
PRC1 and RACGAP1 are Diagnostic
Biomarkers of Early HCC and PRC1
Drives Self-Renewal of Liver Cancer
Stem Cells
Shixin Liao, Kaili Wang, Lulu Zhang, Gaoli Shi, Zhiwei Wang, Zhenzhen Chen, Pingping Zhu*
and Qiankun He*

School of Life Sciences, Zhengzhou University, Zhengzhou, China

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths
across the world. Due to the lack of reliable markers for early HCC detection, most HCC
patients are diagnosed in middle/late stages. Liver cancer stem cells (CSCs), which are
drivers of liver tumorigenesis, usually emerge in the early HCC stage and are also
termed as liver tumor initiation cells (TIC). Liver CSCs contribute to initiation,
propagation, and metastasis of HCC and also play a key role in tumor therapy.
Taking advantage of online-available data sets, bioinformatic analyses, and
experimental confirmation, here we have screened out PRC1 and RACGAP1 as
reliable markers for early HCC detection. PRC1 or RACGAP1 knockdown
dramatically inhibited the proliferation, migration, and invasion capacities of HCC
cells, conferring PRC1 and RACGAP1 as predominant modulators for HCC
propagation and metastasis. Moreover, the sphere formation capacity of HCC cells
was impaired after PRC1 knockdown, revealing the function of PRC1 as a
modulator for liver CSC self-renewal. Furthermore, the inhibitor of PRC1 had same
phenotypes as PRC1 knockdown in HCC cells. Altogether, PRC1 and RACGAP1 are
identified both as prognosis markers for early HCC detection and therapeutic targets
for liver cancer and liver CSCs, adding additional layers for the early prognosis and
therapy of HCC.
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INTRODUCTION

In China, the incidence of liver cancer has doubled in the past two decades. However, the HCC
which accounts for 85–90% of liver cancer is still difficult to detect in the early stage using
conventional tumor diagnosis methods, such as computed tomography (CT), magnetic
resonance imaging (MRI), and ultrasonic inspection (Roberts et al., 2018; Xie et al., 2020).
The HCC patients are already in the advanced HCC stage when they are diagnosed, which
largely increases the difficulty of tumor therapy and the risk of tumor-related death. In
addition, due to the lack of effective means to detect the therapeutic effect, the tumor will
relapse and metastasize after treatment, resulting in the death of the patient (Wu et al., 2021).
Therefore, it is urgent to explore more effective methods for early diagnosis and prognostic
detection of HCC.
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Recently, accumulating biomarkers have been identified for
tumor diagnosis and prognosis. Some tumor-specific genes are
expressed in very early stages in tumorigenesis, whereas others
are expressed in later stages. In addition to gene expression,
gene mutation, copy number, DNA methylation, and protein
levels have also been reported as biomarkers for tumor
diagnosis and prognosis (Cheng et al., 2018). However,
many biomarkers are obtained from limited tumor samples
and thus cannot represent comprehensive features of HCC
samples. With the rapid development of computer science and
the rapid accumulation of biological data, bioinformatics has
emerged as an efficient tool for the analysis of huge amounts of
biological data. Microarray and RNA sequencing are
predominant strategies in the rapid development of
bioinformatics and could be used for a variety of genomics
and proteomics analyses (Gao et al., 2019; Chen et al., 2020).
At present, a large number of microarray data sets have been
deposited in several databases, but valuable information needs
to be analyzed by bioinformatics. In our study, three cohorts,
namely, GSE102079, GSE112790, and GSE121248, were
selected from the GEO data set for the DEG analysis as
testing cohorts, and other four cohorts (GSE45267,
GSE62232, GSE84402, and GSE6764) were used to confirm
our results. Taking advantage of GO, KEGG, PPI, and LASSO,
we finally identified PRC1, RACGAP1, CENPF, and CCNB2 as
diagnosis markers of early HCC detection.

In addition to the lake of biomarkers, the significant
heterogeneity of HCC also accounts for the poor prognosis of
HCC patients (Zhang et al., 2019). The hierarchical organization
of tumor cells within the tumor bulk is largely generated from a
small subset of cells termed cancer stem cells (CSCs) (Batlle and
Clevers, 2017). Liver CSCs usually emerge in the very early stage
of HCC and contain several subsets (Zheng et al., 2018). With the
ability of self-renewal and differentiation, liver CSCs contribute to
tumor initiation, metastasis, drug resistance, and tumor relapse
(Nio et al., 2017; Lee et al., 2022). Liver CSCs can survive in
various clinical therapies, including chemotherapy, radiotherapy,
and up-to-date immunotherapy, and differentiate into new
tumors (Zheng et al., 2018). The self-renewal of liver TICs is
regulated by several signaling pathways, includingWnt/β-catenin
(Chen et al., 2018a), Notch (Zhu et al., 2015a), Hedgehog (Wu
et al., 2019), Hippo/Yap (Guo et al., 2017), and PKC (Chen et al.,
2018b) signaling pathways, which are further modulated by
various intracellular and niche factors. Recently, we have
identified several functional liver CSC-intrinsic factors,
including C8orf4 (Zhu et al., 2015a), ZIC2 (Zhu et al., 2015b),
lnc-β-Catm (Zhu et al., 2016), and cia-MAF (Chen et al., 2021).
We have also proved that non-CSC secreted WNT5A drives the
activation of Wnt/β-catenin signaling in liver CSCs (Chen et al.,
2018a). However, the previous studies in the CSC field largely
depend on a few clinical samples and many discoveries are only
suitable for some patients but not for others, largely limiting the
clinical applications for highly heterogenous HCC patients.
Combining unbiased genome-wide screening with a large
number of HCC samples and CSC detection, we have
identified PRC1 and RACGAP1 as predominant modulators
for HCC propagation and metastasis.

MATERIALS AND METHODS

Acquisition of Data Resources
We entered the keyword “HCC” in GEO data sets of NCBI
(https://www.ncbi.nlm.nih.gov/geo/) for retrieval and got
20603 results. “Expression Profiling by Array” in the study
type and “Homo Sapiens” in top organisms were added to the
filters. Finally, 417 results were obtained. We selected
sequencing data sets of HCC and a normal liver with a
sample size greater than 100 on the same platform. Then
three gene expression profiles [GSE102079 (Chiyonobu et al.,
2018), GSE112790 (Shimada et al., 2019), and GSE121248
(Wang et al., 2007)] were selected. These three microarrays
were based on GPL570 (HG-U133_Plus_2). The GSE102079
cohort consisted of 152 HCC samples and 91 non-cancer
samples from 152 patients. The GSE112790 cohort consisted
of 183 HCC samples and 15 non-cancer samples from 183
patients. The GSE121248 included 70 HCC samples and 30
normal samples from 107 patients. The basic features of
GSE102079 and GSE112790 data sets have not been
disclosed. The basic features of GSE121248 data sets are
summarized in Table 1.

Data Analysis
GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) was used for
the DEG analysis. We typed the number of the selected gene
microarrays in GEO data sets of NCBI and clicked “analyze with
GEO2R” to select HCC samples and non-cancer samples for
analysis. The p value < 0.05 and |logFC| > 1.5 were used as the
selection criteria.

Functional Annotation of DEGs
The GO analysis provides gene characters about cellular
components (CCs), molecular functions (MFs), and biological
processes (BPs). KEGG, a well-known database containing many
signaling pathways, and it links the list of genes to the enrichment
of signaling pathways. The DEGs could be analyzed by GO and
KEGG on DAVID (https://david.ncifcrf.gov/) (Huang et al.,
2009a; Huang et al., 2009b). p < 0.05 was considered to be
statistically significant.

PPI Network Construction and hub Gene
Identification
PPI evaluates the functional interactions between proteins
through their interaction networks. The Matthews correlation
coefficient (MCC), a parameter indicating correlation, can be
used to screen for genes with high correlation. The Search Tool
for the Retrieval of Interacting Genes (STRING) (http://string-
db.org/) (Szklarczyk et al., 2021) is an online database for
analysis and visualization of protein–protein interactions. We
downloaded the PPI list from STRING and imported it to
Cytoscape (www.cytoscape.org/); (Shannon et al., 2003) the
proteins with higher MCC tend to play a more important
role. cytoHubba, which could calculate MCC of each protein,
is a plug-in of Cytoscape. After calculation with cytoHubba, we
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selected the top 30 proteins with the highest MCC as hub
proteins in this study.

LASSO
We used R version 4.0.3 to complete the lasso regression analysis,
and the R package used is glmnet. LASSO (Tibshirani, 2011)
regression is characterized by variable selection and
regularization while fitting the generalized linear model. The
degree of LASSO regression complexity adjustment is
controlled by the parameter λ. The larger the parameter λ, the
greater the penalty for a linear model with more variables,
resulting in a model with fewer variables.

Confirmation With Validation Cohorts
Three gene expression profiles [GSE45267 (Chen et al.,
2018c), GSE62232 (Schulze et al., 2015), and GSE84402
(Wang et al., 2017)] were selected from the GEO database

TABLE 1 | Basic features of the GSE121248 data set.

GEO accession Tissue Sex Age HBV status

GSM3428716 Tumor sample M 72 Positive
GSM3428717 Tumor sample M 39 Positive
GSM3428718 Tumor sample M 63 Positive
GSM3428719 Tumor sample M 44 Positive
GSM3428720 Tumor sample M 43 Positive
GSM3428721 Tumor sample M 38 Positive
GSM3428722 Tumor sample M 47 Positive
GSM3428723 Tumor sample F 74 Positive
GSM3428724 Tumor sample M 75 Positive
GSM3428725 Tumor sample F 58 Positive
GSM3428726 Tumor sample M 55 Positive
GSM3428727 Tumor sample M 51 Positive
GSM3428728 Tumor sample M 51 Positive
GSM3428729 Tumor sample M 67 Positive
GSM3428730 Tumor sample M 66 Positive
GSM3428731 Tumor sample M 67 Positive
GSM3428732 Tumor sample M 76 Positive
GSM3428733 Tumor sample M 50 Positive
GSM3428734 Tumor sample M 30 Positive
GSM3428735 Tumor sample M 54 Positive
GSM3428736 Tumor sample M 33 Positive
GSM3428737 Tumor sample M 61 Positive
GSM3428738 Tumor sample M 51 Positive
GSM3428739 Tumor sample M 38 Positive
GSM3428740 Tumor sample M 79 Positive
GSM3428741 Tumor sample M 68 Positive
GSM3428742 Tumor sample M 59 Positive
GSM3428743 Tumor sample M 72 Positive
GSM3428744 Tumor sample M 57 Positive
GSM3428745 Tumor sample F 52 Positive
GSM3428746 Tumor sample M 57 Positive
GSM3428747 Tumor sample F 35 Positive
GSM3428748 Tumor sample M 57 Positive
GSM3428749 Tumor sample M 33 Positive
GSM3428750 Tumor sample F 60 Positive
GSM3428751 Tumor sample M 69 Positive
GSM3428752 Tumor sample M 48 Positive
GSM3428753 Tumor sample M 75 Positive
GSM3428754 Tumor sample M 66 Positive
GSM3428755 Tumor sample M 59 Positive
GSM3428756 Tumor sample M 44 Positive
GSM3428757 Tumor sample M 66 Positive
GSM3428758 Tumor sample M 83 Positive
GSM3428759 Tumor sample M 64 Positive
GSM3428760 Tumor sample M 62 Positive
GSM3428761 Tumor sample M 73 Positive
GSM3428762 Tumor sample F 72 Positive
GSM3428763 Tumor sample M 39 Positive
GSM3428764 Tumor sample M 69 Positive
GSM3428765 Tumor sample M 35 Positive
GSM3428766 Tumor sample M 62 Positive
GSM3428767 Tumor sample M 59 Positive
GSM3428768 Tumor sample M 64 Positive
GSM3428769 Tumor sample M 70 Positive
GSM3428770 Tumor sample M 62 Positive
GSM3428771 Tumor sample M 56 Positive
GSM3428772 Tumor sample M 81 Positive
GSM3428773 Tumor sample M 77 Positive
GSM3428774 Tumor sample M 72 Positive
GSM3428775 Tumor sample F 74 Positive
GSM3428776 Tumor sample F 72 Positive
GSM3428777 Tumor sample M 64 Positive
GSM3428778 Tumor sample M 75 Positive
GSM3428779 Tumor sample M 51 Positive

(Continued in next column)

TABLE 1 | (Continued) Basic features of the GSE121248 data set.

GEO accession Tissue Sex Age HBV status

GSM3428780 Tumor sample M 56 Positive
GSM3428781 Tumor sample M 80 Positive
GSM3428782 Tumor sample M 55 Positive
GSM3428783 Tumor sample M 52 Positive
GSM3428784 Tumor sample F 76 Positive
GSM3428785 Tumor sample M 53 Positive
GSM3428786 Adjacent normal sample F 58 Positive
GSM3428787 Adjacent normal sample M 51 Positive
GSM3428788 Adjacent normal sample M 67 Positive
GSM3428789 Adjacent normal sample M 66 Positive
GSM3428790 Adjacent normal sample M 67 Positive
GSM3428791 Adjacent normal sample M 76 Positive
GSM3428792 Adjacent normal sample M 50 Positive
GSM3428793 Adjacent normal sample M 30 Positive
GSM3428794 Adjacent normal sample M 54 Positive
GSM3428795 Adjacent normal sample M 33 Positive
GSM3428796 Adjacent normal sample M 61 Positive
GSM3428797 Adjacent normal sample M 51 Positive
GSM3428798 Adjacent normal sample M 38 Positive
GSM3428799 Adjacent normal sample M 79 Positive
GSM3428800 Adjacent normal sample M 68 Positive
GSM3428801 Adjacent normal sample M 59 Positive
GSM3428802 Adjacent normal sample M 72 Positive
GSM3428803 Adjacent normal sample M 57 Positive
GSM3428804 Adjacent normal sample F 52 Positive
GSM3428805 Adjacent normal sample M 57 Positive
GSM3428806 Adjacent normal sample F 35 Positive
GSM3428807 Adjacent normal sample M 57 Positive
GSM3428808 Adjacent normal sample M 62 Positive
GSM3428809 Adjacent normal sample M 56 Positive
GSM3428810 Adjacent normal sample M 81 Positive
GSM3428811 Adjacent normal sample M 77 Positive
GSM3428812 Adjacent normal sample M 72 Positive
GSM3428813 Adjacent normal sample F 74 Positive
GSM3428814 Adjacent normal sample F 72 Positive
GSM3428815 Adjacent normal sample M 64 Positive
GSM3428816 Adjacent normal sample M 75 Positive
GSM3428817 Adjacent normal sample M 51 Positive
GSM3428818 Adjacent normal sample M 56 Positive
GSM3428819 Adjacent normal sample M 80 Positive
GSM3428820 Adjacent normal sample M 55 Positive
GSM3428821 Adjacent normal sample M 52 Positive
GSM3428822 Adjacent normal sample F 76 Positive
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as validation cohorts. Common DEGs and top 30 hub genes
were obtained as described before. In addition, we analyzed
gene expression in the normal liver, liver cirrhosis, and very
early HCC tissues using the data set GSE6764 (Wurmbach
et al., 2007).

Gene Expression Profiling Interactive
Analysis
The gene expression profiling interactive analysis (GEPIA)
(http://gepia.cancer-pku.cn/) (Tang et al., 2017), an open
interactive website, could perform a personalized analysis
according to user’s need in expression results of RNA
sequencing of 9736 tumor samples and 8587 normal samples
in TCGA and GTEx databases. We performed a single gene
analysis for all hub genes in 369 HCC samples and 160 normal
liver samples. |log2FC| > 1; p < 0.05 was considered to be
statistically significant.

Kaplan–Meier Survival Analysis of hub
Genes
The Kaplan–Meier plotter (http://kmplot.com/analysis/) (Nagy
et al., 2018) is a website that contains a lot of clinical
characteristics about patients with 21 types of cancer (breast
cancer, lung cancer, liver cancer, etc.) and could be used to assess
the impact of 54K genes on survival in these cancers. In our study,
the Kaplan–Meier plotter was used to analyze liver cancer
survival. The hazard ratio (HR) with 95% confidence interval
(CI) and log rank p value were calculated and displayed on the
plot. Median is used as the cutoff criterion for the survival
analysis.

DepMap
The DepMap (https://depmap.org/portal/) portal (Tsherniak
et al., 2017; Dwane et al., 2021) empowers the research
community to make discoveries related to cancer
vulnerabilities by providing open access to key cancer
dependencies using analytical and visualization tools. DepMap
contains 796 CRISPR screening and 710 RNAi screening data
sets, which can show the necessity of genes in various cells. By
inputting PRC1, RACGAP1, CENPF, and CCNB2 into the
DepMap database, the effect of knockout or knockdown genes
on survival of different cell lines (including hepatoma cell lines)
could be analyzed.

Immunohistochemistry
The protein expression levels of PRC1 and RACGAP1 were
detected by immunohistochemistry in paraffin-embedded
sections of 5-μm-thick liver cancer tissue and adjacent normal
tissue, as described (Chen et al., 2016). Paraffin-embedded
sections were first taken for dewaxing and antigen repair, and
then the samples were incubated with PRC1 or RACGAP1
antibodies (Proteintech, #15617-1-AP, #13739-1-AP) at 4°C
overnight. After incubation, the slides were cleaned with
phosphate-buffered saline with Tween 20 (PBST) and
incubated with HRP-conjugated secondary antibodies

(Proteintech, #SA00001-2) at room temperature for 1 h. After
PBST cleaning, the slides were colored with DAB (ZSGB-BIO,
#ZLI-9018). Then the slides were stained with hematoxylin
staining solution (solarbio, #G1080), dehydrated, and sealed
with a neutral gum. Finally, the slides were observed using the
SLIDEVIEW VS200 slide scanner (Olympus).

Cell Culture
Hep3B, HepG2, and HEK 293T were cultivated in Dulbecco’s
Modified Eagle Medium (Gibco, #12800017) containing
thermally inactivated fetal bovine serum (10%) (Lonsera,
#S711-001S), penicillin (100 U/ml) (Sigma), and streptomycin
(Sigma) (0.1 mg/ml) under a damp 5% CO2 atmosphere at 37°C.

Gene Knockdown Vector Construction
We looked for targets on the GPP Web Portal (https://portals.
broadinstitute.org/gpp/public) and designed shRNA with a fixed
structure (target sequences: shPRC1-1: GCAGGAACATTCAAA
GGCATTT; shPRC1-2: GCGAGTTACATGTTGAGCCAT;
shRACGAP1-1: GCTAGGACGACAAGGCAACTTT; and
shRACGAP1-2: GCAGGTGGATGTAGAGATCAAA). shRNA
primers were synthesized by BGI Tech Solutions (Beijing
Liuhe). shRNA was linked to the enzyme-digestion pSicoR
vector [Addgene, #11579]. The recombined plasmid was
extracted using the endotoxin-free plasmid extraction kit and
sequenced correctly.

Lentiviral Infection
The lentiviral gene knockdown plasmid was co-transfected into
HEK293T cells with lentiviral packaging plasmids psPAX2
(Addgene, #12260) and pMD2.G (Addgene, #12259).
HEK293T cells were cultured in DMEM + 10% FBS and
seeded in a 6-well cell culture plate (Corning, #3516) the day
before transfection such that they would be 80–90% confluent at
the time of transfection. One hour before transfection, the media
was replaced with 2 ml of fresh prewarmed DMEM + 10% FBS.
We added 20 μL of 2.5M CaCl2, 2 mg gene knockdown plasmid,
1.5 mg psPAX2, and 0.5 mg pMD2.G to 180 μL ddH2O. Then
200 μL HBS was added, mix thoroughly, and incubated at room
temperature for 5 min. The mixture was then gently added to the
6-well cell culture plate. The transfection mix was aspirated after
8 h and replaced with fresh prewarmed DMEM + 10% FBS. Viral
particles were harvested 48 h after the media was changed and
filtered by a 0.22 μm syringe filter (Millipore, #SLGP033R). Liver
cancer cells were cultured in DMEM + 10% FBS and seeded in a
6-well cell culture plate the day before transfection such that they
would be 50% confluent at the time of transfection. The original
medium was replaced with the filtered virus fluid; polybrene
(Sigma) was added at 5 mg/ml and was replaced with fresh
prewarmed DMEM + 10% FBS 6 h later.

Quantitative RT-PCR
Total RNA was separated from HCC cell lines with an RNA
isolater (Vazyme, #R401-01-AA), and its concentration was
determined using NanoDrop ONE (Thermo Fisher Scientific).
The RNAwas then reverse-transcribed into cDNA using a reverse
transcription kit (Vazyme, #R323-01). qRT-PCR detection was
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performed using the AceQ Universal SYBR qPCRMaster Mix kit
(Vazyme, #Q511-02) in the QuantStudio™ 5 Real-Time PCR
(Thermo Fisher Scientific) (PRC1: forward primer: CGCCAT
GAGGAGAAGTGAGG, reverse primer: TTGTAACCGCTG
GTCCTCTG; RACGAP1: forward primer: ACGTTGAATAGG
ATGAGTCATGGA, reverse primer: AAAGTCCTTCGCCAA
CTGGA). All procedures were conducted in accordance with
the manufacturer’s instructions. The thermal cycling parameters
for amplification were as follows: pre-denaturation at 95°C for
10 min, denaturation at 95°C for 10 s, and annealing and
extension at 60°C for 1 min for a total of 40 cycles.

Western Blotting
Cells were lysed in protein lysate and were bathed in boiling water
for 15 min. Proteins were resolved in a 10% polyacrylamide gel at
80 V for 120 min and transferred to a PVDF membrane
(Millipore) at 18A for 60 min. The membrane was blocked for
non-specific binding with 5% non-fat powdered milk in Tris-
buffered saline with Tween 20 (TBST) for 1 h at room
temperature and then probed with primary antibodies
overnight at 4°C and with HRP-conjugated secondary
antibodies for 1 h at room temperature. Blots were visualized
with ECL detection (Meilunbio, # MA0186), and
chemiluminescent signals were captured using the
ChemiDoc™ MP Imaging System. Primary antibodies used
were PRC1, RACGAP1, MYC-Tag (Cell Signaling Technology,
#2276S), AXIN2 (Proteintech, #20540-1-AP), CCND1 (ABCAM,
#AB16663), and MMP7 (Proteintech, # 3801S).

Cell Proliferation
Hepatocarcinoma cells were isolated and seeded in 96-well
plates (Corning, #353916) with 2000 cells per well. In the
blank group, the medium containing FBS was added. The cells
were cultured in a CO2 cell incubator (Thermo Fisher
Scientific) for 24, 48, 72, and 96 h. Before testing, each well
was changed into working solution (medium 100 μL, CCK-8
(Solarbio, #CA1210) solution 10 μL) under a dark condition.
After incubation at 37°C for 1.5 h, the absorbance value at
450 nm (OD450) was measured with a microplate reader
(Thermo Fisher Scientific, Multiskan FC).

Flow Cytometry
We collected the cells and washed them with PBS. Then the
cells were fixed with a fixation/permeabilization concentrate
(Thermo Fisher Scientific, #00-5123-43) at 4°C for 0.5 h and
permeated with a permeabilization buffer (Thermo Fisher
Scientific, #00-8333-56) at 4°C for 5 min. Then the cells were
incubated with Ki-67 APC direct-labeled antibody (Thermo
Fisher Scientific, #17-5699-42) at room temperature for
20 min and washed with PBS. Flow cytometry was
performed on the FACSymphony™S6 (BD Biosciences)
platform, and results were analyzed using FlowJo software
version 10.5.3.

Immunofluorescence
Immunofluorescence was used to detect the expression level of
Ki-67 in HCC cell slides to indicate cell proliferation ability. First,

liver cancer cells were inoculated on the slides and fixed with 4%
paraformaldehyde (Biosharp, #BL539A). The slides were then
cleaned with PBS and incubated with the KI-67 APC direct-
labeled antibody at room temperature for 1 h. After cleaning with
PBS, the sample was sealed with an antifading mounting medium
(with DAPI) (Solarbio, #S2110). Finally, the slides were observed
using the SLIDEVIEW VS200 slide scanner (Olympus).

Colony Formation Assay
Hepatocarcinoma cells were isolated and seeded in 6-well plates
with 500 cells per well. After being cultured for 10 days, cell
specimens in PBS were collected and fixed with 4%
paraformaldehyde before being subjected to crystal violet
staining (Solarbio, #G1062). The clone (>50 cells) number was
measured using a scanner.

Wound-Healing Assay
Confluent cells were scraped using a 10 μL pipette tip (Axygen,
#AXYT300). After 24 h, the cells migrated to the wound and the
scratched area were examined using an inverted microscope
(Nikon, ECLIPSE Ti2). The migration rate was obtained by
the formula: (Width0h−Width24h)/Width0h.

Transwell
For the cell migration assay, the density of HCC cells was
adjusted to 1 × 105 cells/mL by using DMEM without FBS. We
placed the Transwell permeable supports (Corning, #3422)
into the 24-well plate (Corning, #3524), and added 600 μL
DMEM containing 10% FBS to the lower chamber and 200 μL
cell fluid to the upper chamber. After 24 h, the cells were fixed
with 4% paraformaldehyde and stained with crystal violet.
Finally, the cell was photographed using an inverted
microscope.

For the cell invasion assay, serum-free DMEMwas mixed with
Matrigel (Corning, #354320) in 8:1 and evenly spread in the
upper chamber of Transwell permeable supports. The chambers
were then placed in a cell incubator for 30 min to solidify the
Matrigel. Other operations were the same as the cell migration
experiment.

Sphere Formation Assay
A sphere formation assay was performed, as described (Chen
et al., 2018d). In brief, hepatocarcinoma cells were seeded in
ultra-low attachment 6-well plates (Corning, #3471) and
cultured in Dulbecco’s Modified Eagle’s Medium/F12
(Gibco, #11330032) supplemented with B27 (Thermo
Fisher Scientific, #17504044), N2 (Thermo Fisher
Scientific, #17502048), 20 ng/ml epidermal growth factor
(Thermo Fisher Scientific), and 20 ng/ml basic fibroblast
growth factor (Thermo Fisher Scientific). Cells were
incubated in a CO2 incubator, and 3 days later spheres
were counted using an inverted microscope.

Statistics
Statistical significance was evaluated using a two-tailed Student’s
t test. p values <0.05 were considered significant.
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FIGURE 1 | Bioinformatic screening of HCC hub genes. (A) Volcanic maps of differentially expressed genes in HCC in GSE102079, GSE112790, and GSE121248
data sets. The p value < 0.05 and |logFC| > 1.5 were used as the selection criteria. (B) Venn plots of differentially expressed genes in GSE102079, GSE112790, and
GSE121248 data sets. (C) GO analysis of common differentially expressed genes. (D) KEGG analysis of common differentially expressed genes. (E) Protein–protein
interaction networks of differentially expressed genes. (F) Top 30 hub genes were screened by MCC. The color of the circle represents the number of proteins that
interacts with it.
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FIGURE 2 | Validation of hub genes in HCC. (A,B) PRC1, RACGAP1, CENPF, and CCNB2 were screened by LASSO. (C) In the GEPIA database, high expression
of PRC1, RACGAP1, CENPF, and CCNB2 in HCC was verified. (D) Overexpression of PRC1, RACGAP1, CENPF, and CCNB2 is associated with poor OS in HCC
patients. (E) Compared with normal tissues, PRC1, RACGAP1, CENPF, and CCNB2 were overexpressed in very early HCC samples, but there was no significant
difference in cirrhosis samples. (F) PRC1 and RACGAP1 were shown as essential genes in the DepMap database. (G)Quantitative immunohistochemical study of
PRC1 and RACGAP1 in HCC and normal liver tissues. Scale bars, overall plots, 1 mm, local plots, 100 μm. ns p ≥ 0.05; ***p < 0.001, data are shown as mean ± s.d.
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FIGURE 3 | PRC1 and RACGAP1 drive the propagation of liver cancer. (A,B) (A) Two thousand Hep3B or HepG2 cells with PRC1 or RACGAP1 knockdown and
(B) two thousand Hep3B or HepG2 cells treated with 10 μM PRT4165 or DMSO were seeded in 96-well plates and detected by CCK-8 at 6, 24, 48, 72, and 96 h,
respectively. The cell proliferation rate was denoted by OD450. (C,D) (C) 1 × 104 PRC1 or RAPGAP1 depleted Hep3B (upper panels) and HepG2 (lower panels) cells; (D)
1 × 104 Hep3B (upper panels) and HepG2 (lower panels) cells added 10 μMPRT4165 or DMSOwere used for intracellular staining for Ki-67. (E,G) (E) 1 × 105 PRC1
or RAPGAP1 depleted Hep3B (upper panels) and HepG2 (lower panels) cells; (G) 1 × 105 Hep3B (upper panels) and HepG2 (lower panels) cells added 10 μMPRT4165

(Continued )
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Study Approval
Human liver cancer specimens were obtained from the
Department of Hepatobiliary Surgery, The First Affiliated
Hospital of Zhengzhou University with informed consent,
according to the Institutional Review Board approval.

RESULTS

Bioinformatics Screening of Hepatocellular
Carcinoma hub Genes
To screen DEGs between HCC and non-tumor tissues, three
cohorts (GSE102079, GSE112790, and GSE121248) were
selected for further analysis. From GSE102079, GSE112790, and
GSE121248, 580 DEGs (163 upregulated and 417 downregulated),
948 DEGs (355 upregulated and 593 downregulated), and 462
DEGs (123 upregulated and 339 downregulated) were screened,
respectively (Figure 1A). The intersection of DEGs in three data
sets was further visualized using the Vennymap (https://bioinfogp.
cnb.csic.es/tools/venny/index.html). Finally, 268 common DEGs
were identified, including 84 upregulated and 184 downregulated
genes (Figure 1B).

GO and KEGG analyses of DEGs were performed on DAVID.
As shown in Figure 2C, upregulated BPs mainly include cell
division, mitotic nuclear division, and sister chromatid cohesion,
while downregulated BPs mainly include the oxidation–reduction
process, immune response, and xenobiotic metabolic process;
upregulated CCs mainly include nucleus, cytoplasm, cytosol, and
nucleoplasm, and downregulated CCs mainly include extracellular
exosome, extracellular region, extracellular space, and endoplasmic
reticulum membrane; upregulated MFs are protein binding and
microtubule binding, and downregulated MFs show the protein
homodimerization activity, heme binding, and iron ion binding. In
addition, the upregulated DEGs were related to three KEGG
pathways, including cell cycle, oocyte meiosis, and progesterone-
mediated oocyte maturation, while the downregulated genes were
significantly enriched in metabolic pathways, retinol metabolism,
and chemical carcinogenesis (Figure 1D).

In order to investigate the function of these genes, a PPI network
with 123 nodes and 516 edges was constructed using cytoscape
(Figure 1E). These 123 nodes and 516 edges represent 123 proteins
and 516 PPI, respectively. Then top 30 hub proteins were filtered
out using cytoHubba plug-in of cytoscape (Figure 1F).
Interestingly, these hub genes are all upregulated DEGs,
indicating their predominant oncogenic role in liver tumorigenesis.

Validation of hub Genes in Hepatocellular
Carcinoma
A total of 30 hub genes were analyzed by LASSO, and four target
genes were further screened: PRC1, RACGAP1, CENPF, and

CCNB2 (Figures 2A,B). All these four genes were included in
the top 30 Hub genes of the validation cohorts (GSE45267,
GSE62232, and GSE84402) (Supplementary Figure S1A), and
the high expression of these four genes in HCC was also confirmed
in the GEPIA database (Figure 2C). Subsequently, a survival
analysis of these four hub genes was carried out with the
Kaplan–Meier plotter, and the overexpression of them was
significantly associated with poor survival in HCC patients
(Figure 2D). Part of the occurrence of HCC is associated with
further deterioration of liver cirrhosis. We analyzed the expression
of these four genes in a normal liver, liver cirrhosis, and very early
HCC tissues with data set GSE6764, and the results showed that
these four genes were highly expressed in very early HCC tissues
but not in liver cirrhosis (Figure 2E). This study revealed that
PRC1, RACGAP1, CENPF, and CCNB2 could sensitively
distinguish HCCfrom cirrhosis, and they may be potential
targets for early HCC detection. In the DepMap database, we
analyzed the importance of these four genes in cell survival, and the
results showed that PRC1 and RACGAP1 are common essential
genes in cell survival, including liver cancer cells (Figure 2F).
Subsequently, the high expression of PRC1 and RACGAP1 inHCC
was further verified by immunohistochemical results of HCC
samples and normal adjacent liver samples (Figure 2G).

PRC1 and RACGAP1 Drive the Propagation
of Liver Cancer
In order to verify the function of PRC1 and RACGAP1 in HCC
cells, we designed two shRNAs for each of these two genes, and
constructed PRC1 knockdown and RACGAP1 knockdown cells
using Hep3B and HepG2 cell lines. Both genes were significantly
silenced in the corresponding knockdown cell lines
(Supplementary Figures S1B,C), which showed an impaired
proliferation capacity (Figure 3A). PRT4165 is an inhibitor of
PRC1 (Ismail et al., 2013), and the propagation ability of HCC cells
treated by PRT4165 was also significantly reduced (Figure 3B). We
labeled the cells with Ki-67 antibody indicating cell proliferation
and detected them by flow cytometry and immunofluorescence
(Figures 3C,E). It was confirmed that PRC1 and RACGAP1
promoted proliferation. We also performed the clone formation
assay and found a decreased clone formation capacity on PRC1,
RACGAP1 knockdown, and PRT4165 treatment (Figures 3F,H).
Cells treated with PRT4165 showed the same phenotypic changes
(Figures 3D,G). These data suggest that PRC1 and RACGAP1
promote the growth and proliferation of liver cancer.

PRC1 and RACGAP1 Increase the
Metastasis of Liver Cancer
We also detected the role of PRC1 and RACGAP1 in tumor
metastasis. The wound-healing assay revealed that PRC1,

FIGURE 3 | or DMSO were seeded with 24-well plate slides and used immunofluorescence staining for Ki-67. Scale bars, 30 μm. (F,H) (F) Five hundred PRC1 or
RAPGAP1 depleted Hep3B (upper panels) and HepG2 (lower panels) cells; (H) five hundred Hep3B (upper panels) and HepG2 (lower panels) cells added 10 μM
PRT4165 or DMSO were seeded with 24-well plate and stained with crystal violet after 10 days. The number of colonies indicates cell proliferation ability. ***p < 0.001,
data are shown as mean ± s.d. Data are representative of at least three independent experiments.

Frontiers in Cell and Developmental Biology | www.frontiersin.org April 2022 | Volume 10 | Article 8640519

Liao et al. PRC1 Drives Self-Renewal of Liver CSCs

https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 4 | PRC1 and RACGAP1 increase the metastasis of liver cancer. (A,B) (A) 1 × 105 PRC1 or RAPGAP1 knockdown Hep3B (upper panels) and HepG2 (lower
panels) cells; (B) 1 × 105 Hep3B (upper panels) and HepG2 (lower panels) cells treated with 10 μM PRT4165 or DMSO were seeded in 24-well plates. The cells were scratched
with 10 μL tips andphotographed at 0 and24 h. Themigration ratewasobtainedby the formula: (Width0h−Width24h)/Width0h. (C,E) (C) 2 ×104PRC1orRAPGAP1knockdown
Hep3B (upper panels) and HepG2 (lower panels) cells; (E) 2 × 104 Hep3B (upper panels) and HepG2 (lower panels) cells treated with 10 μM PRT4165 or DMSO were
seeded to the upper chamber and stainedwith crystal violet after 24 h. (D,F) (D) 2 × 104PRC1or RAPGAP1knockdownHep3B (upper panels) andHepG2 (lower panels) cells; (F)
2 × 104 Hep3B (upper panels) and HepG2 (lower panels) cells treated with 10 μMPRT4165 or DMSOwere seeded to the upper chamber treated with Matrigel and stained with
crystal violet after 24 h. Scale bars, 100 μm. ***p < 0.001, data are shown as mean ± s.d. Data are representative of at least three independent experiments.
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FIGURE 5 | PRC1 promotes the self-renewal of liver CSCs through Wnt signaling. (A) High expression of PRC1 and RACGAP1 in liver CSCs was detected by
Western blot. (B,C) (B) 2 × 104 PRC1 or RAPGAP1 knockdown Hep3B (upper panels) and HepG2 (lower panels) cells; (C) 2 × 104 Hep3B (upper panels) and HepG2
(lower panels) cells treated with 10 μM PRT4165 or DMSO were seeded in ultra-low attachment 6-well plates and cultured in Dulbecco’s Modified Eagle’s Medium/F12
supplemented with B27, N2, 20 ng/ml epidermal growth factor, and 20 ng/ml basic fibroblast growth factor. After three days, the spheres were examined under a
microscope. (D,E) qRT-PCR was used to verify the mRNA expression of AXIN2,MYC, CCND1, andMMP7. (F,G) Protein level expression of AXIN2, C-MYC, CCND1,
and MMP7 was verified by Western blot. Scale bars: 100 μm. ns p ≥ 0.05; ***p < 0.001, data are shown as mean ± s.d. Data are representative of at least three
independent experiments.
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RACGAP1 silencing, and PRT4165 treatment significantly
decreased the cell metastasis rate (Figures 4A,B). We also
found that PRC1 or RACGAP1 depletion dramatically reduced
the migration and invasion of Hep3B and HepG2 cells with
Transwell assays (Figures 4C–F). Therefore, these data suggest
that PRC1 and RACGAP1 increased metastasis of liver cancer.

PRC1 Promotes the Self-Renewal of Liver
CSCs Through Wnt Signaling
PRC1 and RACGAP1 are highly expressed in liver CSCs
(Figure 5A), so we then detected whether PRC1 and
RACGAP1 play a critical role in the stemness of Hep3B and
HepG2 cells using the sphere formation assay. The results showed
that PRC1 knockdown or PRT4165 treatment significantly
reduced the sphere formation capacity of Hep3B and HepG2
cells, while RACGAP1 did not (Figures 5B,C). Therefore, PRC1
can enhance the stemness of Hep3B and HepG2 cells.

It has been reported that PRC1 promotes the self-renewal
ability of lung CSCs through the WNT signaling pathway
(Zhan et al., 2017). We detected mRNA and protein
expression levels of WNT target genes AXIN2, MYC,
CCND1, and MMP7 and found that they were significantly
reduced in liver CSCs with PRC1 knockdown and PRT4165
treatment (Figures 5D–G). It is revealed that PRC1 promotes
the self-renewal of liver CSCs through the Wnt signaling
pathway.

DISCUSSION

As a predominant type of liver cancer, HCC has a very high
cancer mortality rate, which is mainly due to tumor
heterogeneity and lack of early diagnosis. HCC patients are
generally in an advanced HCC stage when they are detected
and thus miss the best time of therapy (Llovet et al., 2018). In
addition, some HCC patients have tumor recurrence or
metastasis resulting in death due to lack of appropriate
prognostic detection methods after treatment (Wang et al.,
2017). Therefore, it is important to find more accurate and
reliable biomarkers for the diagnosis and prognosis of HCC. In
this study, we selected three HCC data sets from the GEO
database and used the GEO2R online analysis to obtain the
differential genes between HCC and non-cancer samples.
Next, we constructed a PPI network and screened the top
30 hub genes from 268 DEGs. These 30 genes were enriched by
LASSO regression and analyzed in the DepMap database, and
PRC1 and RACGAP1 were finally screened out as potential
targets for early HCC detection. Subsequently, the high
expression of PRC1 and RACGAP1 in HCC was verified by
immunohistochemistry. We constructed HCC cell lines with
PRC1 or RACGAP1 knockdown and performed cell
proliferation, metastasis, and stemness experiments, which
revealed that PRC1 and RACGAP1 enhanced the
propagation and metastasis of HCC. In addition, PRC1

FIGURE 6 | Schematic illustration of data processing and experimental verification of this study.
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promoted the self-renewal ability of liver CSCs through the
WNT signaling pathway (Figure 6).

Taking advantage of the bioinformatic analysis and functional
validation, we have identified PRC1 and RACGAP1 as diagnosis
markers and therapeutic targets in this study. The polycomb
repressive system plays a fundamental role in controlling gene
expression during mammalian development (Blackledge et al.,
2020). To achieve this, polycomb repressive complexes 1 and 2
(PRC1 and PRC2) bind target genes and use histone modification-
dependent feedback mechanisms to form polycomb chromatin
domains and repress transcription (Fursova et al., 2019). PRC1 is
an E3 ubiquitin ligase that mono-ubiquitylates histone H2A at
lysine 119 (H2AK119ub1), which is regulator of gene expression
required for embryonic stem cell (ESC) fate decisions during
development (Tamburri et al., 2020). PRC1 also affects the
function of certain types of adult stem cells, and their
misregulation contributes to tumorigenesis in several tissues (Jia
et al., 2021). Rac GTPase activation protein 1 (RACGAP1) is a
component of the centralspindlin complex that serves as a
microtubule-dependent and Rho-mediated signaling required
for the myosin contractile ring formation during the cell cycle
cytokinesis (Wang et al., 2019). RACGAP1 was initially identified
in testis andmale germ cells and has been demonstrated to be a key
regulator in various malignancies, such as colorectal cancer (Zhou
et al., 2018), ovarian cancer (Wang et al., 2018), meningioma (Ke
et al., 2013), uterine cancer (Ebinger et al., 2016), and breast cancer
(Ren et al., 2021). In addition, RACGAP1 plays a critical role in
mitochondrial fission and speeds up mitochondrial renewal and
mitochondrial respiration, which leads to cancer cell metastasis
(Zhou et al., 2021).

In past studies, some diagnostic biomarkers for HCC have
been found using bioinformatic analyses and experimental
verifications. But they are difficult to be transformed into
clinical diagnosis and treatment due to their inability to
distinguish liver lesions from cancer (De Stefano et al., 2018).
According to our experimental results, PRC1 and RACGAP1
are highly expressed in early HCC, while there is no significant
difference between normal liver tissues and cirrhotic tissues,
which suggests that PRC1 and RACGAP1 have high sensitivity
and reliability as biomarkers for early HCC diagnosis. After
surgical removal of the tumor, there is still about a 70% chance
of recurrence and metastasis, resulting in death of HCC patients
(Xu et al., 2019). Our results indicate that PRC1 and RACGAP1
can promote the proliferation and metastasis of HCC. It
provides potential targets for controlling the progression of
HCC and inhibiting metastasis, which is of great significance
for the treatment of HCC and improving the prognosis of
patients.

In CSC theory, tumor growth is caused by the continuous
proliferation of a class of stem cells, CSCs, similar to normal
tissue renewal (Shimokawa et al., 2017; Toh et al., 2017; Chen
et al., 2021). It suggests that HCC treatment should not only
reduce tumor size but also inhibit the growth of liver CSCs. We
found that PRC1 promoted the self-renewal ability of liver
CSCs, which is exciting for inhibiting the growth of liver
CSCs and improving the therapeutic effect of HCC. Our
results also confirmed that PRC1 increases the self-renewal

ability of liver CSCs through the WNT signaling pathway,
closely related to stemness, which further proved that PRC1
is a reliable therapeutic target for HCC.

In conclusion, PRC1 and RACGAP1 screened by the
bioinformatic analysis and experimental verification can
promote the proliferation and metastasis of HCC, and PRC1
also improves the self-renewal ability of liver CSCs. Therefore,
PRC1 and RACGAP1 are identified as prognosis markers for
early HCC and therapeutic targets for liver cancer and
liver CSCs.
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