAP2K1, GNAI1

Not clustered

Notch signaling pathway 6 0.00536 5.96 CTBP2, KAT2B, MAML1, CREBBP, ADAM17, MAML3

Lysosome 9 0.01136 12.24 LAMP1, NPC1, AP1G1, HEXB, GAA, CTSD, PPT1, CLTC, MANBA

Leukocyte transendothelial migration 9 0.0174 18.18 RASSF5, VAV3, ROCK1, GNAI1, PIK3CB, MAPK14, PIK3CD, PECAM1,
ITGB2

Endocytosis 11 0.02135 21.85 EPS15, IGF1R, RNF103, RAB22A, RAB5A, GIT2, SH3KBP1, PDCD6IP,
CLTC, ARAP2, ARAP1

MAPK signaling pathway 14 0.04635 41.86 MAP2K1, NLK, TAOK3, PPM1B, MAP4K4, MAPK1, MAP3K5, RPS6KA3,
CRKL, MAPK14, PPP3CB, MAPK8, CRK, RASA1

doi:10.1371/journal.pone.0049475.t004
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expected by chance, 55 genes were randomly sampled 2,000 times

and the performances of these random sets were evaluated by

AUCs. Our ASD55 model outperformed all of the 2,000 trials of

randomly chosen sets of 55 genes (permutation P,0.0005). Since

the majority of our training set (P1) consisted of ASD patients, we

checked if the performance of ASD55 was inflated from such

imbalances by calculating the ‘balanced accuracy’ [44]. The

balanced accuracy is defined as the average of the accuracies

obtained in either class (patients and control), or, equivalently, the

arithmetic mean of specificity and sensitivity. It is equal to the

conventional accuracy if the classifier performs equally well on

both classes, but if the classifier’s accuracy is entirely due to

imbalance in the data the balanced accuracy will drop to random

chance (0.5). The average balanced accuracy of ASD55 within P1

was 0.72, which is higher than random chance (0.5) implying that

ASD55 was not entirely affected by imbalanced data [44]. Our

training set (P1) consisted of males only while the test set (P2) had

both genders. Unsurprisingly, the prediction model built with

males performed better for males in P2. The AUC for male

samples in P2 was 0.73 (95% CI 0.645–0.824) compared to 0.51

(95% CI 0.357–0.672) for female samples. To test the robustness

of ASD55, we trained ASD55 with P2 samples to classify P1

samples, switching our training and validation sets. The perfor-

mance was comparable to the original classification accuracy

where P1 was used as the training set (AUC 0.69, 95% CI 0.583–

0.797, Fig. 2B). All male patients with intellectual disability were

accurately classified in both training and validation datasets while

two female cases were predicted as non-cases.

Overall, the ASD55 predictor genes were enriched with 2

KEGG pathways (TGF-beta signaling pathway and Neurotrophin

signaling pathway) and 8 Gene Ontology biological process terms

(Table S6). It may be worth noting that 29 out of 55 predictor

genes were associated with expression in the brain according to

enrichment analysis using DAVID on UniProt tissue expression

categories (UP_TISSUE, EASE score P = 0.071, FDR 53.88).

Also, hierarchical clustering of samples in P1 by the ASD55

predictor genes showed a clear distinction between ASD patients

and controls (Fig. 3).

Figure 1. Heterogeneous subgroups in dysregulated pathways. For immune response and synaptic gene sets, robust Mahalanobis distances
(RDs) were calculated for all P1 samples. The outlier cutoff was set at the 97.5% quantile of the chi-squared distribution for each gene set (dotted
green lines). When all samples were plotted in the 2-dimensional plane of Pathway Cluster 1 (x axis) by RDs in the Pathway Cluster 2 (y axis) (Table 4),
four subgroups of samples were distinct. Both gene sets were perturbed for the samples in quadrant I; however, the samples in quadrants II and IV
were significant for one gene set but not the other. A majority of samples were in quadrant III where no significant perturbation was found. The
marginal density plots show the RD distributions for each gene set. Twenty-three out of 66 ASD samples (34.8%) were outliers for the synaptic gene
set compared to 4 of 33 for controls (12.1%) (Fisher’s exact test P = 0.017). For the immune response gene set, outliers were not biased towards case
or control (Fisher’s exact test P = 0.36).
doi:10.1371/journal.pone.0049475.g001
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Effect of other clinical and demographic factors on blood
gene expression

In order to ensure that our predictor was robust for ASD

classification, we reviewed the expression data for potential

confounders. Among the demographic and clinical features, age

at time of blood draw significantly influenced gene expression.

Within the ASD group, age at blood collection was correlated

within 382 genes at a significance level of P,0.001 (Spearman’s

rank correlation test, N = 66, corresponding FDR 0.018). Six

KEGG pathways were significantly enriched with the 382 age-

correlated genes in the P1 ASD population (Table S7). The carbon

pool by folate pathway (KEGG ID: hsa00670) was the most

significantly enriched with age-correlated genes (EASE score

P = 4.661027, FDR 5.261024). The age-correlated genes in this

pathway were MTHFD1, TYMS, SHMT2, ATIC, DHFR,

MTHFD1L, and GART. The ASD55 genes were not significantly

correlated with age except for CNTRL and UTY, which were

correlated with age in patients but not controls. UTY was one of

the 23 genes that were differentially expressed in both datasets (P1

and P2). In the P1 control group (N = 33), 163 genes correlated

significantly with age, but none of the ASD55 genes were among

them.

Several other clinical and developmental characteristics were

also correlated with gene expression changes as summarized in

Table 6. A positive personal history of developmental delay

including a delay in hitting milestones such as sitting, crawling,

walking, and speaking was associated with 12 genes including the

aristaless related homeobox gene (ARX). ARX is a homeodomain

transcription factor that plays crucial roles in cerebral develop-

ment and patterning [45], and is implicated in X-linked

intellectual disability [46]. ARX was not differentially expressed

in the ASD group of P1 (P = 0.74); however, it was significantly

down-regulated in the individuals with positive history of

developmental delay (P = 0.00037, FDR 0.30).

In the P1 cohort, 9 patients with ASD were diagnosed with

leaning disorders. Sixty-four genes were differentially expressed

with regard to learning disorders (Positive History N = 9, Negative

History N = 90, P,0.001, corresponding FDR 0.14). The calcium

signaling pathway (KEGG ID: hsa04020) was significant (hyper-

geometric P = 0.023, FDR 0.19) due to ADRA1B, CHRM2,

PPP3R1, and P2RX3. Another gene differentially expressed in

patients with learning disorders, Synapsin 2 (SYN2), is a synaptic

vesicle-associated protein that has been implicated in modulation

of neurotransmitter release and in synaptogenesis. A brain gene

expression study showed that SYN2 was down-regulated in the

Figure 2. Performance of the ASD55 prediction model. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the
prediction accuracy. The dotted diagonal line represents random classification accuracy (AUC 0.5). A. The accuracy of ASD55 within P1 was
unsurprisingly high (AUC 0.98, 95% confidence interval (CI), 0.965–1.000, black ROC curve). The ASD55 model was trained with P1 to predict the
diagnosis of each sample in an independently collected dataset P2 (dark blue ROC curve). The performance measured by AUC was 0.70 (95% CI, 0.62–
0.77). ASD55 genes showed similar performance when the training and testing datasets were switched (AUC 0.69, 95% CI 0. 58–0.80, brown ROC
curve). B. P2 male samples were accurately predicted (dark green) while female samples (red) were not (AUC 0.73 and 0.51 respectively) when the
ASD55 model was trained with P1.
doi:10.1371/journal.pone.0049475.g002

Table 5. Prediction performance of ASD55 trained with P1.

Validation Set
AUC (95% Confidence
Intervals) Accuracy (%) Sensitivity (%) Specificity (%)

Positive Predictive
Value (%)

Negative Predictive
Value (%)

P2 0.70 (0.623–0.773) 67.7 69.2 65.9 72.0 62.8

P2 (male) 0.73 (0.645–0.824) 72.7 90.0 43.8 72.7 72.4

P2 (female) 0.51 (0.357–0.672) 63.8 50.0 73.5 57.1 67.6

Abbreviations: ASD55, the genes in a classifier developed on P1 with 55 genes listed in Table S4; AUC, area under the receiver operating characteristic curve.
doi:10.1371/journal.pone.0049475.t005
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prefrontal cortex of schizophrenic patients [47]. The differentially

expressed genes that were correlated with other clinical conditions

including psychiatric, neurological, gastrointestinal disorders, and

seizure disorder are summarized in Table 6.

Discussion

Prior studies have shown differentially expressed genes and

miRNAs in brain [48–52] and blood [15–23] samples from

patients with ASD. This study further examines gene expression

and demonstrates the capability of blood gene expression profiling

to distinguish ASD patients from controls, with an average

Figure 3. Cluster analysis of the 55 genes used in the prediction model (ASD55). The dendrogram and heatmap on top show hierarchical
clustering (average linkage) of the 99 samples in the training set (P1) and the 55 genes used in our prediction model. The first 2 lines in the graph on
bottom indicate whether each sample is from the patient group or the control group. Finally, the bottom line shows the distribution of Fisher’s linear
discriminant scores (dots) based on ASD55 with moving average (line). The distributions of linear discriminant scores are shown on the right (blue
solid line for controls and black broken line for patients). ASD cases and controls are well separated using linear discriminant analysis on the ASD55
genes.
doi:10.1371/journal.pone.0049475.g003
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accuracy of 72.5% in one population (the P1 cohort) and 72.7% in

an independently collected validation population (the P2 cohort).

The classification performance in this study is encouraging,

particularly as the two groups were heterogeneous and profiled

using two different array-types. The classification of 73% of cases

by expression profiling contrasts with the small percentage of ASD

cases characterized by genetic mutations or structural variations to

date. It also compares favorably to the performance of CMA,

which, while high confidence, accounts for only 7–10% of cases of

ASD. Together, these results suggest that gene expression

signatures, which comprise multiple perturbed pathways, may

serve as signals of genetic change suggestive of ASD in most

patients. In this regard, this work parallels studies in neuropsychi-

atry where investigators have demonstrated that blood expression

signatures are significantly different in schizophrenia [53],

Alzheimer’s disease [54], and bipolar disorder [55].

Although the transcriptomic connection between blood and

brain is not well understood, numerous lines of evidence suggest

that measurements in tissues that are not primarily involved in the

disease process may reveal disease signatures. Several investigators

have demonstrated differential expression of genes in peripheral

white blood cells in disorders of the central nervous system [53–

56]. To this point, Sullivan et al. [57] have established a shared

expression profile between different CNS tissues and the blood

suggesting the use of peripheral blood expression as a surrogate for

the brain. Moreover, individual gene expression variations of

multiple brain regions correlate well with those of blood in non-

human primates [58]. Recently, gene expression profiles of

lymphoblastoid cell lines were shown to distinguish between

different forms of ASD caused by defined genetic lesions (Fragile X

syndrome and chromosome 15q duplication) and normal controls

[22], and small studies of patients phenotypically defined with

ASD have shown differential expression of genes in their

peripheral blood cells [20] and in the function of T cell subsets

[19]. These results are mirrored by proteomic studies of serum,

which suggest systematic differences between patients with ASD

and controls [59]. As such, this evidence suggests that peripheral

blood cells might be used as a surrogate for gene expression in the

developing nervous system. Moreover, Glatt et al. recently

reported results from an on-going longitudinal study of blood

gene expression biomarkers in ASD and typically developing

children [60]. They compared peripheral blood mononuclear cell

gene expression profiles from ASD (37 AD and 23 PDD) with 68

non-cases – 27 samples from typically developing children and 41

samples from children who were initially evaluated as a potential

risk group, but later found to be non-cases. Among the 134

differentially expressed genes found by Glatt et al., 5 genes—

ABHD3, COL4A3BP, MAPK14, PARP8, and ZNF763—were also

differentially expressed in our P1 dataset, and ZNF763 was

significant in the P2 data as well. The overlapping genes were all

up-regulated in our datasets while the same genes were all down-

regulated in Glatt et al. except for ZNF763, which was up-

regulated in our two datasets P1 and P2, and in Glatt et al. It is

possible that the effect of age on blood gene expression contributed

to the gene expression changes being opposite for the common

genes. A longitudinal follow-up study of the cohort of Glatt et al.

would give us more conclusive results regarding the validity of

blood gene expression markers at different age groups.

The biological pathways implicated by the differentially

expressed genes identified in this study are of interest because

some of the gene sets link to synaptic activity-dependent processes

(i.e., long-term potentiation and neurotrophin signaling in Table 4),

for which several ASD mutations have been found [40,41].

Immune/inflammatory pathways were also identified in this

analysis (e.g. chemokine signaling and Fc gamma R-mediated

phagocytosis), which have been implicated in several studies of

children with ASD compared to controls through CNS cytopa-

thology [61], serum and CSF proteomics [59], as well as in

cadaveric expression studies of the CNS [51].

According to OMIM, which covers most reported associations

between diseases and genes [62], 6 of the ASD55 genes (11%) are

known disease related genes. Among these 6 genes, CREBBP and

RPS6KA3 were associated with intellectual disability. Heterozygous

mutation of CREBBP causes Rubinstein-Taybi syndrome [63], of

which the core symptom is intellectual disability (MIM ID#
180849). Coffin-Lowry syndrome (MIM ID# 303600) is caused by

mutations in RPS6KA3 on chromosome Xp22.12, and is charac-

terized by skeletal malformation, growth retardation, cognitive

impairments, hearing deficit, and paroxysmal movement disorders

[64].

There remain several potentially important limitations of this

study. The two data sets were obtained at different times and the

Table 6. Genes significantly correlated with clinical features.

Medical and developmental history
Number of significant
genes (p,0.001) Significant genes

Developmental delay 12 ARX,BMS1P1,C20orf196,CCDC18,IBTK,PNRC1,
RHBDL2,TIGD1,TRIM4,ZNF37A,ZNF415,ZNF536

Learning disorders 68 ADRA1B,AKNAD1,ANKRD18A,ANKRD30A,APP,BOD1L,C20orf166-A,
C6orf195,CA2,CACNG5,CAV2,CEP19,CHRM2,CLDN5,CNTNAP3,
CRYGN,CXCL5,DDX11L2,ENSG00000217702,EPHA10,F13A1,
FAM184B,FMO3,GFOD1,GGTA1P,GIF,GNG11,GSC2,HBEGF,
HGD,HRCT1,IGSF11,IGSF22,ITPRIPL2,IZUMO1,KCNA1
,KRT81,LCE1B,LOC126536,LYZL4,MECOM,MSH4,NME
5,NPY,NR1H4,P2RX3,PACS2,PF4V1,PPFIA2,PPP3R1,RAX2,
RNF17,RPL21P68,SCGN,SCN9A,SHH,SLC16A9,SLCO
2B1,SMCR8,SYN2,TCTN2,TEAD1,TMIE,TRH,TXNRD2,
VGLL3,WRB,ZNF652

Neurological disorders 7 FAM13A,LRRD1,PITX3,SH3PXD2B,SPRR4,SPZ1,TACR2,

Psychiatric disorders 5 CSTT,GPR111,HIP1,MED25,STX19

Gastrointestinal disorders 5 COL7A1,MARK1,PLA2G4C,SETMAR,TTR

Seizure disorders 4 GPR153,GSC2,MGC39545,PITX3

doi:10.1371/journal.pone.0049475.t006
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methods for RNA acquisition and microarrays used in P1 differed

in part from those in P2. Also, the control population in P2 versus

P1 differed in the clinics from which they were drawn, and the

racial and ethnic backgrounds of the patient and control

populations were not completely matched. This heterogeneity

adds noise to the case vs. control comparison and conversely if the

analysis utilized more homogeneous data sets, we would have

expected improved accuracy. Despite these differences, the

independent set reassuringly demonstrates the accuracy of the

classifier. However, if ASD expression endophenotypes exist, we

did not achieve sufficient sample size to discover them. The

inability to identify subtypes within an autism cohort is not

unusual, as it has also been seen in recent genotyping and copy

number variation studies [27,65]. Also, the data were collected

after diagnosis and not as part of a longitudinal study of

individuals. The application of these predictors to a prospective

cohort would allow us to further assess their validity as a diagnostic

and prognostic tool. Finally, our groups with ASD were compared

to developmentally normal controls and not to individuals with

other neurodevelopmental disorders. Nevertheless, the accuracy

we have obtained in this study is a necessary first step towards a

trial validating a set of predictive biomarkers.

In conclusion, this study of children with ASD describes a gene

expression signature that shows promising accuracy in classifying

children with ASD from controls. The ability of the ASD55

predictor to correctly classify ASD samples compares favorably to

the DNA-based tests currently proposed for ASD diagnosis. The

results presented here raise further questions that bear investiga-

tion but are outside this study’s scope: At what age does this

ASD55 signature manifest? Is it present at birth? Finally, we

expect that larger studies can be used to determine whether

particular characteristics of ASD can be classified or predicted

from a gene expression signature (e.g. seizures and language delay)

and thereby improve individualized treatment in the near future.

Materials and Methods

Blood gene expression profiling
Gene expression profiles of P1 were prepared using Affymetrix

HG-U133 Plus 2.0 (U133p2) and those of P2 were profiled using

Affymetrix Gene 1.0 ST (GeneST) arrays (Affymetrix, CA). Within

the P1 data set, RNAs from 39 ASD and 12 control samples were

isolated directly from whole blood using the RiboPure Blood Kit

(Ambion). For all other blood samples, total RNA was extracted

from 2.5 ml of whole venous blood using the PAXgene Blood

RNA System (PreAnalytix) according to the manufacturer’s

instructions. Quality and quantity of these RNAs was assessed

using the Nanodrop spectrophotometer (Thermo Scientific) and

Bioanalyzer System (Agilent). Fragmented cRNA was hybridized

to the appropriate Affymetrix array and scanned on an Affymetrix

GeneChip scanner 3000. cRNA from both affected and normal

control population groups was prepared in batches consisting of a

randomized assortment of the two comparison groups.

Processing of microarray data
Gene expression levels were calculated using Affymetrix Power

Tools version 1.10 (Affymetrix, CA). We used the Probe Log

Iterative ERror (PLIER) algorithm that includes a probe-level

quantile normalization method for each microarray platform

separately [66]. To match the probeset identifiers from the two

different platforms used in this study, we used the Best Match

subset (http://www.affymetrix.com/Auth/support/downloads/

comparisons/U133PlusVsHuGene_BestMatch.zip) between the

two as described in the Affymetrix technical note [67]. 29,129

out of 54,613 total probesets on U133p2 were best matched to

17,984 unique probesets of the GeneST array, and these matched

probesets were used for the cross-platform prediction analysis. For

the genes represented by more than two U133p2 probesets, we

included the genes for which all probesets changed to the same

direction.

To identify hidden confounders such as batch effect, we

performed surrogate variable analysis (SVA) with null model for

batch effect [68]. For the P1 dataset, SVA found 6 surrogate

variables in residuals after fitting with the primary variable of

interest, i.e., clinical diagnosis. The first surrogate variable

significantly correlated with the year when the microarray

profiling was performed. In the P2 dataset, a batch with 12

samples was grouped separately from the other 172 samples from a

principal component analysis although none of the surrogate

variables was correlated with the 12 outlier samples. We used the

ComBat algorithm [69] to reduce the batch effects in P1 and P2

independently as the two array platforms are different in the

design of probe sequences such that U133p2 array uses both

perfect match (PM) and mismatch (MM) probes while GeneST

array only has PM probes. All statistical analyses were performed

with the ComBat corrected expression data.

Statistical analysis for differentially expressed genes and
enriched pathways

To identify differentially expressed genes in cases compared to

controls, we used Welch’s t-test for two group comparison, and

one-way analysis of variance with Dunnett’s post hoc tests to find

significantly changed genes in AUT, PDDNOS, or ASP compared

to the control group. To identify differentially expressed genes in

the P2 dataset, the significance of diagnosis and gender was

determined by two-way analysis of variance and follow-up Welch’s

t-test for each gender and Dunnett’s post hoc tests for subtypes. We

set the threshold for differential expression at nominal p-

value,0.001. A general linear model was used to evaluate the

significance of diagnosis, gender, age, and the other covariates. We

corrected p-values for multiple comparisons by calculating a false

discovery rate (FDR) [70]. We used Fisher’s exact test for

categorical data. Spearman’s rank correlation coefficients were

calculated to evaluate correlation between continuous phenotypic

variables such as age at blood drawing and the expression level of

each gene. The significance of correlation was determined using

Fisher’s r-to-z transformation. Enriched biological pathways with

predictor genes were found using the DAVID functional

annotation system [71]. For significant KEGG pathways, we

calculated the robust Mahalanobis distance of each individual

from the common centroid of all cases and controls to find outliers

using the minimum covariance determinant estimator [72]. A

quantile of the chi-squared distribution (e.g., the 97.5% quantile)

was used as a cut-off to define outliers, because for multivariate

normally distributed data the Mahalanobis distance values are

approximately chi-squared distributed. These outliers can be

interpreted as biologically distinct subgroups for each pathway. All

statistical analysis was performed using the R statistical program-

ming language [73], and robust multivariate outlier analysis was

performed using the chemometrics R library package [72].

Statistical prediction analysis
We performed prediction analysis in the following sequential

steps; 1) ranking genes for predictor selection, 2) setting up a cross-

validation strategy in the training set, 3) tuning parameters and

building prediction models, and 4) predicting a test set, and

evaluating prediction performances (Fig. S4). First, all genes were

ranked by AUC. We selected the top 10 genes from the ranked list
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to build a prediction model with a partial least square (PLS)

method in the P1 dataset using a repeated leave-group out cross-

validation (LGOCV) strategy, then repeated the same procedure

with the top N genes incremented by 5 up to 390. For each

prediction model using the top N genes, all P1 samples (N = 99)

were divided to 80% (a train set) and 20% (a test set), keeping the

proportion of ASD cases and controls the same in each set. This

step was repeated 100 times to estimate robust prediction

performance (i.e., outer cross validation). To optimize each

prediction model further, an inner cross-validation approach was

deployed where 80% of the samples served as an inner train set,

and 20% were used as an inner test set. The inner cross-validation

procedure was repeated 100 times to find optimal tuning

parameters for the specific prediction algorithm used. For each

prediction model with the top N genes, a total of 10,000

predictions (i.e., 100 repeated LGOCVs 6100 inner cross-

validations) were made.

For each sample in a test set, the model predicts the probability

of being classified as ASD. Thus, the number of false positives

among positive predictions changes with the threshold. Overall

prediction accuracy was calculated as (the number of true

positives+the number of true negatives)/N, where N was the total

number of samples in a dataset. Sensitivity, specificity, positive

predictive value, and negative predictive value were presented as

standard measures of prediction performance with AUC. The

ROC curve summarizes the result at different thresholds.

To find the best performing prediction model with the

minimum description length, we compared AUCs between

prediction models using the top N genes. The mean AUCs

improved gradually with increasing model complexities. However,

we could identify the most stable prediction model by calculating

the coefficient of variation of AUCs with 100 trials of outer cross

validations. We tested 5 additional prediction methods; Logistic

regression, Naı̈ve Bayes, k-Nearest Neighbors, Random Forest,

and Support Vector Machine using 55 genes with 5 fold LGOCV

strategy (Table S5). Statistical prediction analysis was performed

using the caret [74] and RWeka [75] R library packages.

Quantitative RT-PCR validation
A total of 12 genes using 30 ASD and 30 control samples from

the P1 population were run in replicates of four on the Biomark

real time PCR system (Fluidigm, CA) using nanoliter reactions and

the Taqman system (Applied Biosystems, CA). We were limited to

60 samples because the other 39 samples did not have enough

RNA for qRT-PCR. Following the Biomark protocol, quantitative

RT-PCR (qRT-PCR) amplifications were carried out in a 9

nanoliter reaction volume containing 26 Universal Master Mix

(Taqman), taqman gene expression assays, and preamplified

cDNA. Pre-amplification reactions were done in a PTC-200

thermal cycler from MJ Research, per Biomark protocol.

Reactions and analysis were performed using a Biomark system.

The cycling program consisted of an initial cycle of 50uC for

2 minutes and a 10 min incubation at 95uC followed by 40 cycles

of 95uC for 15 seconds, 70uC for 5 seconds, and 60uC for

1 minute. Data was normalized to the housekeeping gene GAPDH,

and expressed relative to control. All primers used for the 12 genes

are listed in Table 2.

Supporting Information

Figure S1 Principal component analysis of 285 blood
gene expression profiles. Global gene expression profile of the

Training set (P1) and the Validation set (P2) samples. After

selecting the best-matching probe sets between two Affymetrix

microarray platforms (see Methods), principal component analysis

was performed. We applied the ComBat method to reduce batch

effect for each dataset. All samples from P1 and P2 were projected

to two-dimensional space of the first (PC1) and the second (PC2)

principal components after centering and scaling expression levels

in each dataset. 36.5% of overall variance was explained by PC1

and PC2. We did not find global gene expression difference

between ASD cases and controls.

(TIF)

Figure S2 Selecting the predictor genes using repeated
cross validations. Our prediction model selection procedure

consisted of three nested loops as illustrated in Fig. S3. The outer-

most loop was the selection of the top N genes (from 10 to 395

incremented by 5) from the AUC ranked gene list. The second

loop was a leave-group out cross validation approach, where 80%

of samples were randomly selected as a train set, while maintaining

the proportion of each diagnostic class. This step was repeated 100

times for each list of the top N genes. The inner-most loop was

used to optimize the parameters that were specific to machine

learning methods used for a train set from an outer loop. This

parameter tunings were repeated 100 times by randomly selecting

80% of the train set samples. The prediction performance was

estimated using AUC. We found the mean AUCs improved

gradually when we increased the number of genes to build more

complex prediction models (left); however, the top 55 genes

prediction model performed significantly better than the 50 gene

model (t-test P = 0.00031) and also presented the smallest

coefficient of variation from 100 repeated cross validations (right).

(TIF)

Figure S3 Predictor gene selection and model building
procedure.

(TIF)

Figure S4 Overlap between differentially expressed
genes for each diagnostic subgroup (ASP, PDD, AUT)
in P1. Only one gene, PTPRE, was found in common as

significant genes for each diagnostic subgroup vs. control. And 36

genes were common between AUT vs. control (177 significant

genes) and PDDNOS vs. control (56 significant genes).

(TIF)

Table S1 Differentially expressed genes in P1. We used

Welch’s t-test for two groups comparison, and one-way analysis of

variance with Dunnett’s post hoc tests to find significantly changed

genes in autistic disorder (AUT), PDD-NOS (PDDNOS), or

Asperger’s disorder (ASP) compared to control group. We

corrected p values for the multiple comparisons by calculating a

false discovery rate (FDR).

(XLS)

Table S2 Differentially expressed genes in P2. We used

Welch’s t-test for the comparison between ASD cases and controls.

To identify differentially expressed genes in P2 dataset, signifi-

cance of diagnosis (p(Dx)) and gender (p(Gender)) was determined

by two-way analysis of variance (ANOVA) and follow-up Welch’s

t-test for each gender. p(Dx*Gender) denotes the interaction

between diagnosis and gender effects for significance. A total of

469 unique genes were differentially expressed (P,0.001,

corresponding FDR 0.023) as there were transcripts without

official gene symbols (i.e., – in Gene field) and several genes have

multiple Affymetrix IDs.

(XLS)
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Table S3 Top 6 clusters of Gene Ontology biological
process terms enriched for differentially expressed
genes in P1 data set.
(XLS)

Table S4 The predictor genes for final prediction
model. The differentially expressed genes were ranked by

AUC, and top 55 genes were selected to build the final prediction

model. Affymetrix IDs represent the transcript IDs of Gene ST 1.0

array. Welch’s t-tests were used to calculate p-values, and false

discovery rates (FDR) were calculated as described in Storey and

Tibshirani.

(XLS)

Table S5 Prediction performance of ASD55 using
various machine learning algorithms. ASD55 denotes the

genes in a classifier developed on P1 with 55 genes (Table S4).

The average prediction performances from 100-repeated leave-

group out cross validations using the P1 dataset are shown. For

each prediction instance, 20% of ASD cases (N = 13) and 20% of

controls (N = 7) were randomly selected for a testing set, and the

other 80% of samples served as a training set. This procedure was

repeated 100 times to calculate the average performance of

ASD55 with 6 machine learning algorithms listed below. The

overall performance of PLS was comparable to the other 5

methods. The sensitivities were relatively higher than the

specificities across different methods except for the Naı̈ve Bayes

classifier. (AUC: Area under the receiver operation characteristics

curve, ACC: Accuracy, SENS: Sensitivity, SPEC: Specificity,

PPV: Positive Predictive Value, NPV: Negative Predictive Value).

(XLS)

Table S6 Functional enrichment of genes in ASD55. The

term categories are presented as defined in DAVID.

(XLS)

Table S7 Pathways enriched with age-correlated genes
in ASD.

(XLS)
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