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Abstract

Candida albicans is both a major fungal pathogen and a member of the commensal human
microflora. The morphological switch from yeast to hyphal growth is associated with disease
and many environmental factors are known to influence the yeast-to-hyphae switch. The
Ras1-Cyr1-PKA pathway is a major regulator of C. albicans morphogenesis as well as bio-
film formation and white-opaque switching. Previous studies have shown that hyphal growth
is strongly repressed by mitochondrial inhibitors. Here, we show that mitochondrial inhibi-
tors strongly decreased Ras1 GTP-binding and activity in C. albicans and similar effects
were observed in other Candida species. Consistent with there being a connection between
respiratory activity and GTP-Ras1 binding, mutants lacking complex | or complex IV grew
as yeast in hypha-inducing conditions, had lower levels of GTP-Ras1, and Ras1 GTP-bind-
ing was unaffected by respiratory inhibitors. Mitochondria-perturbing agents decreased
intracellular ATP concentrations and metabolomics analyses of cells grown with different
respiratory inhibitors found consistent perturbation of pyruvate metabolism and the TCA
cycle, changes in redox state, increased catabolism of lipids, and decreased sterol content
which suggested increased AMP kinase activity. Biochemical and genetic experiments pro-
vide strong evidence for a model in which the activation of Ras1 is controlled by ATP levels
in an AMP kinase independent manner. The Ras1 GTPase activating protein, Ira2, but not
the Ras1 guanine nucleotide exchange factor, Cdc25, was required for the reduction of
Ras1-GTP in response to inhibitor-mediated reduction of ATP levels. Furthermore, Cyr1, a
well-characterized Ras1 effector, participated in the control of Ras1-GTP binding in
response to decreased mitochondrial activity suggesting a revised model for Ras1 and
Cyr1 signaling in which Cyr1 and Ras1 influence each other and, together with Ira2, seem
to form a master-regulatory complex necessary to integrate different environmental and
intracellular signals, including metabolic status, to decide the fate of cellular morphology.
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Author Summary

Candida albicans is a successful fungal commensal and pathogen of humans. It is a poly-
morphic organism and the ability to switch from yeast to hyphal growth is associated with
the commensal-to-pathogen switch. Previous research identified the Rasl1-cAMP-protein
kinase A pathway as a key regulator of hyphal growth. Here, we report that mitochondrial
activity plays a key role in Rasl activation, as respiratory inhibition decreased Rasl activity
and Ras1-dependent filamentation. We found that intracellular ATP modulates Ras1
activity through a pathway involving the GTPase activating protein Ira2 and the adenylate
cyclase Cyrl. Based on our data the canonical Ras1 signaling model in C. albicans needs to
be restructured in such a way that Cyrl is no longer placed downstream of Ras1 but rather
in a major signaling node with Ras1 and Ira2. Our studies suggest that the energy status of
the cell is the most important signal involved in the decision of C. albicans to undergo the
yeast-to-hyphae switch or express genes associated with the hyphal morphology as low
intracellular ATP or associated cues override several hypha-inducing signals. Future stud-
ies will show if this knowledge can be used to develop therapies that would favor benign
host-Candida interactions by promoting low Rasl activity.

Introduction

Candida albicans, one of the most common human fungal pathogens, is an important cause of
morbidity and mortality in immunocompromised individuals, particularly in patients with
AIDS or those undergoing cancer chemotherapy or transplantation procedures [1]. The pro-
longed use of antifungal agents in such compromised populations can lead to an increase in C.
albicans resistance to many currently used therapies [2]. For this reason, there is an immediate
need for new treatment options that can prevent or control diseases caused by C. albicans.

In addition to being a pathogen, C. albicans is also a member of the commensal microflora
of most individuals and the transition from commensal to pathogen is associated with the mor-
phological switch from yeast to hyphal growth [3-5]. Environmental factors like 37°C, 5%
CO,, N-acetylglucosamine, pH, and serum, induce the yeast-to-hyphae switch [6]. However,
most of these signals are always present in vivo, thus we still do not understand what governs
the switch from benign colonization to symptomatic infection. During host colonization C.
albicans lives amidst other microbes and, both, clinical data, that suggest a link between antibi-
otic usage and increased risk of fungal infections, and laboratory studies indicate that C. albi-
cans interacts with bacteria in biologically important ways [7-14]. Further studies on bacterial-
fungal interaction have led to the identification of new ways by which microbes modulate C.
albicans growth. For example, 3-oxo-C12-homoserine lactone, produced by the Gram-negative
bacterium Pseudomonas aeruginosa, inhibits hyphal growth by directly inhibiting the fungal
Rasl-cAMP-protein kinase A (PKA) signaling pathway, a key regulator of the yeast-to-hyphae
switch in C. albicans, by blocking cAMP synthesis [15,16].

The Ras1-cAMP-PKA signaling pathway is critical for C. albicans virulence in animal models
[17-19]. Rasl is a small GTPase that exists in the cell in an inactive (GDP-bound) form and an
active (GTP-bound) form whose switch is regulated by the guanine nucleotide exchange factor
(GEF) Cdc25 and GTPase-activating protein (GAP) Ira2 [20]. In its GTP-bound form, Rasl
directly interacts with the adenylate cyclase Cyr1 and stimulates cAMP production [18,21,22].
The cAMP signal subsequently derepresses two PKA isoforms which promote several cellular
processes [23,24]. In current models of virulence, activation of the Ras1-cAMP-PKA pathway by
host-associated stimuli induces the transition from yeast-to-hyphae growth and the expression of
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hypha-specific virulence factors. Hyphal growth increases tissue adherence and penetration, as
well as the formation of adherent biofilms on medical devices [6,25,26]. This pathway also con-
trols genes involved in glycolysis, stress resistance, cell wall composition, and mating [6,27].

More recently, an additional class of molecules that repress hyphal growth of C. albicans,
phenazines, have been identified [28,29]. While phenazines are best known as small-molecule
toxins with antibiotic properties toward bacterial and eukaryotic species at high concentrations
[30], recent studies have found that some phenazines (phenazine-1-carboxylic acid (PCA),
phenazine methosulfate (PMS), and pyocyanin (PYO)) inhibit hyphal growth, intercellular
adherence and biofilm development of C. albicans at low sub-lethal (micromolar) concentra-
tions that are more than 100-fold below the concentrations which affect fungal survival [29].
Phenazines were found to inhibit C. albicans respiration [29], which is consistent with other
published data that phenazines can impact mitochondrial activity [31-33]. Subsequent analysis
indicated that the decreased ability of C. albicans to develop wrinkled colonies (consisting of
hyphal and yeast cells) or robust biofilms on plastic was due to inhibition in electron transport
chain activity [29]. Indeed it was shown that during the filamentation process C. albicans acti-
vated the TCA cycle, inhibited the pentose phosphate pathway, and increased mitochondrial
respiration [34]. This suggests that hyphal growth in C. albicans depends on functional respira-
tion to cover the metabolic needs of the cell which is inhibited by phenazines. Early studies
with mammalian mitochondria showed that phenazines uncouple oxidative phosphorylation
by shunting electrons from endogenous pathways [35-37], and this is most likely how respira-
tion is inhibited in C. albicans. The inhibition of C. albicans filamentation by phenazines occurs
despite the presence of robust fermentation pathways capable of supporting rapid growth in
the absence of mitochondrial activity, and suggests communication between filamentation
inducing pathways and metabolic state [29]. Indeed, in eukaryotes, it is becoming increasingly
apparent that signaling pathways that sense and respond to extracellular cues often also incor-
porate input from the mitochondria themselves or from mitochondrially-derived molecules
(like ATP and reactive oxygen species) [38,39].

In this report we show, that respiratory inhibition via genetic or biochemical manipulation
decreases Rasl activity and inhibits Ras1-dependent filamentation in C. albicans. Ras1 activa-
tion is also decreased by mitochondrial inhibition in the pathogenic Candida species, Candida
parapsilosis and Candida tropicalis. Furthermore, utilizing a NRG1 overexpression strain and
an efgl/efgl null mutant we show that decreased Rasl signaling in the presence of respiratory
inhibitors is independent of morphological change. Filamentation was not repressed by MB in
strains lacking Tup1, a hyphal growth repressor, or in a strain overexpressing Ume6, a tran-
scription factor involved in the induction of hyphal growth indicating that the effects of MB on
GTP-Rasl can be circumvented with activation of downstream parts of the pathway. Analysis
of overall metabolic changes due to respiratory inhibition shows perturbation of carbon metab-
olism, evidence for changes in redox state and increased AMP kinase activity (increased p-oxi-
dation, decreased sterol levels). Subsequent analysis showed that intracellular ATP modulates
Rasl activity independent of AMP kinase. Furthermore, while the GEF Cdc25 is dispensable
for decreased Rasl signaling due to respiratory inhibition, the GAP Ira2 is necessary. In addi-
tion, the adenylate cyclase Cyrl is essential for this signaling cascade, showing for the first time
that Cyrl affects Rasl activation state and with that it is not just a downstream effector of Rasl.
Rather Cyrl1, Ira2, and Rasl seem to form a regulatory complex that combines a multitude of
signals to decide if the yeast-to-hyphae switch should take place.
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Fig 1. MB inhibits Ras1 activity and Ras1-dependent filamentation. (A) Colonies of the wild type (RAS1/RAS1, SC5314), ras1/ras1, and ras1/ras1+RAS1
were grown with vehicle or with 1.5 uM MB on YNBAGNP at 37°C for 24 h (see S1A Fig for microscopy images of cells from all colonies). Scale bar= 10 um.
(B) Expression levels of hypha-specific genes (HSG) and yeast-specific genes (YSG) with and without MB or Ras1 grown under conditions listed in (A).
Nanostring analysis was used to determine transcript levels. (C) Model of the canonical Ras1 signaling pathway in C. albicans. Ras1 cycles between an
active GTP- and an inactive GDP-bound state in response to the activities of the GEF (guanine nucleotide exchange factor) and GAP (GTPase-activating
protein), Cdc25 and Ira2, respectively. GTP-Ras1 binds to the adenylate cyclase, Cyr1, and triggers cAMP production. cCAMP activates protein kinase A
(PKA) which results in the activation of hyphae specific genes resulting in the morphological switch from yeast to hyphae. (D) Analysis of the total Ras1
protein and GTP-Ras1 fraction of C. albicans strain CAF2 grown on YNBAGNP at 37°C (inducing) or YNBGP at 30°C (non-inducing) for 24 h with and without
MB. Pma1 levels were shown as a loading control. Percent of the GTP-Ras1/total Ras1 ratio compared to control conditions is shown.

doi:10.1371/journal.ppat.1005133.9001

Results

Methylene blue inhibits C. albicans filamentation by decreasing signaling
through the Ras1-cAMP-PKA pathway

Low micromolar concentrations of the bacterially-produced toxin, pyocyanin (PYO), or its
thioanalogue, methylene blue (MB), perturb mitochondrial activity [40,41] and repress C. albi-
cans filamentation (Fig 1A) [29]. Exposure to 1.5 pM MB, a compound used therapeutically in
humans [41], caused growth solely in the yeast form as indicated by a smooth colony morphol-
ogy and cellular yeast morphology as determined by microscopy. While under control condi-
tions, C. albicans grew as a mix of yeast and hyphae in wrinkled colonies. (Fig 1A and S1A Fig
panels 1 to 4). Furthermore, MB led to decreased expression of hypha specific genes and
increased levels of yeast-specific transcripts (Fig 1B). Because the colony phenotype, cellular
morphology, and expression profile of cells grown with MB were similar to those of the
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afilamentous rasl/rasl mutant (Fig 1A and 1B and S1A Fig panels 5 to 8) we sought to test the
hypothesis that MB inhibits the yeast-to-hyphae switch by inhibition of Rasl signaling, a path-
way critical for C. albicans filamentation and virulence in animal models (Fig 1C) [17,18].
Examination of Rasl protein levels in cells grown on solid medium with and without MB
found that MB led to reductions in levels of active GTP-bound Ras1 (GTP-Rasl) without
affecting total Ras1 levels (Fig 1D).

When MB was added to C. albicans cultures in liquid YNBAGNP medium, we observed
that MB decreased clumping and increased the percentage of cells in the yeast morphology at
concentrations of 3 and 6 uM, but not at 1.5 pM, a concentration that completely inhibited
filamentation on solid medium (S2A Fig and Fig 1A). Analysis of the fraction of Rasl in the
GTP-bound state found that 3 and 6 uM MB also decreased the fraction of Rasl1 in its active
form (S2A Fig). To test if these concentrations of MB have an impact on C. albicans growth we
used a strain in which the hyphal gene repressor Nrgl is overexpressed (NRGI-OE). Nrgl acts
downstream of Rasl and overexpression of this repressor prevents filamentation in the pres-
ence of hypha-inducing signals; the use of this strain makes it possible to measure growth via
ODgp measurements in the presence of filamentation inducing signals [3,42]. The different
concentrations of MB had no or only minimal impact on C. albicans growth excluding this as
the reason for a decrease of GTP-Ras] levels (S2B Fig). Because filamentation is completely
inhibited by 1.5 uM MB on solid media, but filamentation is only partially suppressed even at
6 UM in liquid medium, we used colony-grown cells in subsequent assays.

We tested if MB affected GTP-binding of Rasl in yeast growth conditions, and found that
MB did not impact GTP-Rasl levels (Fig 1D and S2C Fig). This suggests that MB selectively
inhibits the increase in GTP-Ras1 that occurs in the presence of filamentation-inducing signals
which include 37°C, buffering at pH 7, and the amino acids and N-acetylglucosamine in
YNBAGNP medium. To determine whether the decrease of GTP-Ras1 by MB is specific to
YNBAGNP, we tested another common filament-inducing condition (YPD + 5% serum at
37°C). Consistent with our findings on medium with N-acetylglucosamine, amino acids, 37°C,
and neutral pH, as the hyphal growth inducers, MB led to lower GTP-Ras1 levels when grown
on medium with serum and repressed filamentation (S2D Fig and S1B Fig). In liquid YPD
+ 5% serum, the effects of MB on morphology and GTP-Rasl1 levels were modest suggesting
that different media create different physiological states in C. albicans (S2E Fig). All further
experiments were conducted using YNBAGNP medium as it is a defined stimulus that mimics
a number of aspects of the host (pH 7, amino acids, 0.2% glucose).

To test whether a link between MB and Rasl activation state can also be observed in other
Candida species, we examined GTP-Rasl levels of two other pathogenic Candida species, Can-
dida parapsilosis and Candida tropicalis. These two fungal pathogens also had lower GTP-Rasl
levels on YNBAGNP with MB, indicating that Ras1 activation is also impacted by MB in other
Candida species (Fig 2 and S1A Fig panels 9 to 12). Under these conditions, these fungi grow
as yeast in the absence and presence of MB.

Respiratory activity modulates Ras1 signaling and is independent of the
morphological switch

In mammalian cells, MB decreases oxidative phosphorylation potential by oxidizing NAD(P)
H-dependent dehydrogenase (complex I) and directly reducing cytochrome C thereby bypass-
ing proton transfer by complex I and complex III (Fig 3A) [43]. Inhibition of mitochondrial
activity with PYO and/or the complex IIT inhibitor Antimycin A (AA) reduced GTP-Ras1 lev-
els; both PYO and AA also repressed hyphal growth as previously reported (Fig 3B) [29,44].
Mutants lacking complex I (ndh51/ndh51) or complex IV (cox4/cox4) did not filament and had
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Fig 2. MB effects on Ras1 signaling also occur in other Candida species. Candida parapsilosis and
Candida tropicalis were grown on YNBAGNP with and without 1.5 pM MB at 37°C for 24 h (see S1A Fig
panels 9 to 12 for microscopy images of cells). Western blot analysis of total Ras1 and GTP-Ras1 levels are
shown. Percent of the GTP-Ras1/total Ras1 ratio compared to control conditions is shown. Unlike C.
albicans, these fungi grow as yeast in the absence and presence of MB.

doi:10.1371/journal.ppat.1005133.9002

low levels of GTP-Rasl under control conditions (Fig 3C and S1A Fig panels 13 to 16 for cellu-
lar morphology) [45]. GTP-Rasl levels were not further reduced by MB, and in fact levels
increased in cells exposed to MB (Fig 3C). Null mutants lacking complex II (sdh1/sdhl) or
both alternative oxidases (aoxI-A/aox1-A aoxI1-B/aoxI-B), which do not participate in the for-
mation of the proton gradient, still filamented and had high GTP-Rasl levels (S3A and S3B
Fig). MB also caused a decrease in GTP-Rasl in the complex I and alternative oxidase mutants
comparable to wild type (S3A and S3B Fig).

All three complexes important for high GTP-Rasl levels under hypha-inducing conditions
(complex I, III, and IV) pump protons into the intermembrane space for use in ATP synthesis
(Fig 3A). MB reduces ATP synthesis in C. albicans as relative ATP levels were 2.3-fold lower
upon growth of the wild type (WT) with MB (Fig 3D). Furthermore, while intracellular ATP in
ndh51/ndh51 and cox4/cox4 mutants in control conditions were significantly lower than in the
WT (CAF2) (Fig 3D), ATP levels were not reduced by MB (Fig 3C).

Relationship between filamentation and GTP-Ras1 modulation by
respiratory activity (MB)

To determine if filamentation was required for elevated GTP-Rasl and higher ATP, we exam-
ined the effects of MB on mutant strains that are unable to undergo the yeast-to-hyphae switch.
It is well known that the transcription factor Efgl is an essential regulator for morphogenesis
in C. albicans [46]. In hyphae inducing conditions Efg] is activated through the Ras1-cAMP-
PKA pathway and induces the expression of many hyphae specific genes that are essential for

PLOS Pathogens | DOI:10.1371/journal.ppat.1005133  August 28, 2015 6/26



o ®
@ : PLOS | PATHOGENS C. albicans Ras1 Control by a Metabolic Checkpoint

A . B WT (CAF2)
+MB +PYO

hCextD)(ext2n X] X vl \
o Egﬂ&g“ k“““‘ +,\)I’\I’3T (CAF+2P)Y0 —
..@‘Wg‘& Sy o

2 Matrix 100% 22.6%  23.3% 9.3%
c WT (CAF2) ndh51/ndh51 cox4_1/cox4_1
+ - + - +
P 25,0001
) ) = [ control
S 20,0004 EvB
o c
WT (CAF2) ndh51/ndh51 cox4/cox4 e g 15,0004
MB: - * = T = T < 2 *
£ 10,0001
Total £
Ras1 S 5,000
- 0
(CAF2)

100% 3.16% 1.5%

Fig 3. Ras1 signaling is modulated by respiratory activity and correlates with total intracellular ATP levels. (A) Schematic of the fungal mitochondrial
electron transport chain and how it is inhibited by MB (red arrows). Normally electrons are transported to the ubiquinone pool (UBQ) from NADH by complex |
(Cl) orinternal (int1) and external (ext1, ext2) alternative NADH:ubiquinone oxidoreductases, and from succinate by complex Il (Cll). From UBQ electrons are
channeled through complex IIl (Cll), cytochrome C (c), and complex IV (CIV) or directly by the alternative oxidase (AOX) to oxygen as the terminal electron
acceptor. Simultaneous to the electron transport, protons are pumped over the inner mitochondrial membrane by CI, Clll, and CIV. This proton gradient is
used by the ATP synthase (CV) to generate ATP. In the presence of MB electrons are shuttled from NADH at Cl directly to ¢ reducing the proton gradient and
ATP production. MBH2 reduced MB. Blue: respiratory complex important for the MB induced decrease in Ras1 signaling. Green: dispensable complex/
protein for MB response. (B) C. albicans WT (CAF2) was grown on YNBAGNP with MB, pyocyanin (PYO), or antimycin A (AA) at 37°C for 24 h. Western blot
analysis of total Ras1 and GTP-Ras1 is shown. (C) WT (CAF2), ndh51/ndh51 (complex I), or cox4/cox4 (complex IV) were grown with and without MB on
YNBAGNP at 37°C for 24 h (see S1A Fig panels 13 to 16 for microscopy images of cells). Western blot analysis of total Ras1 and GTP-Ras1 is shown.
Percent of the GTP-Ras1/total Ras1 ratio compared to control conditions is reported. (D) Intracellular ATP measurements of WT (CAF2), ndh51/ndh51, and
cox4/cox4 grown for 24 h on YNBAGNP at 37°C. Mean + SD are shown. *p<0.05.

doi:10.1371/journal.ppat.1005133.g003

the yeast-to-hyphae transition [47,48]. In addition, we tested the NRG1I overexpression strain
(NRGI-OE). Because both Efgl and Nrgl act downstream of Rasl we hypothesized that MB
effects on Rasl should be unaffected in these strains. As expected the efgl/efgl mutant formed
a smooth colony consisting of yeast cells in the presence and absence of MB (S4 Fig and S1A
Fig panels 17 and 18). The NRGI-OE strain showed a weakly wrinkled colony morphology
under control conditions consisting of mainly yeast cells with some elongated yeast cells and
short pseudohyphae, while with MB a completely smooth colony consisting of only yeast cells
was observed (Fig 4A). Subsequent western blot analysis and intracellular ATP measurements
showed that both strains had less GTP-Ras1 and less ATP with MB, as the WT (Fig 4A and 4B
and 54 Fig). The reduction of GTP-Ras1 in WT ranged from 26.5% to 94.5% with an average
reduction of 63.6% over all experiments done; even in assays with only a 26.5% reduction in
the ratio of GTP-Rasl/ total Rasl relative to control, filamentation was repressed.
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TT21 in (A) were re-used in (C). Scale bar =10 pm.

doi:10.1371/journal.ppat.1005133.9004

Furthermore, we tested the effects of MB on mutant strains that are constitutively filamen-
tous due to the alteration of downstream transcriptional regulators of hyphal growth to
determine if the effects of MB were upstream in the hyphal growth pathway and if hyphal
growth could be reactivated in the presence of MB. Loss of the hyphal gene repressor Tup1 or
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overexpression of the transcription factor Ume6 have been previously shown to result in con-
stitutive filamentation [3,49,50]. Both strains are able to filament in the presence of MB, while
GTP-Rasl levels are decreased (Fig 4C). Filamentation and wrinkled colony formation of these
strains is not as strong as under control conditions. However, overall this shows that the effects
of MB on ATP and GTP-Ras1 are upstream events in the control of C. albicans morphology
and that low Ras1 signaling inhibits filamentation in the WT.

Impact of respiratory inhibition on cellular metabolism suggests
increased AMP kinase activity, but decreased Ras1 signaling is
independent of AMP kinase

While MB, PYO, and AA all modulate mitochondrial activity and reduced relative GTP-Rasl
levels (Fig 3B), these compounds are not equivalent. For example, MB did not impact growth
rates, while PYO and AA were inhibitory perhaps in part due to increased ROS formation. In
addition, while AA and PYO led to acidification of the medium due to increased fermentation
to acetate, MB did not [29,44]. Thus, we sought to determine the strongest common signals in
order to gain insight into factors that control Ras1 GTP-binding. Metabolomics analysis of the
WT SC5314 grown under control conditions or with MB, PYO, or AA revealed that some com-
pounds were only differentially regulated in one condition (Fig 5A, S5 Fig, and S1 Table). For
instance, only MB-grown cells had significantly high relative levels of glycerol, an alternative
fermentation product, and this is consistent with the observation that the medium pH was not
altered even in the presence of this fermentation-inducing mitochondrial inhibitor (S5 Fig). A
large group of metabolites showed a similar pattern in the presence of all three compounds
(Fig 5A); these signatures included increased lipid catabolism and decreased lipid biosynthesis
(higher levels of acetyl-CoA, increased lysophospholipids, and decreased fatty acids (palmitate,
oleate, and stearate)) as well as low ergosterol and related compounds (Fig 5B and S5 Fig).

The decrease of the fatty acid palmitate is particularly interesting because it is needed for
one of two lipid modifications that tether Rasl in C. albicans to the plasma membrane [51].
Loss of palmitoylation re-localizes Ras1 largely to endomembranes and changes in Rasl locali-
zation negatively affect Rasl activation [51]. To test if the changes in GTP-Rasl1 levels seen
with MB or the other inhibitors were due to re-localization of Ras1 away from the membrane,
we determined GTP-Rasl levels in two strains carrying truncated Rasl proteins that are no
longer associated with the plasma membrane. The first strain is a ras1/rasl mutant reconsti-
tuted with a rasI allele missing the last 67 amino acids (ras1467) [52] and the second is a ras1/
ras] mutant reconstituted with a rasI allele only including the conserved N-terminal region of
RASI (rasl N-term). Interestingly, the ras1A67 strain showed lower levels of GTP-Ras1 in con-
trol conditions compared to the rasI N-term or wild type strain (56 Fig) suggesting a possible
GTP-binding inhibitory domain or function activated by Rasl cleavage [52]. However, both
truncated Rasl variants showed a wild type reduction of GTP-Ras1 levels with MB (S6 Fig).
Thus, while Rasl localization is controlled by its C-terminal lipid modifications, changes in
these that might occur in the presence of MB were not responsible for altered GTP-Rasl levels.

Interestingly, the metabolomics pattern strongly resembled the response of mammalian
cells to MB [53]. Furthermore, in mammalian cells the same metabolic shift due to respiratory
inhibition is mediated by AMP kinase (AMPK), an energy sensor that responds to relative
ATP:AMP/ADP levels. Lipids are a rich source of ATP, and AMPK induces a lipid catabolic
state when ATP levels are low [54,55]. These signatures suggest that the common signal in
response to PYO, MB and AA is likely low intracellular ATP. GTP-Rasl levels were not con-
trolled by AMPK itself as a mutant lacking the y-subunit of AMPK (snf4/snf4) which is essen-
tial for AMPK activity in Saccharomyces cerevisiae [56], still shows a reduction in GTP-Rasl
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Fig 5. Effects of respiratory inhibitors on cellular metabolism indicate increased AMP kinase activity, but decreased Ras1 signaling is
independent of AMP kinase. (A) Venn diagrams of significantly altered metabolites of cells treated with MB, PYO, or AA (S1 Table) showed that the majority
of metabolites are changed similarly in cells treated with different respiratory inhibitors. Cells were grown for 24 h on YNBAGNP at 37°C. (B) Significant
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doi:10.1371/journal.ppat.1005133.9005

and intracellular ATP upon growth with MB (Fig 5C and 5D and see S1A Fig panels 19 to 22
for cellular morphology). Under control conditions the snf4/snf4 mutant has very low levels of
intracellular ATP and is unable to filament (Fig 5C and S1A Fig panels 29).

The level of Ras1 signaling depends on total intracellular ATP

Across eukaryotes, it has been shown that diverse cellular processes from proteome function to
neurotransmitter responses are directly regulated by ATP levels. Thus, phenazine-mediated
repression of C. albicans filamentation may occur through effects on ATP levels, as ATP is the
precursor to cAMP, a second messenger that is a key positive regulator of hyphal growth (Fig
1C) [6]. PYO reduces levels of both cAMP and its precursor ATP in human epithelial cells due to
its effects on respiration and oxidative phosphorylation [57]. To determine more directly if
decreased ATP levels were impacting Rasl signaling, we examined the effects of inhibitors of the
proton gradient (dinitrophenol (DNP)) and the ATP synthase (oligomycin) which each caused a
significant decrease of intracellular ATP (Fig 6A). For both, relative levels of GTP-Rasl were
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Fig 6. Ras1 signaling depends on total intracellular ATP levels. (A) Intracellular ATP levels were
measured in WT (CAF2) cells exposed to dinitrophenol (DNP), oligomycin (olig.) or vehicle (control).

Mean + SD are shown. *p<0.05. Cells were grown for 24 h on YNBAGNP at 37°C. (B) Colony images and
total Ras1 and GTP-Ras1 western blot analysis of WT (CAF2) grown for 24 h on YNBAGNP at 37°C. (C)
Western blot analysis and colony images of the ssn3/ssn3 mutant compared to its reconstituted strain grown
on YNBAGP at 30°C (yeast growth) for 24 h. (B) and (C) Percent of the GTP-Ras1/total Ras1 ratio compared
to control conditions is shown.

doi:10.1371/journal.ppat.1005133.9g006

decreased and filamentation was repressed (Fig 6B) strongly suggesting that ATP levels were the
connecting signal between mitochondrial activity and Ras1 signaling. To further test this hypoth-
esis, we measured GTP-Rasl levels in the ssn3/ssn3 mutant that had been previously shown to
have increased intracellular ATP due to increased oxidative metabolism, without increased
growth [44], and found increased GTP-Ras1 levels compared to the reconstituted strain (Fig 6C).
In summary, our data show that GTP-Rasl levels correlate with intracellular levels of ATP.

Decreased Ras1 signaling by methylene blue depends on the GAP Ira2
and adenylate cyclase Cyr1

C. albicans Rasl GTP-binding has been genetically shown to be controlled by a GEF, Cdc25,
and a GAP, Ira2 [58,59]. The cdc25/cdc25 mutant had low levels of GTP-Ras1, and was unable
to filament, but MB caused a further reduction in GTP-Ras1 comparable to WT (Fig 7A and
see S1A Fig panels 23 and 24 for cellular morphology). In contrast, loss of Ira2 resulted in a
hyperfilamentous phenotype and strongly increased levels of GTP-Ras1 which were unaffected
by addition of MB (Fig 7B and 7C), while ATP levels were decreased comparable to WT (Fig
7D), showing that the decrease of GTP-Rasl by MB is Ira2 dependent.

In S. cerevisiae, Ira2 activity is negatively regulated through direct interactions with Tfs1
and positively regulated through protein stabilization by Gpb1/2 [60,61]. While C. albicans
tfs1/tfs1 mutants displayed phenotypes consistent with increased Ira2 activity (decreased fila-
mentation and less GTP-Rasl), the reduction of GTP-Ras1 levels upon growth with MB was
similar to that of the WT (S7A Fig). Deletion of the C. albicans Gpbl homolog resulted in
increased GTP-Rasl levels under control conditions that were decreased with MB comparable
to wild type (S7B Fig). Together the Gpbl and Tfs1 data suggest that new inputs into Ira2 may
link ATP levels to GTP-Rasl.

We suspected this link may be the adenylate cyclase Cyr1, which is known to be activated by
Rasl, and integrates diverse signals. The cyrl/cyr] mutant, like a ras1/ras1 strain, forms smooth
colonies consisting only of yeast (Fig 8 and see S1A Fig panels 25 to 28 for cellular morphol-
ogy). Surprisingly, the cyr1/cyrl strain had a higher proportion of GTP-Rasl, and this increase
was complemented by addition of the native CYRI gene. Furthermore, in the absence of Cyrl,
Rasl GTP-binding was not decreased by MB or AA but rather increased (Fig 8A and 8B). The
cAMP signal itself appeared to be important, as a strain expressing only a catalytically-inactive
Cyr1 (cyrl/cyrl +cyr1'***) also had higher basal GTP-Rasl levels that were increased and not
decreased by MB (Fig 8C and see S1 A Fig panels 29 to 32 for cellular morphology). However,
neither subunit of PKA, the only known cAMP sensor, was required for the control of
GTP-Rasl levels (S7C Fig).

In summary, our data suggest that low ATP causes Cyrl-mediated activation of Ira2 activity
to reduce GTP-Rasl levels. Thus, it appears that Rasl and Cyr1 participate in a regulatory cir-
cuit that integrates multiple signals before triggering the expression of virulence related
attributes.
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Fig 7. GTP-Ras1 decrease by MB is independent of the GEF Cdc25, but depends on the GAP Ira2. (A) and (B) Colony morphology and western blot
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doi10.1371/journal.ppat. 1005133.g007

Discussion

In this study we identified a previously unknown link between total intracellular ATP levels
and Rasl signaling in C. albicans by characterizing the mechanism by which MB inhibits the C.
albicans yeast-to-hypha switch (Fig 9). Interestingly, a recent study in the yeast S. cerevisiae
found that dysfunctional mitochondria decrease cAMP-PKA signaling, adhesion production,
and filamentous growth further emphasizing that the link between respiratory activity and
Ras1-cAMP-PKA signaling is conserved beyond the Candida genus [62]. The same study also
showed that the filamentous-growth-specific MAPK pathway is not involved in this signaling
as this pathway retained functionality in respiratory-deficient S. cerevisiae yeast cells [62]. Fur-
thermore, while it is not known whether Ras1 signaling is important for filamentation or viru-
lence in C. tropicalis and C. parapsilosis, when grown on YNBAGNP media with and without
MB, both Candida species had decreased Rasl activation state with MB indicating that the link
between respiratory activity and Ras1 signaling is conserved across Candida species. However,
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Fig 8. GTP-Ras1 decrease by MB depends on the adenylate cyclase Cyr1. (A) (B) (C) Colony
morphology and western blot analysis of total Ras1 and GTP-Ras1 levels in a cyr1/cyr1 mutant strain or a
strain carrying a catalytically inactive cyr? allele (cyr173%#) with MB or AA compared to their respective
reconstituted strain are shown. Percent of the GTP-Ras1/total Ras1 ratio compared to control conditions is
reported. Cells were grown for 24 h on YNBAGNP at 37°C. See S1A Fig panels 25 to 32 for cellular
morphology.

doi:10.1371/journal.ppat.1005133.9g008

whether this decrease in Ras1 activation impacts filamentation and virulence of these fungal
pathogens needs to be determined in future studies.

In liquid conditions, in which C. albicans hyphal growth is fast, increased MB concentra-
tions were necessary to see a decrease in GTP-Rasl levels and filamentation. This requirement
for higher levels of MB may be due to higher or altered respiratory activity, or differences in
ATP homeostasis under well-mixed planktonic conditions. Interestingly, in our assays, GTP-
bound Rasl was lower and filamentation was inhibited by MB on both solid YPD + 5% serum
medium and solid and liquid YNBAGNP. However, in liquid YPD + 5% serum conditions, the
effect of MB on GTP-Rasl levels was minor and no impact on morphology at concentrations
that were not inhibitory. A recent publication by O’Meara and colleagues reported a global
analysis of C. albicans morphology which showed that the role of different pathways in fila-
mentation varied depending on the medium condition [63], and we speculate that the effects of
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Fig 9. New model of the Ras1-Cyr1 signaling pathway. In the presence of MB or other respiratory
inhibitors, cellular ATP levels are low. Under these conditions, GTP-bound Ras1 is rapidly turned over to
GDP-bound Ras1 in a Cyr1-Ira2 dependent manner repressing the input of filamentation inducing signals
and hyphal formation does not occur (upper panel). Under control conditions (no inhibition) ATP levels are
high due to efficient oxidative metabolism and slow growth. In the presence of inducing signals GTP-bound
Ras1 can accumulate probably because Cyr1 does not stabilize the interaction of Ras1 with Ira2. GTP-Ras1
can now effectively bind to and activate Cyr1 resulting in filamentation (lower panel). MDPs: muramyl
dipeptides; HCOj3: bicarbonate.

doi:10.1371/journal.ppat.1005133.9g009
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MB on ATP pools, Rasl, and filamentation also varies in different media in ways that we can-
not yet understand. Together, this variability shows the importance of understanding the inter-
actions between nutrient sources and growth substrate and signaling inputs and outputs.

The observation that MB had no impact on Rasl1 GTP-binding under yeast growth condi-
tions in C. albicans which could indicate that intracellular ATP pools serve as a “check point”
in Rasl signaling under hypha-inducing conditions. The differential effects of MB may be
related to temperature (yeast are grown at 30°C while hyphae are grown at 37°C) though MB
did modulate ATP levels at 30°C. Indeed, isolated mitochondria from C. albicans were shown
to be more active at 37°C compared to 30°C [34]. At lower temperatures, mammalian mito-
chondria have a reduced respiratory rate and hyperpolarization of the mitochondrial mem-
brane, potentially due to decreased ATPase activity [64-67], which results in the accumulation
of reduced flavins and cytochromes (Fig 3A). This state may render cells less susceptible to the
action of MB. Increased respiration upon growth at 37°C most likely result in an increase in
intracellular ATP concentrations which may promote or permit the hyphal growth program.
MB inhibits the accumulation of ATP (Fig 3D) causing cells to stay in the yeast morphology in
conditions that would normally induce filamentation.

Mutants defective in complex I and complex IV never establish a high intracellular ATP
state, and are unable to undergo the yeast-to-hypha switch. Interestingly, in the presence of
MB the ndh51/ndh51 and cox4/cox4 mutants showed an increase of GTP-Ras1 levels instead of
a decrease (Fig 3C). This is consistent with observations made in mammalian cells where it has
been shown that MB can restore some electron flow to dysfunctional mitochondria [43]. There
was only a small but measurable increase of ATP levels in these mutants with MB which could
result in a small increase in GTP-Rasl (Fig 3D) indicating some increased electron flow might
occur in the presence of MB in these C. albicans mitochondria similar to mammalian cells.

ATP production via respiration by the mitochondria is the main source of the chemical
energy that fuels many different processes and pathways in the cell. Consequently, inhibition
of respiration and ATP production will have a major impact on many aspects of cellular metab-
olism as shown by the metabolomics analysis in this study (Fig 3A, S1 Table, and S5 Fig). How-
ever, the strongly reduced ATP levels observed in the presence of MB did not block
filamentous growth in the constitutively filamentous tup1/tupl mutant or UME6-OE strain
suggesting that MB is not inhibiting other parallel signaling or metabolic pathways important
for induction or maintenance of filamentation (Fig 4C). Filamentation and wrinkled colony
formation of these strains is not as robust as under control conditions, possibly due to reduc-
tion in other Rasl-controlled pathways or other effects of low ATP levels on growth dynamics
that could be Rasl independent, but hyphal growth is clearly evident in the strains even when
MB is present. Furthermore, the NRGI-OE strain showed that filamentation is not required for
higher ATP and elevated GTP-Rasl under filamentation inducing conditions or the effects of
MB on Rasl signaling (Fig 4A and 4B). Under the conditions tested, the NRGI-OE strain
formed some wrinkles, however, it does not form true hyphae. Microscopy of the cells showed
mainly budding yeast with some elongated yeast cells and short pseudohyphae (S1A Fig panel
21). Interestingly, the occurrence of elongated yeast cells and pseudohyphae is inhibited by
MB. Previous publications with the NRGI-OE strain looked at YPD +serum, which in our
hands is not an as strong an inducer of filamentation and wrinkle formation as YNBAGNP on
plates and the overexpression level of the NRGI-OE strain might just not be enough to over-
come this stronger induction completely (Fig 1A and S1B Fig) [3,42]. Wrinkle formation of C.
albicans colonies by MB and other respiratory inhibitors may support the model in which
wrinkles promote usage of and demand for oxygen and thus the regulation of wrinkle produc-
tion is downregulated upon respiratory inhibition [68]. In the bacterium Pseudomonas
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aeruginosa wrinkled colony morphology has been shown to be a redox-driven adaptation that
maximizes oxygen accessibility and increased oxygen is able to inhibit wrinkle formation [69].

It is very interesting that the response of C. albicans to respiratory inhibition is similar to
what has been seen in mammalian cells [53]. We observed a metabolome profile typical for
AMP kinase activation, which has also been shown in mammalian cells exposed to MB [70].
This activation is not surprising as AMP kinase is a known energy sensor that measures ratios
of ATP to ADP/AMP [55] that is activated when cellular energy status is low in eukaryotes. To
increase ATP availability, the cells increase the catabolism of energy stores, such as fatty acids,
and the biosynthesis of “costly” fatty acids and ergosterol is decreased (S1 Table, S5 Fig)
[54,55,71]. Our data indicate that AMPK is needed to sustain levels of ATP, as intracellular
ATP levels were very low in the snf4/snf4 strain (Fig 5D). We suspect this is the reason why
GTP-Rasl levels are so low and why this strain does not form filaments (Fig 5C). In agreement,
a recent study showed that loss of only the kinase activity due to a point mutation in Snfl, an
essential protein in C. albicans, inhibited the yeast-to-hyphal switch indicating how important
AMPK activity is for energy homeostasis and filamentation [72]. Even though GTP-Rasl and
ATP levels are low in the snf4/snf4 strain, they are still responsive to MB showing that AMPK
is not necessary for this signaling pathway. Overall, we believe that by understanding how C.
albicans metabolism changes in different environments, we can use this fungus as an important
probe for conditions within the host in states of health and disease.

In many cells, ATP concentrations control diverse processes such as autophagy [39], the ret-
rograde response pathway (73], activation of neutrophils [74], and neurotransmitter responses
[75]. ATP can act as an essential co-factor or can be recognized directly by binding to a recep-
tor which triggers signaling. We do not yet know how ATP levels impact the Rasl signaling
cascade. One candidate ATP sensor is adenylate cyclase, Cyrl, itself. Cyr1 catalyzes the conver-
sion of ATP to cAMP and thus has an ATP binding site that could function as a sensor of ATP
levels. In S. cerevisiae, studies indicate that Cyr1 acts as a scaffold protein for Ras2 (homolog to
Rasl in C. albicans) interactions with Ira2 [76] and one could imagine that this scaffold activity
may be regulated by ATP concentration. We know that Cyr1 signaling is required for the
effects of MB in C. albicans as a catalytically inactive Cyr1, which can still serve some structural
roles, was also insensitive to the Ras1-inhibiting effects of MB (Fig 8C). Indeed the cyrl/cyrl
mutant and the strain expressing catalytically inactive Cyrl showed an increase of GTP-Rasl
with MB. Together with previously published data showing that Rasl signaling is important
for mitochondrial activity in S. cerevisiae, this might indicate that the mitochondria are not
functioning normally in these strains and that like in mammalian cells and the cox4/cox4 and
ndh51/ndh51 strains MB is able restore some electron flow to these dysfunctional mitochondria
[43,77].

In S. cerevisiae, Ira2 has been shown to interact with the protein kinase A regulatory subunit,
and Cyrl and Ira2 have both been found at the plasma membrane and on mitochondria [78]
providing further support for the potential for interactions between Cyrl and Ira2, probably in
ways that respond to mitochondrial activity [79] (Fig 9). These reports, with the data presented
here, suggest that Cyr1 and Rasl form a master regulatory circuit. Furthermore, the canonical
Ras1 signaling pathway model has to be restructured from a pathway in which Cyr1 is just a
factor downstream of Ras1 that is activated by GTP-bound Rasl (Fig 1C) to a new model in
which Cyrl and Rasl influence each other and together with Ira2 form a master-regulatory
network necessary to coordinate the response to different environmental and intracellular sig-
nals in order to decide the fate of the cell (Fig 9).

These data reveal important aspects of the regulatory cascade that controls the C. albicans
switch to a state more capable of causing host damage (Fig 9). Our findings indicate that
the energy status of the cell is one of the most important signals involved in the decision of
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C. albicans to undergo the yeast-to-hyphae switch as it is able to override an array of filamenta-
tion inducing signals (Fig 9) Thus, host or host microbiome factors that impact energy levels
will likely modulate C. albicans Rasl signaling. Previous studies showed that Cyrl can be
directly activated by bicarbonate and muramyl dipeptides (MDPs) (Fig 9), though MDPs are
only weak activators of filamentation in the absence of Ras1 [80,81] showing that Rasl input is
required for strong MDP-induced filamentation. Indeed, clinical data have linked the use of
antibacterials to increased risk of C. albicans infections in multiple distinct body sites with very
different bacterial community compositions [7-14]. In addition, numerous studies have shown
that many bacteria inhibit C. albicans filamentation [13,14]. Future studies will focus on estab-
lishing whether repression in Rasl activation, through modulation of ATP by competition
with other microbes, contributes to the control of Candida behavior in a healthy mucosal
microbial community. Furthermore, the future will show if known therapies or strategies can
be used to favor benign host-Candida interactions by promoting low Rasl activity.

Materials and Methods
Strains and growth conditions

All C. albicans strains were streaked from-80°C onto YPD (1% yeast extract, 2% peptone, 2%
glucose) plates every 8-10 days and maintained at room temperature. All strains used in this
study can be found in S2 Table. Overnight cultures were grown in 5 ml of YPD, supplemented
with uridine as necessary, and washed in distilled water (dH,O) prior to use. C. albicans cells
were mostly grown under filament-inducing conditions which included 37°C on YNBAGNP
(1.5% agar, 0.67% yeast nitrogen base medium with ammonium sulfate (RPI Corp), 10 mM
dextrose, 5 mM N-acetylglucosamine (GlcNAc), and 2% [wt/vol] casamino acids (BD Bacto),
25 mM potassium phosphate buffer). Cells were also grown on YPD + 5% fetal bovine serum
when indicated. For yeast growth conditions C. albicans cells were grown at 30°C on YNBGP
(1.5% agar, 0.67% yeast nitrogen base medium with ammonium sulfate (RPI Corp), 10 mM
dextrose, 25 mM potassium phosphate buffer). For filamentation-inducing liquid growth con-
ditions media were prepared as described above without the addition of agar and cells were
incubated in the roller drum for 12 hours at 37°C.

Stock solutions were prepared of: methylene blue (MB) (Fisher Scientific)- 3 mM in dH,O;
pyocyanin (PYO) (Cayman Chemicals)- 30 mM in 100% ethanol (EtOH); Antimycin A (AA)
(Sigma)- 10 mM in 100% EtOH; oligomycin (Sigma) — 8 mg/ml in 100% EtOH; Dinitrophenol
(DNP) (Sigma) - 100 mM in DMSO; menadione (Sigma) - 50 mM in 100% EtOH. All experi-
ments were conducted in the dark to avoid light-induced ROS production.

Strain construction

The deletion mutant strains were constructed in the BWP17 strain background using a previ-
ously described method [58,82]. Briefly, gene-disruption cassettes for transformation were
amplified using ~75 bp primers and the plasmids, pRS-ARG4 or pGEM-HIS!I [82] which con-
tain ARG4 and HISI for PCR-directed integration. The forward primer was designed to have
homology to 50 bp sequence upstream of the gene of interest start codon while the reverse
primer had homology to the 50 bp sequence following the stop-codon. Both the primers were
flanked by a 20 bp sequence homologous to the plasmids, as mentioned above. Sequential
transformations of these gene-disruption cassettes into C. albicans BWP17 strain yielded the
deletion strain. Plasmid pSM2 and pSMTC were used to complement the cyr1/cyrl strain only
with URA3 or with CYRI-URAS3 at the URA3 locus [80]. The ira2/ira2 strain was reconstituted
with URA3 using the pClp10 plasmid at the RP10 locus [83]. Strain rasl/ras1 + rasl N-term
was generated by transforming DH482 with Pacl linearized pAP13+rasl N-term and
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integration at the endogenous RAS1 locus was confirmed by PCR. To construct pAP13+rasl
N-term a PCR product encoding the first 161 residues of Rasl was amplified from pAP14 [51]
with primers RAS1XholF [51] and Rasldeltal29BamHI-R, digested with Xhol and BamHI and
ligated into similarly digested pAP13. All plasmids and primers used in this study can be found
in S3 and S4 Tables.

Macroscopic and microscopic analysis of cells in colonies

For wrinkled colony formation, 10 pl from overnight cultures re-suspended in dH,O at an
optical density (OD) of 8.0 were spotted onto YNBAGNP unless otherwise specified. The
medium was supplemented with methylene blue (MB) from a 3 mM stock solution to a final
concentration of 1.5 pM. 5 uM MB was used for the metabolomics experiment. Pyocyanin
(PYO), Antimycin A (AA), and oligomycin (olig.) were added to the medium to a final concen-
tration of 20 uM, 2.5 pM, and 7.5 pg/ml, respectively, or an equivalent volume of 100% ethanol
(vehicle). Dinitrophenol (DNP) was added to the medium to a final concentration of 2 mM
and menadione was added to the medium to a final concentration of 0.125 mM or an equiva-
lent volume of vehicle solution. Cells were incubated at 37°C for 25 h.

Colonies were imaged after 24 h with a digital camera. Unless otherwise noted, all spot
assays were completed as at least three independent replicates and a representative data set is
shown. Cell morphology in colonies was assessed using a ZeissAxiovert inverted microscope
equipped with a 100x long working distance objective and Axiovision software. To image the
morphology of cells within the colony, the cells were resuspended in water, then applied to an
agarose-coated slide to immobilize cells of different morphologies. The images shown were
representative of the make up of the entire colony.

Active Ras1 pull-down and immunoblotting

For western blot analysis spot colonies were scraped from agar plates after 24 h incubation at
the conditions indicated, washed into a collection tube with dH,O and, after centrifugation,
immediately snap-frozen in an ethanol/dry ice bath. Lysate preparation was conducted as pre-
viously published, with some modifications [51]. Whole-cell lysates were prepared by resus-
pending cells in Lysis/Binding/Wash Buffer (Active Ras Pull-Down and Detection Kit, Pierce)
with protease inhibitors (Halt Protease Inhibitor Single-Use Cocktail, Pierce) and disrupting
cells with glass beads in a Bio-Spec bead beater with six rounds of 50 seconds disruptions at
4°C and 1 minute rests on ice. Protein concentrations were determined by Bradford assay
(BioRad).

Active or GTP-bound Rasl was isolated utilizing the Active Ras Pull-Down and Detection
Kit (Pierce) following the manufacturer’s instructions. In general, 200 ug of total protein were
used for the pull-down unless otherwise specified. Due to the strong increase of GTP-Rasl lev-
els in ira2/ira2 strain only 100 ug of total protein were used (indicated in the figure). 12.5 ul of
the pull-down samples containing active Rasl, and, for the input control, a total of 10 g total
protein diluted in SDS loading buffer were separated by SDS-PAGE, transferred to polyvinyli-
dene difluoride (PVDF) with the Trans-Blot Turbo Transfer system (BioRad), and detected
with monoclonal anti-Ras clone 10 (1.5 pg/ml; Millipore), followed by secondary detection
with goat anti-mouse (Pierce) and enhanced chemiluminescent visualization (Pierce). As a
control protein Pmal was detected as described previously [52]. Densitometry analysis of Rasl
levels on Western blots was conducted with Image] [84].
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Gene expression

Nanostring nCounter (Nanostring Technologies) analysis was used to quantify C. albicans
gene expression. After 24 h spot colonies were harvested and fungal RNA was isolated using
MasterPure Yeast RNA Purification Kit (Epicentre). Each Nanostring reaction mixture con-
tained 80 ng fungal RNA, hybridization buffer, reporter and capture probes. Overnight hybrid-
ization of RNA with probes at 65°C preceded sample preparation using Nanostring prep
station. Targets were counted on the nCounter using 255 fields of view per sample [85]. Raw
counts for hyphal and yeast specific transcripts (HWPI, ECE1, HGCI, HYRI, ALS3, YWPI and
ALS4) were normalized within each sample to the geometric mean of two C. albicans house-
keeping genes (ACT1, PMAT1) and scaled to WT control conditions; the numerical average

was taken from three biological replicates. Heat maps were developed using Z-scoring of Nano-
string counts of selected yeast- and hyphal-specific genes using the “heatmap.2” function in the
“gplots” package [86] in R (R Foundation for Statistical Computing, Vienna, Austria).

Metabolomics

Spot assays were completed as previously described on YNBGNP agar plates and incubated at
37°C for 24 h. Cells were harvested, by scraping colonies from the surface of the agar using a
coverslip, and then snap-frozen in an ethanol/dry ice bath. A total of 5 biological replicates
were submitted to Metabolon for metabolite profiling, by GC/MS and LC/MS, of SC5314 wild
type treated with vehicle (EtOH), 5 uM MB, 20 uM PYO, or 2.5 uM AA. All metabolites with
mean values that had significant differences (p<0.05) between treated and untreated samples
were clustered into the 2 groups “UP” (upregulated >1.00-fold) or “DOWN” (downregulated
<1.00-fold). VennMaster (http://sysbio.uni-ulm.de/?Software:VennMaster) [87] was used to
determine the overlap of biochemicals that were either “UP” or “DOWN” in any of the treated
samples. To visualize the result of this overlap analysis the tool eulerAPE (http://www.
eulerdiagrams.org/eulerAPE) [88] was used to generate the Euler diagrams.

ATP quantification

Spot assays were completed as previously described on YNBGNP agar plates with and without
1.5 uM MB or 7.5 pug/ml oligomycin and incubated at 37°C for 24 h. After harvesting by scrap-
ing colonies from the surface of the agar using a coverslip, the cells were disrupted with glass
beads and 1x PBS in a Bio-Spec bead beater with 3 rounds of 60 seconds disruptions at 4°C and
1 minute rests on ice in between. A standard curve was prepared using Adenosine 5’-triphos-
phate disodium salt hydrate (Sigma). ATP levels were measured using the CellTiter-Glo Lumi-
nescent Cell Viability Assay (Promega) following the manufacturer’s instructions. The
luminescent signal, which is proportional to ATP levels, was measured using a Tecan Infinite
200 Pro equipped with Magellan software (Tecan). All data were normalized to the protein
concentration of each sample, which was determined using a Bradford Assay (BioRad). Three
independent biological replicates, each including three technical replicates, were conducted
and a representative data set is presented.

Gene ID—CGD systematic name

RASI: C2_10210C_A; CYRI: C7_03070C_A; TPK1: C1_10220C_A; TPK2: C2_07210C_A;
CDC25: C3_03890W; IRA2: C1_12450C_A; TFS1: C5_00930C_A; GPBI1: C4_02150C_A;
NDH51: C2_04550C_A; SDH1: C1_05260C_A; AOX1-A: C1_09160W_A; AOX1I-B:
C1_09150W_A; COX4: C2_01620W_A; SNF4: C6_03920W_A; NRGI: C7_04230W_A;
UMES6: C1_06280C_A; EFG1: CR_07890W_A; TUPI: C1_00060W_A; SSN3: C2_04260W_A
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Supporting Information

S1 Fig. MB effects on cell morphology. Cells were grown for 24 h on (A) YNBAGNP or (B)
YPD +5% serum at 37°C in spot colonies before imaging. Microscopy pictures of CAF2 in (A)
are identical to images shown in Fig 4C. Scale bar = 10 um.

(TTF)

S2 Fig. MB effects on Rasl signaling also occur in liquid media and on YPD, and are not
due to growth inhibition. (A) Microscopy images and Western blot analysis of WT (CAF2)
grown in liquid YNBAGNP media for 12 hours at 37°C. Scale bar = 100 pum. (B) Growth of C.
albicans strain NRGI-OE in the presence of different concentrations of MB. Data represents
the mean and SD of three biological replicates grown in liquid YNBAGNP at 37°C. (C) Smooth
colony morphology (consisting of yeast only) in the presence and absence of MB at yeast
growth conditions (30°C; YNBGP; 24 h). (D) WT (CAF2) grown on YPD +5% serum with and
without MB (see S1B Fig for cellular morphology). Western blot analysis of total Rasl and
GTP-Rasl levels shown. Cells were grown for 24 h at 37°C (E) Microscopy images and Western
blot analysis of WT (CAF2) grown in liquid YPD +5% serum media for 12 hours at 37°C. Scale
bar = 100 pm. (A), (D), and (E) Percent of the GTP-Ras1/total Ras1 ratio compared to WT
control conditions is shown.

(TIF)

S3 Fig. Loss of mitochondrial ETC complex II or the alternative oxidase has no effect on
Rasl GTP-binding or the decrease of GTP-Rasl1 levels by MB (A) (B) Colony morphology
and western blot analysis of the WT (CAF2), sdh1/sdh1 (complex II), and aox1/aox1 aox2/
aox?2 (alternative oxidase) strains grown on YNBAGNP for 24 h at 37°C with and without MB
are shown. (B) Western samples were run on the same gel. Percent of the GTP-Ras1/total Ras1
ratio compared to WT control conditions is shown.

(TIF)

S4 Fig. MB effects on Rasl signaling in an efgl/efgl mutant. (A) Western blot analysis and
(B) intracellular ATP measurements comparing WT (CAF2) with the yeast locked efgl/efgl
strain are shown. Cells were grown on YNBAGNP for 24 h at 37°C with and without MB. (A)
Percent of the GTP-Ras1/total Rasl ratio compared to control conditions is reported. (B)
Mean + SD are shown. *p<0.05.

(TIF)

S5 Fig. Schematic of changed metabolites in cells exposed to PYO, AA, MB compared to
vehicle treated cells. Data represent a subset of metabolites changed. See S1 Table for the com-
plete data set.

(TIF)

S6 Fig. Decreased Rasl activation by MB is independent of Rasl1 localization. Colony mor-
phology and western blot analysis of WT (CAF2), ras1/rasl +ras1A67, and rasl/rasl +rasIN-
term are shown. Percent of the GTP-Rasl/total Ras1 ratio compared to WT control conditions
is shown. Cells were grown on YNBAGNP for 24 h at 37°C with and without MB.

(TTF)

S7 Fig. Decreased GTP-Rasl levels are independent of the Ira2 inhibitor Tfs1, the Ira2 sta-
bilizer Gpb1, or either of the two PKA subunits. (A) (B) (C) Colony morphology and west-
ern blot analysis of total Ras1 and GTP-Rasl in the WT (BWP17, CAF2), #fs1/tfs1_9, tfs1/
tfs1_21, gpbl/gpbl, tpkl1/tpkl, and tpk2/tpk2 strains are shown. Cells were grown on
YNBAGNP for 24 h at 37°C with and without MB. (B) Western samples were run on the same
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gel. Percent of the GTP-Ras1/total Rasl ratio compared to control conditions is reported. Per-
cent of the GTP-Rasl/total Rasl ratio compared to WT control conditions is shown.
(TIF)

§1 Table. Metabolomics analysis of C. albicans with MB, AA, or PYO compared to vehicle
control.
(XLSX)

S2 Table. Strains used in this study.
(DOCX)

S3 Table. Plasmids used in this study.
(DOCX)

S$4 Table. Sequences of primers used in this study.
(DOCX)
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