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Abstract —Phylogeny estimation is a major step in many biological studies, and has many well known challenges. With the
dropping cost of sequencing technologies, biologists now have increasingly large datasets available for use in phylogeny
estimation. Here we address the challenge of estimating a tree given large datasets with a combination of full-length
sequences and fragmentary sequences, which can arise due to a variety of reasons, including sample collection, sequencing
technologies, and analytical pipelines. We compare two basic approaches: (1) computing an alignment on the full dataset
and then computing a maximum likelihood tree on the alignment, or (2) constructing an alignment and tree on the full length
sequences and then using phylogenetic placement to add the remaining sequences (which will generally be fragmentary)
into the tree. We explore these two approaches on a range of simulated datasets, each with 1000 sequences and varying in
rates of evolution, and two biological datasets. Our study shows some striking performance differences between methods,
especially when there is substantial sequence length heterogeneity and high rates of evolution. We find in particular that
using UPP to align sequences and RAXML to compute a tree on the alignment provides the best accuracy, substantially
outperforming trees computed using phylogenetic placement methods. We also find that FastTree has poor accuracy on
alignments containing fragmentary sequences. Overall, our study provides insights into the literature comparing different
methods and pipelines for phylogenetic estimation, and suggests directions for future method development. [Phylogeny
estimation, sequence length heterogeneity, phylogenetic placement.]

Phylogeny estimation is well known to have many
computational and statistical challenges. One basic
problem is estimating multiple sequence alignments,
which is a standard precursor to a phylogeny estimation
pipeline, and yet can have poor accuracy for large
heterogeneous datasets. Progress on large-scale multiple
sequence alignment over the last decade has resulted in
many methods that are able to scale to very large datasets
(e.g., with 10,000 or more sequences), including Clustal-
Omega (Sievers et al., 2011), SATé (Liu et al., 2009, 2012),
PASTA (Mirarab et al., 2015), Kalign3 (Lassmann, 2019),
and a recent “regressive”" method (Garriga et al., 2019).
Once the alignment is estimated, the most accurate trees
are often obtained using either heuristics for NP-hard
optimization problems, such as maximum likelihood, or
MCMC sampling of treespace, both of which result in
substantial computational burdens when the number of
sequences is large. Some very fast methods for maximum
likelihood exist, such as the polynomial time method
FastTree2 (Price et al., 2010) (now generally referred
to just as FastTree), but FastTree is not as effective at
the maximum likelihood optimization problem as other
heuristics that make a significant attempt to search
treespace, such as IQtree (Nguyen et al., 2015a), PhyML
(Guindon and Gascuel, 2003), and RAXxML (Stamatakis,
2014).

Yet despite these advances in phylogeny estimation,
there are still substantial challenges that remain, one of
which is how to estimate a tree on a single gene when
the sequence dataset contains substantial heterogeneity
in sequence length. For example, Figure 1 shows
the histograms of sequence length heterogeneity in
four biological datasets, each of which has substantial
sequence length heterogeneity, including many very
short sequences.

In this paper we explore challenges in tree estimation
when the datasets contain “fragmentary sequences" (i.e.,
sequences that are homologous only to a short region
within the full-length alignment), as discussed in Sayyari
et al. (2017) and Nguyen et al. (2015b). Fragmentary
sequences can result naturally from evolutionary
processes that include loss of large genic regions, but
other causes include choices made by the biologist for
primer selection, and using reads or contigs for some
taxa instead of fully assembled genes (due to assembly
challenges or specific sequencing technologies).

To avoid possible confusion, we note an important
distinction from other types of missing data.
“Fragmentary” sequences, as explained above, are
short, but contiguous sequences—data are assumed to be
missing from around the fragment, but not from within
it. By contrast, “sparse” or “gappy” sequences would be
missing data throughout the sequence, not necessarily
in continuous blocks. These two forms of missing data
would have different effects on phylogenetic methods.
In this paper, we concern ourselves specifically with the
“fragmentary” case.

One approach is to estimate an alignment on the
dataset and then compute a tree on the alignment, for
example using maximum likelihood methods. However,
as shown in Nguyen et al. (2015b), standard approaches
for aligning datasets with high levels of fragmentation
have high error, requiring the use of different approaches
that are better able to align datasets with fragmentary
sequences (e.g., approaches that enable local alignment
rather than global alignment). One such method is UPP
(Nguyen et al., 2015b), which combines PASTA (to align
the full-length sequences) with a technique based on a
hierarchical ensemble of profile Hidden Markov Models
(Krogh et al., 1994; Durbin et al.,, 1998), to add the
fragmentary sequences into the alignment of full-length
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FIGURE 1. We present Figure 1 from Nguyen et al. (2015b) (reprinted with permission under the Creative Commons Attribution (CC-BY)

license), showing the histograms of sequence lengths for four biological datasets (two RNA datasets and two AA datasets).

sequences; this combination of local alignment (enabled
through the use of profile Hidden Markov Models,
i.e., pHMMs) and divide-and-conquer (to produce the
ensemble) enables UPP to achieve high accuracy, even
as the number of fragmentary sequences increases, and
trees estimated on these alignments are consequently
more accurate. However, getting a good alignment is
not enough, as the second step of the tree estimation
also presents challenges: a recent study (Sayyari et al.,
2017) showed that FastTree, a fast maximum likelihood
heuristic, canhave poor accuracy on datasets that contain
both fragmentary and full-length sequences, even when
given the true alignment. Thus, this two-phase approach
“first align, then compute a tree", which is commonplace
in phylogenetics, presents additional complications for
datasets with fragments.

Although phylogenetic placement, an approach
designed for taxon identification and comparison of
reads (Matsen et al., 2010; Matsen and Evans, 2013), was
not developed for the purpose of estimating trees, here
we investigate the accuracy of tree estimation methods
that use phylogenetic placement, using the following
protocol. Given a dataset containing full-length and

fragmentary sequences, an alignment and a tree can be
computed on the full-length sequences (subsequently
called the “backbone alignment” and “backbone
tree"), the fragmentary sequences can be added into
the backbone alignment, and then a “phylogenetic
placement" method, such as pplacer (Matsen et al., 2010),
EPA-ng (Barbera etal., 2018), and APPLES (Balabanetal.,
2020), can be used to add the fragmentary sequences into
the backbone tree.

The technique for adding fragmentary sequences into
backbone alignments impacts the final tree accuracy,
and several techniques have been developed for this
step. In particular, SEPP (Mirarab et al., 2012), which
is a precursor to UPP, constructs a (relatively simple)
ensemble of profile HMMs and provides improved
accuracy compared to a single profile HMM. Once
the extended alignment is computed, the fragmentary
sequence can be added to the tree optimizing various
criteria; for example, pplacer and EPA-ng use maximum
likelihood to place the fragmentary sequences, while
APPLES uses a distance-based criterion. Balaban et al.
(2020) compared three phylogenetic placement methods,
EPA-ng, pplacer, and APPLES, and found that the
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optimal choice of phylogenetic placement method
depends on the number of leaves in the backbone tree
(equivalently, the number of sequences in the backbone
alignment). Specifically, when the backbone tree is not
too large (e.g., below 5000 sequences) then pplacer has
the best accuracy, but pplacer can fail on larger backbone
trees (Linard et al. 2019; Balaban et al. 2020, both papers
note “numerical issues” past about 5000 sequences),
making it necessary to use alternative methods, such as
APPLES. Furthermore, APPLES improved on EPA-ng,
and is a very fast polynomial time method that enables
phylogenetic placement into very large backbone trees.
Hence, Balaban et al. (2020) found that two major
competing phylogenetic placement methods are pplacer
(which should only be used when the backbone tree is
small enough) and APPLES (for larger backbone trees).

Thus, tree estimation from datasets containing a
mixture of full-length and fragmentary sequences can
be approached using two different protocols: the
traditional MSA-ML approach (where an alignment is
computed on the full dataset and then an ML tree is
computed on the alignment) or phylogenetic placement-
based approaches (where an alignment and tree are
computed on the full-length sequences, and then the
fragmentary sequences are added into the alignment and
subsequently into the tree). Yet, to date, only one study
(Janssen et al., 2018) has compared these two types of
approaches to each other. The main purpose of Janssen
et al. (2018) was to explore how phylogenetic placement
using SEPP (to compute the alignment of amplicon
reads) and pplacer (to place into a backbone tree)
improved clinical discovery; however, they also provided
a comparison of this placement-based approach (SEPP-
pplacer) toa MSA-ML method they referred to as de novo.
Their study showed that SEPP-pplacer produced more
accurate trees than their de novo method, suggesting
that placement-based methods should be considered
for phylogeny estimation given unaligned fragmentary
sequences. However, their study was limited to one
model condition, and their de novo method used MAFFT
for alignment of ultra-large datasets (10,000 fragments)
and FastTree for tree estimation. Given that MAFFT is
not as accurate on large datasets as PASTA and UPP
(Mirarab et al., 2015; Nguyen et al., 2015b) and FastTree is
not as accurate as RAXML (especially given fragmentary
sequences (Sayyari et al., 2017)), their study does not
enable a full understanding of the relative performance
of these two approaches. Addressing this question is the
purpose of this study.

We evaluate different approaches to tree estimation on
datasets with up to 1000 unaligned sequences, where all
of the datasets are subjected to a process of fragmentation
and contain some proportion of fragmentary sequences.
Our study, which evaluates accuracy under a wide
range of model conditions, shows clearly that pipelines
that follow the two-phase paradigm “first align, then
compute a tree on the alignment" have the best accuracy,
but only if alignment and the tree estimation are
performed using appropriate methods. In particular,

TABLELl. Base methods used in this study. Here, SEPP and UPP use
ensembles of pHMMs (profiles of Hidden Markov Models) to compute
extended multiple sequence alignments.

Method  Type Summary
PASTA MSA /Tree Iterative divide-and-conquer MSA
co-estimation and tree co-estimation
UPP MSA Uses pHMMs to align sequences to
a backbone alignment/tree
SEPP MSA/ Uses pHMMs to align sequences to
Placement abackbone alignment/tree and
pplacer for placement
RAXML  Tree estimation A leading heuristic for ML tree
estimation
FastTree  Tree estimation A very fast but less accurate
heuristic for ML tree estimation
pplacer  Phylogenetic A leading phylogenetic placement
placement method
APPLES  Phylogenetic A fast and scalable distance-based
placement placement method

we find that for datasets with fragmentary sequences,
FastTree has poor accuracy compared to RAXML, thus
supporting the findings in Sayyari et al. (2017), and that
PASTA is not as accurate as some other methods, such as
UPP. In particular, the most accurate method in our study
computes an alignment using UPP and then a tree on
the alignment using RAxML, and so is computationally
intensive and may not be able to run on the ultra-large
datasets being assembled. Therefore, we also provide
a comparison of the best placement-based methods, as
these are much less computationally intensive. Finally,
our study suggests directions for future research.

MATERIALS AND METHODS

Overview

We used nucleotide datasets from prior studies, which
includes a combination of simulated and biological
datasets, and made fragmentary versions of the datasets
by randomly selecting some of the sequences and
shortening them. For consistency, the same manual
fragmentation procedures were applied to both the
simulated and biological datasets; that is, we did not try
identify or use fragments that might have been present
in the biological data. We estimated alignments and trees
on these modified datasets, each of which had at most
1000 sequences, using a variety of techniques (Tables
1 and 2). We evaluated the alignments and trees for
accuracy by comparing them to the true alignments and
trees for the simulated datasets and reference alignments
and bootstrap trees for the biological datasets. Overall,
we analyzed 120 simulated datasets from 6 model
conditions (20 replicates per condition) and 2 biological
datasets.

Datasets

We used sequence datasets from previous studies (Liu
et al., 2011; Nguyen et al., 2015b; Mirarab et al., 2015;
Balaban et al., 2020); all datasets are available in public
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TABLE2.  Pipelines used in this study. bb. = “backbone.”
Pipeline Type Summary
PASTA-FastTree MSA-ML PASTA alignment on entire dataset — FastTree tree (PASTA default mode)
PASTA-RAXML MSA-ML PASTA alignment on entire dataset — RAXML tree
UPP(F)-FastTree MSA-ML PASTA bb. alignment — FastTree bb. tree — UPP alignment — FastTree tree
UPP(F)-RAXML MSA-ML PASTA bb. alignment — FastTree bb. tree — UPP alignment — RAXML tree
UPP(R)-FastTree MSA-ML PASTA bb. alignment — RAXML bb. tree — UPP alignment — FastTree tree
UPP(R)-RAXML MSA-ML PASTA bb. alignment — RAXML bb. tree — UPP alignment — RAXML tree

UPP(F)-pplacer
SEPP(F)-pplacer
SEPP(F)-pplacer(c)
UPP(F)-APPLES
UPP(R)-pplacer
SEPP(R)-pplacer
SEPP(R)-pplacer(c)
UPP(R)-APPLES

Placement-based
Placement-based
Placement-based
Placement-based
Placement-based
Placement-based
Placement-based
Placement-based

PASTA bb. alignment — FastTree bb. tree — UPP alignment — pplacer placement
PASTA bb. alignment — FastTree bb. tree — SEPP alignment — pplacer placement
PASTA bb. alignment — FastTree bb. tree — SEPP alignment and placement
PASTA bb. alignment — FastTree bb. tree — UPP alignment — APPLES placement
PASTA bb. alignment — RAXML bb. tree — UPP alignment — pplacer placement
PASTA bb. alignment — RAXML bb. tree — SEPP alignment — pplacer placement
PASTA bb. alignment — RAXML bb. tree — SEPP alignment and placement
PASTA bb. alignment — RAXML bb. tree — UPP alignment — APPLES placement

repositories associated with these prior publications. We
limited the datasets to have at most 1000 sequences to
enable us to run pplacer without concern for its failure
on larger datasets (documented in Balaban et al. (2020)
and Linard et al. (2019) and also to allow us to include
RAXML analyses on these datsets.

We report empirical properties of the reference
alignments for these datasets in Table 3. Specifically,
for each dataset (or model condition), we report the
number of sequences, average length of the unaligned
sequences, average and maximum p-distances and
percent gappiness in the reference alignment, and
degree of resolution of the reference tree. The p-
distance between two aligned sequences is the number
of positions in which the two sequences are different
and neither is gapped; we normalize these values by
dividing by the number of total positions in which
neither is gapped to produce a value between 0 and 1.
The gappiness of an alignment is the percentage of the
reference alignment that is occupied by gaps. Finally, the
degree of resolution is the number of internal edges in
the unrooted reference tree divided by the maximum
possible (i.e., n—3, where n is the number of leaves).

¢ ROSE

The 1000M1, 1000M2, 1000M3, and 1000M4 model
conditions are 1000-sequence nucleotide datasets
that were simulated using ROSE (Stoye et al.,
1998) for the SATé study (Liu et al., 2009). These
datasets evolve with substitutions (under the
GTRGAMMA model) and indels under varying
rates of evolution; 1000M1 has the highest rate of
evolution and 1000M4 the lowest rate. Each dataset
has 20 replicates, and each replicate contains 1000
unaligned sequences each with approximately
1000 nucleotides. The reference trees are the
“potentially inferrable model trees”, which are the
model trees with the zero-event branches collapsed
(i.e., these reference trees are not always binary).
We obtained the resolution for 1000M1-1000M3
reference trees from Liu et al. (2009) (Table S7) and
we calculated the resolution for the reference trees
on the 1000M4 datasets (not provided in Liu et al.
(2009)) to be 970/997=97.3%.

¢ RNASim

We use the million-sequence RNASim dataset
from Mirarab et al. (2015). Unlike the ROSE
datasets, these were simulated under a non-
standard model of evolution: the sites evolve under
a non-homogeneous fitness model based on the
energy of the RNA structure, and do not follow the
standard phylogenetic model assumptions (e.g.,
that the sites evolve identically and independently
down the tree, and that there is a single global
substitution rate matrix applying to all the
branches in the tree). We generated two datasets
of 20 replicates each, with 1000 sequences per
replicate. The first, “RNASIim”, was compiled by
just randomly sampling 1000 sequences from the
full million-sequence set. The second, “RNASim2”,
was built by randomly sampling 1000 sequences
from two subsets of 500,000 taxa that form
neighboring clades within the true tree. This
produced dataets with lower average p-distance
than the ROSE simulated datasets. The reference
trees are computed by restricting the true tree to
the taxon set of each replicate, and so are binary
trees.

* Biological Datasets

We use two biological datasets, 165.M and 235.M,
from Cannone et al. (2002), which have reference
alignments based on RNA structures. We use
the cleaned reference alignments and bootstrap
reference trees from Liu et al. (2009); the bootstrap
reference trees were produced by running RAXML
on the reference alignments and collapsing all
edges with less than 75% bootstrap support (see
the supplementary materials in Liu et al. (2009) for
additional details).

We selected the ROSE nucleotide datasets to enable
us to explore conditions with a range of overall
evolutionary divergence (as measured using the average
and maximum p-distance in the dataset), where
sequence evolution is i.id., so that there is no
model misspecification. The RNASim datasets enable
us to explore conditions under more realistic model
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TABLE 3.

Dataset properties. Every statistic is computed per-replicate; statistics regarding fragments are obtained after making the alignments

fragmentary (under the two fragmentation protocols), and the other statistics are based on the datasets before we introduce fragmentation for
our experiments. The 1000M1-1000M4 and RNASim datasets are simulated, and we show results averaged over 20 replicates for each of these
conditions. The last two columns indicate the number and average length of fragmentary sequences under low and high fragmentation conditions.

Dataset #Seqs. Avg. p-distance Max p-distance % gaps Avg. seq.length Resolution # Frags. (L/H) Avg. frag. length (L/H)
1000M1 1000 0.695 0.769 744 1011 99.6 250/500 505/252
1000M2 1000 0.684 0.762 742 1014 99.5 250/500 507/253
1000M3 1000 0.660 0.741 62.8 1008 99.4 250/500 504/252
1000M4 1000 0.495 0.606 60.5 1007 97.3 250/500 503/251
RNASim 1000 0.411 0.609 67.9 1555 100.0 250/500 777/388
RNASim2 1000 0.378 0.455 64.4 1555 100.0 250/500 777/388
165.M 901 0.368 0.772 78.1 1036 46.9 225/450 518/259
23S.M 278 0.397 0.703 83.7 1746 61.1 69/139 873/436

of sequence evolution than the ROSE datasets, and
hence test methods under conditions with model
misspecification. The biological datasets are included
to provide additional insights into performance, but
with the understanding that the true tree (and even
the true alignment) are not known perfectly for these
datasets. The two biological datasets have relatively high
gappiness; this is particularly true for 235.M, which is
78.1% gapped, making it (with respect to this property)
the most challenging dataset we analyze.

It is well known that alignment and tree estimation
are challenging on datasets that have large average p-
distances (equivalently, low pairwise sequence identity)
and this presents alignment challenges (e.g., see Sievers
etal. (2011); Rost (1999)). The range in average p-distances
for the simulated datasets we explore (i.e., 37.8-69.5%) is
representative of the top 39% of the BRAIiBASE dataset
(Gardner et al., 2005), and enables us to explore how
challenges in alignment estimation impact the choice of
tree estimation strategy.

We made fragmentary sequence versions of these
datasets, with two levels of fragmentation (low and
high), reflecting the fraction of the sequences that are
made fragmentary and the degree of fragmentation of
these fragmentary sequences. Thus, we have two types
of datasets, as follows:

* Low fragmentation: 25% of the sequences are
made fragmentary, average fragment length is 50%
of the original median sequence length.

* High fragmentation: 50% of the sequences are
made fragmentary, average fragment length is 25%
of the original median sequence length.

We followed the procedure used in Nguyen et al. (2015b)
to make the sequences fragmentary. The length of each
fragment is drawn from a normal distribution with the
desired mean and standard deviation 60. Given the
fragment length distribution, the fragmented sequences
are chosen at random, and each is cropped to a random
substring of the desired length. The numbers and sizes
of fragments in each dataset are indicated in Table 3.
As noted before, for the purposes of all methods and
evaluation that follows, the “fragmentary sequences”
(or “fragments”) are specifically those that have been
truncated by this procedure; they are not related to

the “gappiness” measure in our dataset properties. We
refer to the remaining sequences as “full-length” (or
“backbone”) sequences.

Tree Estimation Methods

We computed trees on each dataset using one of two
different protocols: one based on the standard two-phase
approach (first align then compute a tree) and the other
based on phylogenetic placement. We provide a concise
glossary of each base method and protocol in Tables
1 and 2. A more detailed description of our protocols
follows below.

Protocol 1: First align, then estimate an ML tree.—The first
protocol computes a multiple sequence alignment on the
full dataset (including the fragments) and then runs a
maximum likelihood heuristic on the multiple sequence
alignment. For the multiple sequence alignment method,
we use PASTA, SEPP, and UPP. PASTA is run in default
mode, and so uses three iterations and returns the final
alignment. SEPP and UPP use the following pipeline:
first PASTA is run in default mode on the full-length
sequences and a backbone tree is computed on the
PASTA backbone alignment using an ML heuristic
under GTRGAMMA (either FastTree or RAXxML); this
produces the backbone alignment and tree. Then, SEPP
and UPP each builds an ensemble of profile HMMs
using the backbone tree and alignment, and adds the
fragmentary sequences into the backbone alignment.
When the backbone tree is computed using FastTree,
we will refer to this alignment estimation pipeline as
SEPP(F) or UPP(F), and similarly when the backbone tree
is computed using RAXML, we will refer to the pipeline
as SEPP(R) or UPP(R).

For the final tree estimation method, we used FastTree
and RAXML-NG (Kozlov et al, 2019) (henceforth
referred to simply as RAXML) under the GTRGAMMA
model, with the GTRGAMMA parameters estimated
from the data. In all cases, the methods were run
in default mode, with RAXML run with only one
starting tree on the simulated replicates, and best-out-
of-five on the biological datasets. We refer to each
such pipeline with the pair “MSA-ML" where “MSA"
refers to the multiple sequence alignment method and
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“ML" refers to the maximum likelihood heuristic. For
example, “PASTA-FastTree" refers to using PASTA to
compute the multiple sequence alignment on the full
dataset, followed by FastTree to compute a tree on
the alignment, while “UPP(F)-RAxML" refers to using
UPP(F) to compute the multiple sequence alignment on
the full dataset followed by RAXML to compute a tree on
the alignment. See Table 2 for a complete list of pipelines
of this form.

Protocol 2: Placement-based methods.—For the second
protocol, we used PASTA (in default mode) to compute
a backbone alignment and then a maximum likelihood
heuristic to compute the backbone tree on the full-
length sequences; we then computed an extended
alignment for each fragmentary sequence and placed
the fragmentary sequence into the backbone tree using
a phylogenetic placement method. We refer to these
collectively as “placement-based" methods. For the
extended alignment estimation, we used SEPP and UPP,
as described above, and for the phylogenetic placement
method we used pplacer and APPLES. SEPP and UPP
both use a backbone tree to produce the extended
alignment, so the same backbone tree was used for the
extended alignment and placement steps.

Analogously to our MSA-ML pipelines, we will refer
to the placement-based methods with the pair “EA(B)-
P”, where “EA” refers to the method for producing the
extended alignment, “B” is the backbone tree estimation
method, and “P” denotes the placement method. Thus,
“UPP(F)-pplacer" refers to using UPP to compute the
extended alignment with a FastTree backbone tree,
followed by using pplacer to place the fragments into
this backbone tree. We will refer to methods that use this
protocol as “placement-based methods", since they use
phylogenetic placement methods to compute the tree.
Note that “UPP(F)” refers to exactly the same chain of
program calls in both of our protocols; the extended
alignment in the placement-based methods is the same
as the MSA in the MSA-ML methods; the only difference
is that in the placement-based methods, we retain the
backbone tree as well.

Note that in a pipeline based on phylogenetic
placement, two or more fragmentary sequences can be
added into the same branch of the backbone tree; when
this occurs, the resultant extended tree (which includes
the fragmentary sequences as leaves) has a polytomy
on that branch to which all the fragmentary sequences
for that branch are attached. Thus, these pipelines
can produce unresolved trees, and the potential to
produce unresolved trees increases with the number of
fragmentary sequences added to the backbone tree.

Evaluation

We evaluate the accuracy of each estimated tree T
with respect to the reference tree T* (i.e., either the
model tree for simulated datasets or an estimated tree
for the biological datasets) by using the FN (false

negative) and FP (false positive) rates. The FN rate is
ICTNC(D)

IC(T*)]
bipartitions in tree T. Thus the FN rate is the fraction of
non-trivial bipartitions in the true tree that the estimated
tree fails to recover, with 0 indicating complete recovery
and 1 indicating complete failure. Similarly, the FP rate
ICO\C(T™)]

IC(T)I
bipartitions found in the estimated tree. When both the
reference and estimated trees are fully resolved, then the
FN and FP rates are identical, and both are equal to the
well known Robinson-Foulds (RF) error rate (Robinson
and Foulds, 1981). However, in our study the estimated
trees are often incompletely resolved, which makes the
use of the RF rate inappropriate (Rannala et al., 1998).
We also had the additional challenge that the biological
reference trees we used are far from fully resolved (Table
3). Thus, although there is clear appeal in having a single
error metric for evaluating methods (for example, the FN
and FP rates could be combined into a weighted sum, as
suggested in Berry and Gascuel (1996)), we elected to
continue with the use of two different metrics, FN and
FP, noting that 1-FN corresponds to sensitivity and 1-FP
corresponds to specificity. We also report the degree of
resolution of the estimated trees.

We evaluate the accuracy of the estimated alignments
as follows. Every alignment can be described as a set of
“homology pairs", which are the pairs of letters found
in the same column of the alignment; the “homology"
concept is fundamental in the MSA literature (Reeck
et al., 1987; Morrison et al., 2015), and is used in several
alignment methods, notably those that are based on
“consistency”, such as T-Coffee (Notredame et al., 2000).
Thus, the true (or reference) alignment defines the true
homology pairs, and the estimated alignment defines
a set of estimated homology pairs. We compare two
alignments by comparing the sets of homology pairs
defined by the two alignments. We report SPFN (sum-
of-pairs false negative, which is the fraction of the
true homology pairs that are missing in the estimated
alignment) and SPFP (sum-of-pairs false positive, which
is the fraction of the homology pairs present in the
estimated alignment that do not appear in the true
alignment) rates, computed using FastSP (Mirarab and
Warnow, 2011). For the simulated datasets the reference
alignment is the true alignment, known to us because we
perform the simulation; for biological datasets, we use
the structurally-based alignment provided in Cannone
et al. (2002).

given by , where C(T) is the set of non-trivial

is given by , and so is the fraction of incorrect

REsULTS

Alignment Error

Under low  fragmentation  (Supplementary
Table 6 available on Dryad at http://dx.doi.org/
10.5061 /dryad.8pk0p2nj8), the trends are consistent
across all datasets and for both SPFN and SPFP: the
PASTA alignment has the highest error, while SEPP and
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UPP are very close, with a slight edge to UPP, and the
choice of ML method to compute the backbone tree does
not have much impact on SEPP or UPP. For all methods
and both criteria, alignment error increases with the
overall heterogeneity (e.g., on the ROSE datasets, the
error rates are highest on 1000M1 and decrease as we
move to 1000M4, and the error rates are higher for
RNASim than RNASim2). Error rates on the RNASim
and RNASim2 model conditions fall between those on
1000M2 and 1000M3, showing that these are harder
model conditions than 1000M3 and 1000M4 and easier
than 1000M1 and 1000M2. Alignment error rates on the
two biological datasets are high, making them similar to
1000M1 and 1000M2. Results under high fragmentation
(Supplementary Table 7 available on Dryad) show the
same relative accuracy, but error rates are higher, and the
differences between methods increase. Notably, under
the high fragmentation conditions, PASTA increases in
SPEN error, especially on the hardest model conditions,
1000M1 and 1000M2, where it has more than double the
error rate of SEPP and UPP.

Tree Error

Because SEPP had slightly worse alignment accuracy
than UPP, we omit it from the study for MSA-
ML pipelines. However, we include SEPP in the
study evaluating placement-based methods for the
following reason: while SEPP has been tested for use
with phylogenetic placement methods, UPP (which
elaborates on SEPP) has not been. For pipelines using
pplacer, we consider the variant where we constrain the
placement to the subtree selected by SEPP for aligning
the query sequence, since this was how phylogenetic
placement (based on SEPP and pplacer) was initially
performed in Mirarab et al. (2012). We refer to this
use of pplacer as “pplacer(c)", noting that otherwise
pplacer allows the sequence to be placed anywhere in
the backbone tree, and so is the unconstrained version.

Results for MSA-ML methods.— Tree error rates are
higher for the high fragmentation conditions than low
fragmentation conditions, and for model conditions
with high heterogeneity (i.e., high average p-distance),
showing that the degree of fragmentation and rate of
evolution impact error rates (see Supplementary Tables
8and 9 available on Dryad). Furthermore, the differences
between methods are highest for those conditions with
high fragmentation and/or heterogeneity. For each
alignment method, using FastTree instead of RAXML
increases the error rates, with large increases under high
rates of evolution or high fragmentation. In general, the
two pipelines with the highest FN error are PASTA-
FastTree and UPP-FastTree, with PASTA-FastTree worse
than UPP-FastTree for high rates of evolution and UPP-
FastTree worse than PASTA-FastTree for low rates of
evolution. Thus, FastTree produces trees with very high
error rates for the high fragmentation condition. Finally,
across all the simulated datasets and for both low

and high fragmentation levels, the lowest FN rates are
obtained by UPP-RAXML, for both ways of running UPP
(i.e., with the RAXML backbone tree or the FastTree
backbone tree), and the choice of backbone tree does
not impact the resultant accuracy. Relative and absolute
performance for FP rates are the same on the simulated
data, which is consistent with the observation that the
reference trees are nearly fully resolved.

We illustrate these trends by comparing the MSA-ML
methods on the high fragmentation RNASim dataset
(Fig. 2). The most accurate trees are obtained using
UPP(F) or UPP(R) to estimate the alignment followed by
RAXML to estimate the tree, and there is no detectable
difference in accuracy between these two methods.
The worst accuracy is obtained using FastTree on the
UPP alignments, showing that FastTree degrades in
the presence of fragmentation, compared to RaxML.
Intermediate between these are the analyses using
PASTA for the alignment, showing that PASTA is less
accurate than FastTree in the presence of fragmentation.

Because the biological reference trees have very low
resolution (Table 3), FP rates are not helpful, and so
we focus on the EN rates. For both biological datasets
and fragmentation conditions, RAXML produces more
accurate trees than FastTree across all alignments. UPP-
RAXML has a slight advantage over PASTA-RAXML on
165.M (both fragmentation levels) and PASTA-RAXML
has a slight advantage over UPP-RAXML on 235.M (both
fragmentation levels). Thus, the main trend here is that
FastTree produces less accurate trees than RAXML on
these data.

Results for placement-based methods— A comparison
between placement-based methods shows a clear
preference for MSA-ML pipelines, as illustrated in Figure
3 on the high fragmentation RNASim dataset (see
Supplementary Tables 10 and 11 available on Dryad
for the results on the full set of simulated model
conditions and biological datasets, which show the
same trends). The most noteworthy trend is that the
pipelines that use APPLES for placing fragments have
worse accuracy than the pipelines that use pplacer.
Furthermore, the pipelines that use pplacer have fairly
close accuracy for all simulated datasets, with an
advantage to using UPP for the alignment estimation
over using SEPP. Consistent with prior observations,
the choice of ML heuristic for computing the backbone
tree has little impact for the placement-based methods.
SEPP-pplacer has an advantage over SEPP-pplacer(c),
showing that constraining the placement (as is the
default in Mirarab et al. (2012)) reduces accuracy. As
observed for the MSA-ML methods, error rates are
higher on the RNASim datasets and 1000M1 conditions
than on the other simulated datasets (and there are much
larger differences between methods on these challenging
datasets), and the lowest errors are obtained on the
1000M4 datasets.

Comparing MSA-ML and placement-based pipelines.— We
compare the different methods on the two biological
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datasets and a single (but representative) simulated
model condition, the high fragmentation RNASim
datasets (Fig. 4). The pipelines with FastTree backbones
are nearly identical to results with the RAxXxML
backbones, and are omitted from the figure. The
pipelines with the best accuracy across all three datasets
are UPP(R)-RAXML and PASTA-RAXML, with PASTA-
FastTree also good on the biological datasets. The
least accurate method is UPP(R)-FastTree, showing that
FastTree provides poor trees even on good alignments,
a finding that is consistent with Sayyari et al. (2017).
The placement-based methods are in between, with trees
based on APPLES less accurate than trees based on
pplacer.

A comparison of these for the three selected methods
(UPP-RAXML, PASTA-RAXML, and PASTA-FastTree) on
the full set of model conditions is provided in Table 4
(low fragmentation) and Table 5 (high fragmentation).
Under all conditions, the best accuracy is obtained using
the MSA-ML pipeline UPP(R)-RAXML. The differences

between methods are largest under high fragmentation,
but are also large under low fragmentation for high rates
of evolution (e.g., 1000M1).

Runtime

Figure 5 shows the runtimes of each method, broken
out by component and averaged over the 20 replicates
of the 1000M2 model condition, where there are 500
full length sequences and 500 fragmentary sequences,
each approximately 25% as long as the full-length
sequences. The fastest methods are the placement-based
methods, as well as PASTA-FastTree and UPP-FastTree;
these took about 30 minutes with FastTree backbones,
and about an extra 5 minutes when using RAxML
backbones. The lion’s share of the runtime for these
pipelines was spent computing the alignment; aligning
the full dataset with PASTA was about as fast as
aligning the backbone with PASTA and extending with
UPP, with PASTA using most of the time in either
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case. By contrast, the FastTree, APPLES, and pplacer
portions were insignificant. Although APPLES is much
more scalable than pplacer, at 1000 sequences (with 500
fragmentary and 500 full-length), this dataset is not large
enough for this difference to have a noteworthy impact.

The methods that compute RAXML trees on
alignments (i.e., PASTA-RAXML and UPP-RAXML) are

much slower, as RAXML takes about 40 minutes to
an hour on these datasets. This brings the total to
about 70-80 minutes for UPP-RAXML (plus or minus
the RAXML backbone tree), and about 90 minutes for
PASTA-RAxML.

Overall these results show that RAXML is the most
computationally intensive part of the pipelines that
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TABLE4. Tree error rates under low fragmentation for the best placement-based method and two MSA-ML methods. We show FN rates
(top) and FP rates (bottom). We show results for the three best performing methods: the best placement-based pipeline (UPP(R)-pplacer), the
best MSA-ML method (UPP(R)-RAXML), and a standard MSA-ML method (PASTA-RAXML). Each condition has 75% full-length sequences and
25% fragmentary sequences (which have an average 50% length). The best results for each model condition (within 1%) are shown in boldface.
The error rates are averaged over 20 replicates for the simulated datasets.

Method 1000M1 1000M2 1000M3 1000M4 RNASim RNASim2 165.M 23S.M
FN Rate:

PASTA-RAXML 0.246 0.181 0.095 0.061 0.186 0.163 0.135 0.137
UPP(R)-RAXML 0.157 0.128 0.094 0.061 0.185 0.163 0.112 0.143
UPP(R)-pplacer 0.215 0.183 0.150 0.112 0.243 0.215 0.192 0.244
FP Rate:

PASTA-RAXML 0.248 0.185 0.100 0.083 0.186 0.163 0.595 0.473
UPP(R)-RAXML 0.160 0.132 0.099 0.083 0.185 0.163 0.584 0.476
UPP(R)-pplacer 0.179 0.146 0.111 0.091 0.208 0.178 0.604 0.517

TABLES.  Tree error rates under high fragmentation for the best placement-based method and two MSA-ML methods. We show FN
rates (top) and FP rates (bottom); We show results for the three most accurate methods: the best placement-based pipeline (UPP(R)-pplacer),
the best MSA-ML method (UPP(R)-RAXML), and a standard MSA-ML method (PASTA-RAXML). Each condition has 50% full-length sequences
and 50% fragmentary sequences with an average 25% length. The best results for each model condition (within 1%) are shown in boldface. The
error rates are averaged over 20 replicates for the simulated datasets.

Method 1000M1 1000M2 1000M3 1000M4 RNASim RNASim2 165.M 23S.M
FN Rate:
PASTA-RAXML 0.765 0.616 0.355 0.164 0.436 0.362 0.409 0.321
UPP(R)-RAXML 0.370 0.304 0.237 0.167 0.377 0.338 0.340 0.363
UPP(R)-pplacer 0.488 0.437 0.380 0.320 0.507 0.477 0.496 0.458
FP Rate:
PASTA-RAXML 0.766 0.618 0.359 0.184 0.436 0.362 0.723 0.585
UPP(R)-RAXML 0.372 0.307 0.241 0.187 0.377 0.338 0.690 0.611
UPP(R)-pplacer 0.370 0.307 0.234 0.170 0.397 0.362 0.712 0.613
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FIGURE 5. Method runtime on the 1000M2 dataset, under the high fragmentation condition. Results are averaged over 20 replicates.

compute ML trees on estimated alignments, while the them to some extent a trade-off between accuracy and
most computationally intensive part of the placement- running time.

based methods is the calculation of the backbone

alignment using PASTA. Using RAXML backbone trees

adds an extra five minutes to the runtime, and so is

not an issue on these datasets. Thus, the more accurate DiscussioN

placement-based methods are faster than the more Although the study was limited to a small part
accurate ML-based methods, making the choice between  of parameter space (i.e., trees with approximately
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1000 leaves and mainly simulated datasets), the study
reveals several trends regarding the relative accuracy of
alignment and tree estimation methods given datasets
that contain a mixture of full-length and fragmentary
datasets. These trends also are helpful in understanding
the design issues for phylogenetic placement methods,
and in choosing between methods. We discuss these
trends here, and compare our findings to prior work.

Importance of MSA Method

A main finding of this study is that when datasets
have fragmentary sequences, the best is obtained using
an MSA-ML protocol; however, not all MSA methods
provide good accuracy. We examined two strategies for
computing alignments: estimating the entire alignment
in one stage with PASTA or using a two-stage approach
where we use PASTA only to align the full-length
sequences and then added the remaining fragmentary
sequences into the backbone alignment using either UPP
or SEPP. In this study, using the two-stage approach
always matched or improved on the alignment accuracy
(both SPEN and SPFP) compared to just using PASTA.
We also saw a slight advantage using UPP rather than
SEPP to align the fragmentary sequences. Interestingly,
we did not see any noteworthy differences between
using FastTree or RAXML to compute the backbone tree,
whether using UPP or SEPP. Overall, therefore, these
results show that alignment estimation using a two-stage
approach produces superior results over PASTA by itself,
that the method used to compute the backbone tree on
the full-length sequences does not have a significant
impact, and that UPP has a slight advantage over SEPP.

These results are consistent with those shown in the
paper introducing UPP (see Table 3 and Fig. 3 in Nguyen
et al. (2015b)), which showed that both alignment and
tree error increased more rapidly for PASTA than for UPP
as the degree of fragmentation increased. A comparison
between SEPP(F) and UPP(F) is also provided in Nguyen
etal. (2015b) (see Additional File 1, Table S2.1), which also
showed that UPP(F) had a small advantage over SEPP(F).
Hence our study confirms prior results from Nguyen
et al. (2015b), and extends these observations to include
the impact of how the backbone tree is calculated.
Henceforth, when we refer to UPP, we mean either
UPP(R) or UPP(F), since the two ways of computing
alignments had indistinguishable accuracy.

RAxML vs. FastTree

One of the aspects of the study we performed is a
comparison of FastTree and RAXML given alignments
that contain fragmentary sequences. To the best of
our knowledge, Sayyari et al. (2017) is the only
other study that has evaluated RAXML and FastTree
under simulation conditions where fragmentation was
explicitly included. Sayyari et al. (2017) compared
FastTree and RAXML on true alignments with 101
sequences that had fragmentary sequences, each

obtained from a single model condition. Because their
study was limited to one model condition and only
explored true alignments, our study explores additional
conditions that vary substantially in rate of evolution
and sequence evolution model, in order to better evaluate
the differences between these methods given alignments
containing fragmentary sequences.

One of the consistent trends in this study is that for
many model conditions with fragmentary sequences,
FastTree produces less accurate trees than RAxXxML.
This trend is less obvious when used with the PASTA
alignment on the fragmentary datasets (which produces
generally poorer alignments than the other alignments
we tested, resulting in poor trees regardless of the tree
estimation method used), but is very obvious when
used with the better alignment methods we explored,
especially under high fragmentation conditions. In
particular, the degree of fragmentation and the rate
of evolution impact the difference in FN rate between
trees computed using FastTree or RAXML on the UPP
alignment, with small differences (or no difference)
when fragmentation and alignment error are both
low, but increasing differences as fragmentation and
alignment error increase. Thus, our study confirms the
observation made by Sayyari et al. (2017) that FastTree is
less accurate than RAXML given alignments containing
fragmentary sequences.

In this context, it is worth recalling Janssen et al. (2018),
which compared phylogenetic placement using SEPP-
pplacer to their “de novo" method that used MAFFT
to compute alignments and then computed trees using
FastTree; although they found that SEPP-pplacer was
more accurate than their de novo method, this is likely at
least partly due to the use of MAFFT instead of UPP (or
even PASTA), and the use of FastTree instead of RAXML,
and is consistent with our findings.

One possible explanation for the difference in accuracy
between FastIree and RAxML in the presence of
fragmentary datasets is that they numerically treat gaps
differently. Thus, although treating gaps are “missing
data" theoretically should not change the guarantee of
statistical consistency (Truszkowski and Goldman, 2016),
ithas the potential to impact accuracy on a given dataset,
and the impact of gaps within sequence alignments
on phylogeny estimation is a topic of significant and
continued interest in the systematics community (see
Lemmon et al. (2009); Wiens (2006); Truszkowski and
Goldman (2016); Simmons (2014); Dobrin et al. (2018);
Machado et al. (2019); Xia (2019) for an entry to this
literature).

Comparing Phylogenetic Placement Methods

We explored pplacer with two different techniques to
compute extended alignments (i.e., UPP and SEPP) and
possibly constraining the placement to the alignment
subset selected by the ensemble of profile Hidden
Markov Models technique when used with SEPP. These
results show that using pplacer with UPP improves
accuracy compared to using pplacer with SEPP, and that
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the unconstrained use of pplacer is more accurate than
the constrained version. The improvement we observed
for the unconstrained version over the constrained
version of pplacer, which only allows it to place
fragments into the subtree of the backbone tree selected
by SEPP during the alignment stage, is consistent with
results shown in Figure 1 from Mirarab et al. (2012).

Our evaluation of APPLES was limited to its use
with UPP, which had the best accuracy of all alignment
methods. However, our study shows that pplacer was
always more accurate than APPLES, given the same
backbone tree and UPP alignment. The improvement
of pplacer over APPLES was higher for the high
fragmentation conditions than the low fragmentation
conditions, and higher for the datasets that were difficult
to align than the datasets where alignment error was
generally low. However, even for the model conditions
with low fragmentation, the differences could be large
(e.g., the difference in accuracy on the two biological
datasets with low fragmentation was in the 7-9%
range). We conclude that pplacer is at least as accurate
as APPLES for placing fragmentary sequences into
backbone trees when the backbone trees are not too large
(i-e., have at most 1000 leaves).

The only prior study that compared APPLES to
pplacer is Balaban et al. (2020), which explored APPLES
and pplacer for placing full-length sequences into
backbones and used the true alignment rather than
estimated alignments. One major finding in Balaban
et al. (2020) is the propensity of pplacer to fail when the
backbone tree was too large: in particular, they found
that pplacer failed on many datasets where the backbone
tree had 5000 leaves and always failed on backbone trees
with 10,000 leaves. For this reason, our study did not
compare APPLES and pplacer on such large backbone
trees. When restricted to conditions where the backbone
trees had at most 1000 leaves, Balaban et al. (2020) found
that pplacer had better accuracy than APPLES, though
they used a different criterion to evaluate accuracy than
we did (specifically, they used “placement accuracy",
which is the distance between the estimated placement
for the fragment and the true placement, while we
used the error in the final tree). Balaban et al. (2020)
observed that pplacer was approximately 10% more
accurate than APPLES for placement accuracy on 1000-
taxon RNASim subsamples (see Table 3 and Fig. 3 in
Balaban et al. (2020)), while we have a difference in FN
rate of 14% and 20% on RNASim under low and high
fragmentation, respectively. The relative performance
observed between APPLES and pplacer is thus the same
between the two studies (i.e., APPLES is less accurate
than pplacer), but the criteria are different and the details
of the study (fragmentary versus full-length sequences,
true versus estimated alignments) are also different.
Finally, although we restricted our study to datasets
with backbone trees limited to at most 1000 sequences,
we explored a wider range of model conditions than
explored in Balaban et al. (2020), including both easier

and harder model conditions than RNASim (which is the
only source of datasets examined in Balaban et al. (2020)).

Impact of Dataset Properties on Performance

Because we observed that tree error was largely driven
by alignment error (for both types of tree estimation
methods, whether based on maximum likelihood on
estimated alignments or using phylogenetic placement),
the model conditions can be characterized as easy
or difficult based on the alignment error rates we
observed. With this context, the easiest model condition
we explored was 1000M4, which is a simulated dataset
generated under a modification of the GTRGAMMA
model to allow for insertions and deletions, but with
overall low rates of substitutions and indels. The
other ROSE simulation conditions have higher rates
of evolution than 1000M4, with 1000M1 having the
highest rate (and being the hardest dataset in our
collection). In terms of alignment error, RNASim and
RNASIm?2 both fall in the middle of the ROSE conditions,
despite each having a lower average p-distance than
even 1000M4. Alignment error on the biological datasets
165.M and 23S.M are high, placing them between
1000M1 and 1000M2 in terms of difficulty, even
though they have even lower average p-distances than
RNASim.

Since the evolutionary process operating on the ROSE
datasets is much simpler than the evolutionary process
used to generate the RNASim data, and of course
the evolutionary processes under which the biological
datasets evolved are also more complex than the ROSE
simulation, an obvious explanation is that alignment
error is higher on the RNASim and biological datasets
because their sequence evolution is more complex than
is modelled by ROSE. However, another possibility is
that there is some other empirical property of the model
condition that is making for alignment challenges. For
example, it may be that the existence of very long
branches in the tree may make alignment estimation
difficult, which would be consistent with the observation
that the biological datasets have low average p-distances
but high maximum p-distances, and are difficult to
align.

Model conditions that produce higher differences in
alignment error also seem to produce larger differences
in tree estimation error, but there were conditions
with relatively small differences in alignment error that
resulted in large differences in tree error. For example,
the largest difference in alignment error for the low
fragmentation conditions was on the 1000M1 condition
(which had the highest alignment error rates), where
the PASTA and UPP alignments differed in SPFN error
by 4% and yet the RAXML trees on the PASTA and
UPP alignments differed in FN error by 10%. Thus,
while the relative accuracy of trees followed the relative
accuracy of the alignments on which they were based,
the degree of improvement depended on the actual
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condition, with larger differences in trees for conditions
with high alignment error.

CONCLUSION

Based on our study, and considering evidence from
other studies as well, we make the following concrete
recommendations:

* When the dataset contains fragmentary sequences,
standard methods for aligning datasets (including
PASTA) should not be used to align them all at
once: this can produce very poor alignments,
followed by very poor trees. Instead, we
recommend that the full-length sequences
first be aligned using a good method, such as
PASTA, and then the fragmentary sequences
should be added to this alignment with UPP using
an estimated backbone tree computed on the full-
length sequences (in fact, UPP has functionality
that will do this process automatically). Thus, in
particular we recommend examining the dataset
for sequence length heterogeneity, and only using
PASTA or other methods that align sequences
all at once if nearly all the sequences are close to
full-length.

* After the sequences are aligned, the best accuracy
is obtained by computing a tree on the multiple
sequence alignment using a method that has
been shown to have good accuracy even on
alignments with many fragmentary sequences:
RAXML clearly outperforms FastTree in this case
(and we suggest not using FastTree on datasets
with fragments), but other approaches, including
other good maximum likelihood methods, may
also provide good accuracy.

Challenges in analyzing very large datasets—When the
total number of sequences is very large, the running
time needed to use RAXML or other good maximum
likelihood methods may be prohibitive, but adding
fragments to the backbone tree with a placement method
will have a tendency to produce trees that are very
unresolved, requiring additional techniques to refine
the resulting tree. Furthermore, not all phylogenetic
placement methods can handle large backbones: as
reported in Balaban et al. (2020), although APPLES can
handle very large backbones and is very fast, pplacer
fails on many backbones with 5,000 leaves and all
backbones with 10,000 sequences. However, APPLES
does not have the same accuracy as pplacer, and so these
analyses may not provide adequate accuracy (though
this will depend on the specific biological question being
asked). Also, the computation of a backbone tree using
RAXML can be prohibitively computationally expensive,
when the number of full-length sequences is large.
Although we did not find any reduction in accuracy
when using FastTree instead of RAXML for the backbone

tree estimation, it is not yet clear where it is safe to use
FastTree instead of RAXML for tree estimation, and so
caution should be applied in interpreting trees based on
FastTree. Thus, large numbers of sequences (say, 10K or
more sequences) present a challenge to the user for a
combination of reasons that include the computational
cost in running good maximum likelihood methods
(such as RAXML) and accuracy degradations for the
current phylogenetic placement methods, which this
study does not explore.

Future work—In addition to the open questions
mentioned above, much more still needs to be done to
understand how to best estimate trees from alignments
that have sequence length heterogeneity. Although we
examined a range of model conditions, future work
should explore additional conditions, especially those
with very low rates of evolution (which can create
challenges for tree estimation though not for alignment
estimation) or those that evolve under models that
violate standard GTRGAMMA model assumptions more
significantly than RNASim. Our restriction to datasets
with at most 1000 sequences allowed pplacer to complete
analyses, and so additional study is needed to explore
conditions with larger number of sequences (including
those in which pplacer fails), in order to establish
which methods provide good accuracy without being
prohibitively computationally intensive.

This study did not examine the challenges in
computing alignments and trees when the input has
other types of sequence length heterogeneity, including
excessively long sequences (resulting, perhaps, from
large insertions or many tandem duplications), or very
high rates of deletions so that the sequences are short
butnot fragmentary. Hence, future work should examine
such issues.

Closing remarks.—Despite the cautionary advice, we
close with optimistic statements. While estimating
phylogenies from unaligned datasets is very difficult
for ultra-large datasets, there has been substantial
progress over the last few years that suggests that
dataset size is not likely to remain a significant
impediment in the long term. For example, there are
divide-and-conquer strategies for improving scalability
of phylogeny estimation methods (e.g., TreeMerge
(Molloy and Warnow, 2019) and Guide Tree Merger
(Smirnov and Warnow, 2020)) that do not require
aligned sequence inputs and that could be used with
any tree estimation method, including computationally
intensive methods (e.g., Bayesian MCMC) or maximum
likelihood estimation under complex models (e.g.,
the GHOST model (Crotty et al., 2020) available in
IQtree). These and future advances may make it
feasible to estimate highly accurate trees from ultra-large
datasets of unaligned sequences without burdensome
computational requirements. There has also been an
increased attention to developing new phylogenetic
placement methods that can scale to large datasets.
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Overall, we predict that over the near future, there
will be new method development in multiple sequence
alignment and phylogeny estimation, and some of
these methods may well make highly accurate ultra-
large phylogeny estimation feasible, even for these very
challenging dataset conditions.
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Data available from the Dryad Digital Repository:
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