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Brain derived neurotrophic factor (BDNF) is well recognized for its neuroprotective
functions, via activation of its high affinity receptor, tropomysin related kinase B
(TrkB). In addition, BDNF/TrkB neuroprotective functions can also be elicited indirectly
via activation of adenosine 2A receptors (A2aRs), which in turn transactivates TrkB.
Evidence suggests that alterations in BDNF/TrkB, including TrkB transactivation by
A2aRs, can occur in several neurodegenerative diseases, including amyotrophic lateral
sclerosis (ALS). Although enhancing BDNF has been a major goal for protection of
dying motor neurons (MNs), this has not been successful. Indeed, there is emerging
in vitro and in vivo evidence suggesting that an upregulation of BDNF/TrkB can cause
detrimental effects on MNs, making them more vulnerable to pathophysiological insults.
For example, in ALS, early synaptic hyper-excitability of MNs is thought to enhance
BDNF-mediated signaling, thereby causing glutamate excitotoxicity, and ultimately MN
death. Moreover, direct inhibition of TrkB and A2aRs has been shown to protect MNs
from these pathophysiological insults, suggesting that modulation of BDNF/TrkB and/or
A2aRs receptors may be important in early disease pathogenesis in ALS. This review
highlights the relevance of pathophysiological actions of BDNF/TrkB under certain
circumstances, so that manipulation of BDNF/TrkB and A2aRs may give rise to alternate
neuroprotective therapeutic strategies in the treatment of neural diseases such as ALS.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS), the most common form of motor neuron disease (MND), is
a fatal adult onset neurodegenerative disease resulting in progressive and preferential degeneration
and death of upper motor neurons (UMNs, corticospinal neurons) of the motor cortex, and alpha
lower motor neurons (LMNs) of the brain stem and the spinal cord (Cleveland and Rothstein,
2001; Turner et al., 2013). The incidence of ALS is 1.7 per 100,000 people each year (Pasinelli and
Brown, 2006; Marin et al., 2017; Sandstedt et al., 2018). Only 10% of all ALS cases exhibit familial
inheritance (fALS) (Turner et al., 2013) while the remaining 90% are sporadic (sALS). Mutations in
the gene encoding Cu/Zn superoxide dismutase 1 (SOD1) were the first to be identified as a primary
ALS mutation (Rosen et al., 1993) and have been also the most characterized, with several widely
used mouse models of SOD1 mutations (Gurney et al., 1994). Overall, SOD1 mutations account for
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20% of fALS and 1–2% of sALS, with more than 180 mutations
identified within the SOD1 gene (Hayashi et al., 2016).

Despite decades of research, the pathogenic mechanism
underlying death of UMNs and LMNs is still unclear.
Numerous etiologies have been proposed, including oxidative
stress, mitochondrial dysfunction, protein aggregation, RNA
processing, autophagy, and glutamate excitotoxicity (Chico et al.,
2017). Glutamate excitotoxicity, the focus of this review, results
from a disruption of the finely tuned cellular response to
input stimuli, resulting in excessive glutamate release from
the pre-synaptic neuron, delayed clearance from the synaptic
cleft or increased responsiveness by glutamate receptors post-
synaptically (Rothstein et al., 1992; Hayashi et al., 2016). Excessive
release of glutamate induced by Ca2+ dysregulation within the
pre-synaptic compartment (Van Den Bosch et al., 2006; King
et al., 2016), causes a prolonged state of activation of postsynaptic
glutamate N-methyl-D-aspartate (NMDA) and alpha-amino-3-
hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. In
addition to this, the Ca2+ buffering capacity of MNs in ALS is
weakened at an early age, with impairment of the Ca2+ ATPase
and Na+/Ca2+ exchanger adding to the cytoplasmic Ca2+ load
(DeJesus-Hernandez et al., 2011; Sirabella et al., 2018). Enhanced
post-synaptic glutamate receptor activation is physiologically
observed as synaptic hyper-activity of upper and lower MNs (van
Zundert et al., 2008; Fogarty et al., 2015). Hyper-activity also
raises the level of intracellular Ca2+ within the post-synaptic MN,
potentially creating a toxic intracellular environment that can
cause cell death (Le Masson et al., 2014; Figure 1).

Amyotrophic lateral sclerosis progresses relentlessly and,
without effective intervention, 50% of the patients die within 3
to 5 years post-diagnosis, due to loss of their respiratory MNs
(i.e., respiratory failure) (Brown and Al-Chalabi, 2017). The only
FDA approved treatments so far are riluzole, which acts to reduce
the release of glutamate and hence lower neuronal excitotoxicity
(Bellingham, 2013b), and edaravone, an anti-oxidant compound.
Unfortunately, riluzole only marginally enhances survival by a
few months (Bensimon et al., 1994; Fang et al., 2018). In 2017
after more than 20 years, a second drug Radicava (edaravone)
has been FDA approved to treat ALS; thus far, edaravone has
also only been shown to slow the rate of clinical progression
in ALS (Abe et al., 2014). This slow development of new
treatments highlights the need to better understand the cellular
and molecular mechanisms of ALS, so as to develop effective
combination therapies to ameliorate this multi-factorial disease.

In addition to neuronal hyper-excitability in neuromotor
circuits in ALS, the level of neuronal activity strongly influences
the modification of neuronal circuits in the developing
CNS, by stabilizing and strengthening coincident inputs and
refining/removing weaker inputs (Goodman and Shatz, 1993;
Stevens et al., 2007; Kutsarova et al., 2016). This developmental
plasticity initially depends on the release of neurotransmitters
from the pre-synaptic neuron (Andreae and Burrone, 2018),
and thus factors that increase pre-synaptic activity will also
increase synaptic plasticity. In ALS, upper and lower MNs in
animal models of ALS have been shown to exhibit synaptic
hyper-activity (van Zundert et al., 2008; Fogarty et al., 2015).
In the case of lower MNs, hyperactivity of upper MNs could

in turn result in enhanced glutamate release from their nerve
terminal boutons at their synapses with lower MNs (Figure 1).
Excessive release of glutamate from these pre-synaptic inputs
onto lower MNs could lead to their death by excitotoxicity
(King et al., 2016). Similar mechanisms may also operate for
excitable synaptic connections made onto upper and lower
MNs from other pre-motor excitatory inputs (van Zundert
et al., 2008). To complicate matters, changes in neuronal circuit
activity outside of what is considered a “normal physiological
range” (i.e., “hyper-excitability;” Bae et al., 2013), can induce
compensatory effects termed “synaptic homeostasis” (Turrigiano,
2012). For example, in SOD1G93A ALS model mice, while
upper MNs have been shown to be hyper-active prior to their
death, these neurons display reductions in dendritic length and
spine density, suggesting a homeostatic response to heightened
pre-synaptic activity (Fogarty et al., 2015; Saba et al., 2016).
Alternatively, these morphological reductions may simply reflect
the stressed state of the neurons as it progresses to death (Fogarty
et al., 2016). Together these observations suggest that abnormal
neuronal activity and death of upper and lower MNs in ALS are
directly linked.

What might be the mechanism(s) that links abnormal
neuronal activity to neuronal death? One proposed mechanism
is the activity-dependent synthesis and release of neurotrophins
(McAllister et al., 1996; Du et al., 2003; Cunha et al., 2010).
Neurotrophins are secreted proteins and potent regulators
of neuronal development, survival, neurogenesis and synaptic
plasticity (Huang and Reichardt, 2001). They have long been
targeted as prospective therapeutic agents for the treatment of
neurodegenerative disorders, including ALS. The neurotrophin
family constitutes nerve growth factor (NGF), brain derived
neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and
neurotrophin-4/5 (NT-4/5). Amongst these, BDNF is abundantly
expressed in the developing and adult nervous system (Murer
et al., 2001) and has been extensively studied for its roles in
neuronal survival (e.g., MNs) (Ringholz et al., 2005; Pansarasa
et al., 2018), along with its ability to increase the release of
glutamate at glutamatergic synapses (Rao and Finkbeiner, 2007;
Mattson, 2008). Given these proposed roles for BDNF, namely its
neurotrophic and possible neurotoxic roles, it becomes apparent
that regulation of BDNF could open up new therapeutic strategies
in the treatment of neurodegenerative disorders. This review
focuses on the biology of BDNF and its proposed neurotrophic
and neurotoxic roles in the pathogenesis and treatment of ALS.

BIOLOGY OF BDNF: FROM SYNTHESIS
TO SECRETION

Brain derived neurotrophic factor is a member of the family
of growth factors and was initially purified from pig brain
(Barde et al., 1982). The expression of BDNF in human, rat and
mouse is encoded by a single BDNF gene, whose transcription
is regulated by several promoters (Sasi et al., 2017). The human
BDNF gene consists of eleven 5′ untranslated (UTR) exons,
compared to 9 exons found in rodents (rats and mice), and
only one 3′ coding exon. These exons initiate transcription at
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FIGURE 1 | Schematic diagrams showing the regulation of glutamatergic synaptic transmission at upper and lower MN synapses in normal and SOD1G93A mice.
The arrival of the action potential (step 1), triggers the influx of Ca2+ ions into pre-synaptic terminal (step 2), the rise in intracellular calcium (step 3) in turn triggers
the fusion of synaptic vesicles with the pre-synaptic membrane to release glutamate (light purple dots) from the terminal (step 4). Binding of glutamate to its
postsynaptic receptors (NMDA, green; and AMPA, magenta; step 5), leads to the influx of Ca2+ ions. During this process, concentration of glutamate within the
synaptic cleft is reduced by the uptake of glutamate into Astrocytes (orange star shaped cells) via EAAT2 glutamate transporters (pink; step 6). Within the
post-synaptic neuron the influx of Ca2+ via glutamatergic receptors plus voltage gated Ca2+ channels, along with an influx of sodium (Na+) ions lead to the
activation of the postsynaptic neuron (step 7). The subsequent lowering of Ca2+ post-synaptic transmission is managed by extrusion of calcium via ATP pumps
(PMCA pumps) and Na+/Ca2+ exchanger (NCX), plus calcium uptake into intracellular stores (ER and mitochondria) (Chio et al., 2012). The right panel shows the
pathogenesis of glutamate induced excitotoxicity in ALS. Excessive glutamate released in the synaptic cleft triggers increased activation of the post-synaptic
glutamate receptors (NMDA and AMPA receptors). This effect is enhanced due to dysfunctional glutamate transporters (EAAT2; step 6, right panel, red dashed
arrow), which lengthen the persistence of glutamate within the synaptic cleft (step 7, right panel), which further activates glutamatergic receptors. Impaired
Na+/Ca2+ exchanger and ATP pumps in SOD1G93A mice results in enhanced Ca2+ intracellularly (DeJesus-Hernandez et al., 2011; Sirabella et al., 2018).
Generation of reactive oxygen species (ROS) causes neuronal membrane peri-oxidation impairing the glutamate transporters (EAAT2). The enhanced activation of
these receptors leads to increased Ca2+ overload (step 8, right panel) in the post-synaptic neuron, which in turn leads to mitochondrial dysfunction (step 9, right
panel), oxidative stress (step 10, right panel), and generation of reactive oxygen species (ROS) ultimately leading to motor neuron death (step 11, right panel).

the ATG start codon by alternate splicing to produce 17 BDNF
mRNA transcripts and 9 BDNF 5′ promoters (Aid et al., 2007;
Pruunsild et al., 2007). The transcription of BDNF is neuronal
activity-dependent and regulated by membrane depolarization.
An increase in intracellular calcium (Ca2+) concentration via
activation of NMDA glutamate receptors or L-type voltage gated
calcium channels (L-VGCC) following a depolarizing stimulus
initiates transcription of the BDNF gene, predominantly at exon
IV (Tao et al., 1998; Zheng et al., 2011). The promoter of
BDNF exon IV contains Ca2+ response elements (CaRE) –
CaRE1 and CaRE3, which regulate transcription (Tao et al., 1998;
Hong et al., 2008; Zheng et al., 2011). Cyclic AMP responsive
element binding protein (CREB), a transcription factor, binds to
these CaREs, which are phosphorylated by calcium/calmodulin
(CaM)-dependent protein kinases, cAMP-dependent protein
kinases and MAPK, activating the promoter and resulting in
Ca2+ dependent transcription of BDNF mRNA at exon IV
(Zheng et al., 2011).

Alternate splicing terminates transcription at two alternate
polyadenylation points which shift the translation sites,
giving rise to two distinct BDNF mRNA populations into
specific neuronal compartments, allowing spatial and temporal
translocation (Pruunsild et al., 2007; Notaras and van den
Buuse, 2018). The short UTR BDNF transcripts are localized
in the soma and maintain basal activity-dependent BDNF
production. The long UTR BDNF transcript is targeted to
the dendrites and displays robust translation on neuronal
activation (An et al., 2008; Lau et al., 2010). BDNF localization
is mostly somatodendritic (59%) within dense core vesicles
(Tongiorgi, 2008; Dieni et al., 2012) with only 29% targeted to
the dendrites (Adachi et al., 2005). The specific compartmental
translation of BDNF mRNA at long or short 3′ UTR is also
aided by binding to numerous microRNAs such as miR-
30, resulting in degradation of BDNF transcripts (Bartel,
2004; Mellios et al., 2008) and negative regulation of BDNF
synaptogenesis (Shi, 2015).
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Translation of these distinct alternate BDNF mRNA
transcripts gives rise to the precursor pre-pro BDNF in the
endoplasmic reticulum (Foltran and Diaz, 2016; Kowianski et al.,
2018), consisting of a signal peptide after the initiation codon
and N-glycosylation site on the pro region. It is then translocated
to the Golgi apparatus, where the signal peptide pre-sequence is
cleaved off to form pro-BDNF (30 kDa) (Lessmann et al., 2003).
The pro-BDNF is then further processed either intracellularly
or extracellularly, via the Golgi apparatus, into the trans-Golgi
network (TGN) where the pro domain is proteolytically cleaved
off to form pro-domain and mature BDNF and is secreted into
the extracellular space (hence forth termed “BDNF”) (Foltran
and Diaz, 2016; Kowianski et al., 2018; Figure 2). The pro
domain has been identified as an independent ligand itself and
encodes the single nucleotide polymorphism of methionine to
valine substitution at position 66 in the BDNF gene (Egan et al.,
2003; Dieni et al., 2012; Notaras and van den Buuse, 2018).
Intracellular cleavage of pro-BDNF in the TGN occurs via furin,
while its cleavage to form BDNF in secretory vesicles requires
convertases. The final molecular weight of BDNF is 14 kDa,
consisting of 119 amino acids (Lu et al., 2005). The pro-BDNF
is also secreted extracellularly, and then cleaved by proteases
such as plasmin and metalloproteinases (MMP2 and MMP9) to
form BDNF (Hwang et al., 2005; Mizoguchi et al., 2011). The
extracellularly secreted pro-domain, pro-BDNF and BDNF are
all biologically active and perform their various physiological
functions (Figure 2).

The packaging and secretion of pro domain, pro-BDNF
and BDNF from within the TGN into dense core secretory
vesicles occurs via the constitutive secretory pathway and a
preferential tightly controlled regulated pathway (Goodman
et al., 1996; Lu, 2003; Brigadski et al., 2005). BDNF is secreted
both pre- and post-synaptically, and undergoes anterograde and
retrograde transport via autocrine and paracrine mechanisms
(Cunha et al., 2010). These mechanisms modulate synaptic
transmission and synaptogenesis (Cunha et al., 2010) via Ca2+-
dependent mechanisms. BDNF is secreted pre-synaptically via
increased intracellular influx of Ca2+ (Balkowiec and Katz,
2002). Post-synaptically, the secretion of BDNF is by regulated
activity-dependent increases in Ca2+, entering via ionotrophic
glutamate receptors and voltage-gated Ca2+ channels (Hartmann
et al., 2001), or Ca2+ release from intracellular stores (Griesbeck
et al., 1999) and release occurs via endosome like vesicles where
exogenous BDNF is recycled (Sasi et al., 2017). Altogether, the
above described synthesis, processing and secretion of BDNF
gives rise to three functionally active proteins: the pro domain
of BDNF, pro-BDNF and BDNF (mature BDNF) (Figure 2;
Hempstead, 2015). Once released, they interact with their
respective receptors to exert their distinct physiological functions.

BDNF ISOFORMS AND THEIR
RECEPTORS

The three products of the BDNF gene bind to specific receptors
and regulate distinct biological functions. The pro-domain of
BDNF binds to sortilin, a member of vacuolar protein sorting 10

protein (vps10p) of the sorting receptor family (Teng et al., 2005;
Anastasia et al., 2013) to trigger specific functions in developing
and adult neurons. The pro-domain acts by inducing growth cone
retraction (Anastasia et al., 2013), facilitating long term synaptic
depression (LTD) in developing neurons (Mizui et al., 2016),
and modulating synaptic spine density and neuronal network
plasticity via a cytochrome c caspase-3 mechanism in adult
neurons (Guo et al., 2016). The pro-BDNF, comprising of the
pro-domain and mature domain, act via preferential interactive
binding to p75, a member of the tumor necrosis factor receptor
family, and sortilin receptors, respectively (Teng et al., 2005;
Kowianski et al., 2018) and with lower affinity binding to TrkB.
The binding of pro-BDNF/p75/sortilin initiates the activation of
c-Jun amino terminal kinase (JNK), Ras homolog gene family
member A (RhoA), and nuclear factor kappa B (NF-κB) cascade
(Reichardt, 2006; Anastasia et al., 2013; Kowianski et al., 2018).
These signaling cascades (JNk, Ras, and NF-κB) in turn trigger
a number of diverse cellular and morphological outcomes, such
as neuronal apoptosis (Teng et al., 2005), neuronal growth cone
development, and neuronal survival (Reichardt, 2006).

The third product, BDNF, binds with high affinity to TrkB
of the Trk family of tyrosine kinases and with lower affinity
to the p75 receptor (Chao and Hempstead, 1995; Reichardt,
2006). Activation of these two receptors is responsible for
BDNF’s known functions. In brief, BDNF/TrkB activation aids
in neurogenesis, gliogenesis, neurite outgrowth, and enhanced
neuronal survival (Huang and Reichardt, 2001; Vilar and Mira,
2016). In developing neuronal circuits, BDNF acts to regulate
dendritic arborization and spine formation (Deinhardt and
Chao, 2014; Gonzalez et al., 2016), and enhances long term
synaptic potentiation (LTP) (Park and Poo, 2013; Leal et al.,
2015). In mature neurons, BDNF is also required to sustain
viability (Alcantara et al., 1997). BDNF mediates opposing
actions on binding to the p75 receptor; while BDNF/TrkB
enhances neuronal excitability and synaptic strength, BDNF/p75
acts to decrease excitability and synaptic strength and induce
neuronal plasticity (Sasi et al., 2017), initiating JNK (Reichardt,
2006; Anastasia et al., 2013; Kowianski et al., 2018), triggering
neuronal apoptosis (Teng et al., 2005), and NF-κB cascade
regulating of neuronal growth cone development and navigation
and neuronal survival. The TrkB and p75 receptor have
somadendritic distribution (Bronfman and Fainzilber, 2004),
where TrkB is localized to the pre- and post-synaptic membranes
and intracellularly (Gomes et al., 2006; Song et al., 2017).

Brain derived neurotrophic factor undergoes slow exocytosis
(Brigadski et al., 2005) following depolarization and stimulation
of glutamate receptors (Righi et al., 2000; Kohara et al.,
2001). Thus, activity-dependent BDNF secretion can be induced
by numerous stimuli including high potassium, glutamate
and the neurotrophin itself, dependent on intracellular Ca2+

increase (Blochl and Thoenen, 1995; Goodman et al., 1996;
Canossa et al., 1997).

The TrkB Receptor
The TrkB receptor is encoded by a single TrkB gene, the
NTRK2 gene encoding 24 exons located on chromosome 9q22
(Schneider and Schweiger, 1991; Nakagawara et al., 1995). TrkB
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FIGURE 2 | Schematic presentation of BDNF synthesis from translation, intracellular processing through to its secretion. BDNF is synthesized from the BDNF gene
in a multi-step process. Intracellularly, the pre-pro BDNF is produced in the endoplasmic reticulum which is then translocated toward the Golgi apparatus, where the
pre-sequence is cleaved off to form pro- BDNF. The pro-BDNF is further processed, via the Golgi apparatus, into the trans-Golgi network (TGN) where the pro
domain is cleaved off by proteases to form mature BDNF (BDNF). The pro-BDNF is proteolytically cleaved by furin or convertase and is intracellularly secreted as
BDNF. Both pro-BDNF and BDNF are preferentially grouped and packaged into secretory dense core-vesicles and secreted extracellularly via exocytosis. The
extracellularly secreted pro-BDNF is then processed and catalyzed by proteases such as plasmin and metalloproteinases (MMP2 and MMP9) to form BDNF. As a
result, three functionally active isoforms, namely pro-domain, pro-BDNF and BDNF are secreted extracellularly. Adapted from Kowianski et al. (2018).

consists of three domains: – an extracellular ligand binding
domain, a transmembrane domain and an intracellular tyrosine
kinase domain. One full- length TrkB (TrkB) contains an
extracellular transmembrane domain, consisting of a cysteine
rich cluster followed by 3 leucine repeats, a cysteine cluster
followed by 2 immunoglobulin (Ig1 and Ig2) domains; and
an intracellular cytoplasmic tyrosine kinase domain acting
as a phosphorylation dependent docking site (Schneider and
Schweiger, 1991; Tejeda and Diaz-Guerra, 2017). The Ig
domain in exon 12 directs binding specificity to its ligand,
BDNF. Exon 15 encodes the transmembrane domain, and exon
20–24 the intracellular tyrosine kinase domain (Middlemas
et al., 1991). The first five exons serve as the transcription
initiation sites and display alternate splicing patterns (Stoilov
et al., 2002). Exon five also serves as a ribosomal entry
site, directing the start of translation and producing four

isoforms of TrkB receptors in humans (Luberg et al., 2010;
Sasi et al., 2017). Other splice variants are two truncated
TrkB (TrkB-T1) isoforms, TrkB-T2, TrkB- Shc lacking tyrosine
kinase domain, and a TrkB-TK with a non-viable catalytic
domain. Truncated TrkB receptors (TrkB-T1 and TrkB-T2)
are the product of alternate splicing at exon 18. These
TrkB isoforms are activated on binding to BDNF to initiate
downstream signaling.

BDNF/TrkB
Brain derived neurotrophic factor binds to the TrkB receptor,
both TrkB-T and TrkB (full length) with similar affinity
(Sasi et al., 2017). Exactly how TrkB receptor isoforms
coordinate and produce a precise cellular and biological
function is not yet clearly understood. BDNF binding to the
TrkB-T isoform has been identified as a dominant negative
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pathway (Fenner, 2012; Notaras and van den Buuse, 2018).
More recently, the TrkB-T receptor has also been reported
to have functions apart from dominant negative regulation,
including the following: metabolite release (Baxter et al.,
1997; Fenner, 2012); BDNF sequestration and translocation
(Fryer et al., 1996); filopodia and neurite outgrowth (Fryer
et al., 1997; Yacoubian and Lo, 2000; Fenner, 2012); and
astrocytic cytoskeletal remodeling via Rho GTPase (Ohira et al.,
2006; Fenner, 2012). Additionally, alterations in expression
of TrkB-T has also been shown to alter neuronal viability,
resulting in neurodegeneration (Vidaurre et al., 2012), indicating
a biological function of TrkB-T. However, the mechanism
driving the function of TrkB-T is not well understood. Given
that this review focusses on the interaction of BDNF with
the TrkB receptor, the following sections will only address

BDNF-TrkB interactions together, independent of BDNF’s non-
TrkB functions.

Binding of BDNF to TrkB initiates two different categories
of cascades: a fast acting BDNF/TrkB cascade that excites
neurons or a slow acting occurring over minutes to hours. The
action of BDNF markedly differs between these two categories
(Kafitz et al., 1999; Ji et al., 2010). Additionally, evidence
suggests that the well-studied effect of BDNF/TrkB on cell
survival and plasticity are mediated by TrkB-FL (Klein et al.,
1993; Carim-Todd et al., 2009). Once BDNF binds to TrkB,
ligand-mediated dimerization of the complex occurs at the cell
surface, followed by autophosphorylation of specific tyrosine
residues in the cytoplasmic domain, leading to activation of
three interconnected intrinsic intracellular cascades (Chao, 2003;
Cunha et al., 2010; Figure 3).

FIGURE 3 | Intrinsic intracellular signaling cascades of BDNF-TrkB and TrkB-A2a receptors. BDNF-TrkB activation predominantly initiates MAPK, PI3K, and PLC γ

signaling pathways. Activation of the TrkB receptor at its Tyr490 and Tyr515 residue recruits Shc adaptor protein leading to binding of growth factor receptor bound
protein 2 (grb2) which binds with GTPase Ras to form a complex and initiate extracellular signal regulated kinase (ERK) activation which in turn activates the mitogen
activated protein kinase MAPK/ERK pathway, which results in the activation of CREB transcription factor. Activation of Tyr515 residue also activates the PI3K
signaling pathway, incorporating combined actions of Ras and activating the PI3/Akt and MEK/MAPK pathways. Both MAPK and PI3K signaling exert neurotrophic
functions of survival, growth and differentiation, via activation transcription factors (CREB and C-myc). Phosphorylation of the TrkB receptor at its Tyr816 residue
activates the phospholipase C γ (PLC γ) pathway, generating inositol-1, 4, 5-triphosphate (IP3) and diacylglycerol (DAG). The PLCγ/IP3 pathway results in calcium
release from intracellular stores, in turn activating Ca2+/CaMKII. DAG activates PKC, leading to synaptic plasticity. pro-BDNF/p75 initiates JNK signaling (Reichardt,
2006; Anastasia et al., 2013; Kowianski et al., 2018) triggering neuronal apoptosis (Teng et al., 2005), and the NF-κB signaling cascade regulation of neuronal growth
cone development and navigation, and neuronal survival. Like BDNF, neuronal activity promotes release of adenosine which binds to A2aRs to activate adenylyl
cyclase leading to production of cAMP further activating PKA downstream which controls Ca2+ dependent BDNF release. Activation of A2aRs also transactivates
TrkB, initiating the TrkB-Akt pathway promoting neuronal survival.
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THE MAPK PATHWAY

Activation of the TrkB receptor at its Tyr490 and Tyr515 residue
causes the docking of Shc adaptor protein (Src- homology 2-
domain) at these tyrosine sites and recruits growth factor receptor
bound protein 2 (grb2) which binds with GTPase Ras to form
a complex, and initiates extracellular signal regulated kinase
(ERK) activation (Wheaton et al., 2007). ERK activation in
turn activates the mitogen activated protein kinase MAPK/ERK
pathway. MAPK/ERK kinases are able to phosphorylate and
activate the transcription factor cAMP response element binding
protein (CREB) (Huang and Reichardt, 2003; Begni et al.,
2017). The phosphorylated CREB is then translocated into the
nucleus, where it induces BDNF transcription by binding to
BDNF promoters (Shaywitz and Greenberg, 1999). Binding to
BDNF promoters drives BDNF expression to regulate neuronal
survival, differentiation and synaptic plasticity (Patapoutian and
Reichardt, 2001). In addition, this activation of BDNF expression
induces activation of AMPA receptors on stimulation by BDNF
(Song et al., 2013).

THE PI3K PATHWAY

Activation of the PI3K pathway incorporates combined actions
of Ras at the Tyr515 residue, which activates multiple cascades,
namely the PI3/Akt and MEK/MAPK pathways. Activation of
the PI3K/Akt cascade regulates proteins such as BAD (Bcl-2
antagonist of cell death) and GSK-3β (glycogen synthase kinase
3β), essential for neuronal survival, growth and differentiation,
and is activated by Ca2+ influx via L-type voltage gated
calcium channels (L-VGCC) (Brunet et al., 2001). Activation of
mammalian target of rapamycin (mTOR) by BDNF also enhances
local BDNF translation to dendrites at active synapses via the
PI3K pathway (Schratt et al., 2004).

THE PLC γ PATHWAY

The phosphorylation of the TrkB receptor at its Tyr816
residue activates the phospholipase C γ (PLC γ) pathway,
generating inositol-1,4,5-triphosphate (IP3), and diacylglycerol
(DAG) which is important for survival, neurite outgrowth
and synaptic plasticity. BDNF via the PLCγ/IP3 pathway
results in calcium release from intracellular stores activating
CaMKII (Ca2+/calmodulin dependent protein kinase) which
in turn activates CREB phosphorylation (Minichiello et al.,
2002; Tejeda and Diaz-Guerra, 2017). The generation of
DAG on the other hand, activates PKC (Bellingham, 2013a)
which is translocated to the membrane for further activation
and phosphorylation of ERK leading to synaptic plasticity
(Minichiello et al., 2002; Chao, 2003).

The BDNF-TrkB complex not only activates on its
transmembrane surface (described above) but it also internalizes
via endosomes (both early and late endosomes) to activate
downstream pathways. This BDNF-TrkB signaling via endosome
also determines the cellular fate of BDNF-TrkB complexes,

which can be transported retrogradely, recycled back to
the membrane, or prepared for degradation by lysosomes
(Yamashita and Kuruvilla, 2016).

BDNF: ROLE IN SYNAPTIC
TRANSMISSION

Synaptic transmission is a highly complex trans-neuronal
process, occurring at the synapse between a pre-synaptic
(axonal) terminal and a post-synaptic (typically dendritic)
membrane. BDNF elicits rapid effects on synaptic transmission
and membrane excitability, via activation of pathways in
both the pre- and post-synaptic compartments. In the pre-
synaptic compartment, BDNF causes release of glutamate
and GABA, via the TrkB-ERK mediated pathway (Jovanovic
et al., 2000). Enhanced glutamate release at glutamatergic
synapses is mediated by an increase in docked vesicles at
presynaptic active zones (Tyler and Pozzo-Miller, 2001). For
example, BDNF application to hippocampal and cortical
neuron cultures (Levine et al., 1995; Lessmann, 1998) and
slice preparations (Kang and Schuman, 1995; Kang et al.,
1997) potentiates excitatory neurotransmission, increasing
glutamate release. Consequently, BDNF application onto brain
slices induces hyper-excitability (Scharfman, 1997), which is
consistent with observations in transgenic mice over-expressing
BDNF (Croll et al., 1999). In the post-synaptic compartment,
BDNF can also enhance synaptic responses by increasing
the open probability of NMDA glutamate receptors (Rose
et al., 2004). Hence, in the context of ALS, the increased
neuronal activity observed in hSOD1G93A mice is capable
of increasing BDNF secretion, which in turn can increase
release of glutamate to trigger excitotoxicity, leading to MN
degeneration. Indeed, BDNF has been shown to enhance MN
death by glutamate excitotoxicity, via activation of TrkB (Hu
and Kalb, 2003; Mojsilovic-Petrovic et al., 2006). Together,
these observations highlight a possible role for BDNF in the
death of MNs in ALS.

MECHANISMS OF BDNF-MODIFIED
NEUROTRANSMISSION

Brain derived neurotrophic factor also modifies
neurotransmission by altering the expression of pre-synaptic
proteins that regulate neurotransmitter release (Andreae
and Burrone, 2018). For example, in BDNF deficient mice,
decreased synaptic transmission correlates with a drop in the
number of docked synaptic vesicles (Carter et al., 2002). This is
also correlated with decreases in synapsin, synaptophysin and
synaptobrevin – presynaptic proteins required for vesicle docking
and exocytosis at release sites (i.e., active zones) (Martinez et al.,
1998; Pozzo-Miller et al., 1999; Jovanovic et al., 2000). These
physiological and molecular changes are also present in TrkB
knockout mice (Martinez et al., 1998). Thus, BDNF can stimulate
synaptic transmission via three mechanisms: (1) increasing the
number of synaptic vesicles at the active zone, (2) increasing the
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postsynaptic receptor response, and (3) increasing the overall
number of synapses per neuron (Bradley and Sporns, 1999).

TrkB RECEPTOR CAN BE ACTIVATED
INDEPENDENT OF BDNF

Tropomysin related kinase B receptor is capable of
autophosphorylation and activation of downward cascades
independent of its ligand, BDNF. Activation of TrkB receptors
in the absence of BDNF occurs via a mechanism known as
trans-activation, which involves specific G protein coupled
receptors (GPCR), such as the A2a adenosine receptor (A2aR)
present both pre- and post-synaptically (Chao, 2003; Sebastiao
et al., 2018). Adenosine is a key neuromodulator produced
both extracellularly and intracellularly in neurons and glial cells
(Moreau and Huber, 1999). Extracellularly, it is produced by
ectonucleotidase degradation of ATP released by neurons and
astrocytes, and intracellularly by production during breakdown
of ATP during high energy demand, followed by transport into
the extracellular space (Jacobson and Gao, 2006). Adenosine
directly regulates synaptic transmission and plasticity, as well
as modulating neurotransmission and neurotrophins (Sebastiao
and Ribeiro, 2009). Pre-synaptically the activation of A2aRs
increases the release of glutamate (Ciruela et al., 2010; Cunha,
2016) and the activation of NMDA receptors (Azdad et al., 2009;
Higley and Sabatini, 2010; Sarantis et al., 2015), thus facilitating
LTP. Transactivation of TrkB by A2aRs is mediated by the Src
family of protein, such as Fyn (Lee and Chao, 2001), in a slow
acting cascade occurring over minutes to hours. TrkB/A2aR
interaction allows transactivation of a downstream protective
TrkB-Akt pathway (Mojsilovic-Petrovic et al., 2006). Post-
synaptic activation of A2aRs also triggers calcium dependent
processes, through L-type voltage gated calcium channels and
NMDA receptors, activating adenylyl cyclase and leading to
increased cAMP and PKA phosphorylation, which in turn
influences Ca2+ dependent transcription of BDNF mRNA
(Zheng et al., 2011) and BDNF secretion (Tebano et al., 2010)
(summarized in Figure 3).

A study by Diogenes et al. (2004), demonstrated that BDNF
alone without prior depolarization was devoid of effects on
neurotransmission, while enhancement of synaptic transmission
by BDNF in the hippocampus was facilitated by pre-synaptic
activity-dependent adenosine release via A2ARs. This excitatory
action of BDNF can be blocked by a TrkB inhibitor, an A2AR
antagonist or by a PKA inhibitor, thus indicating that activation
of A2ARs facilitates BDNF modulation of synaptic transmission
(Diogenes et al., 2004). Additionally, the role of A2aRs in
regulating BDNF function was further supported in a study
using A2aR KO mice, which showed no increase in field EPSCs
after BDNF application, whereas in normal hippocampus slices
BDNF induced enhanced field EPSCs and EPSCs, and this effect
was blocked by A2aR blockers, clearly indicating that activation
of A2aRs is required for normal BDNF levels and BDNF’s
potentiation of synaptic transmission (Tebano et al., 2008).
Taking into account the enhanced glutamate present in MNs
in ALS, the A2aRs is considered as a potential neuroprotective

therapeutic agent to ameliorate glutamate induced excitotoxicity
in ALS, reinforcing the significance of TrkB transactivation.

In addition to TrkB transactivation by A2aRs, GPCR mediated
TrkB transactivation also occurs via other mechanisms. For
example, in embryonic cortical neurons TrkB is transactivated
by activation of epidermal growth factor (EGF) leading to
migration of early cortical neurons to form a differentiated
cortical layer (Puehringer et al., 2013). Similarly in striatal
neurons, activation of dopamine 1 (D1) receptors leads to
transactivation of TrkB functioning in axonal growth and
growth cone during neuronal development (Iwakura et al.,
2008). Furthermore, in hippocampal mossy fiber neurons
TrkB is transactivated by zinc, which is secreted along
with glutamate in response to neuronal activity leading
to potentiation of mossy fiber synapses, thus regulating
synaptic plasticity (Huang et al., 2008). Hence, considering the
role of BDNF/TrkB during development and pathological
situations such as in neurodegenerative diseases, TrkB
transactivation offers alternative methods to modulate
BDNF/TrkB, opening new therapeutic avenues for the treatment
of neurodegenerative disorders.

BDNF/TrkB INTERACTS WITH Ca2+ AND
GLUTAMATE

The interplay between BDNF and glutamate has been well
established in many previous studies. Glutamate is a major
excitatory neurotransmitter in the central nervous system (CNS)
known for its activity-dependent interplay with neurotrophic
factors during development and in mature neurons. Post-
synaptically, the effect of glutamate is mediated by activation
of two major ionotrophic glutamate receptors; AMPA receptors
and NMDA receptors (Rao and Finkbeiner, 2007; Mattson,
2008). Pre-synaptic depolarization results in glutamate release,
activation of AMPA and NMDA receptors post-synaptically,
and secretion of BDNF in the extracellular space (Nagappan
and Lu, 2005). BDNF-induced pre-synaptic glutamate release
is mediated via TrkB-ERK signaling (Jovanovic et al., 2000),
and post-synaptic modulation of glutamate receptors occurs by
phosphorylation of the NMDA receptor subunit NR2B (Cunha
et al., 2010). Furthermore, BDNF also enhances AMPA receptor
surface expression, thus increasing post-synaptic responses to
glutamate (Narisawa-Saito et al., 2002; Cunha et al., 2010) – an
effect mediated via ERK (Li and Keifer, 2009). BDNF treatment
also leads to phosphorylation of NMDAR subunit NR1 (Slack
and Thompson, 2002), altering NMDAR localization at synapses
(Gomes et al., 2006).

In addition to these pre- and postsynaptic effects on
glutamatergic transmission, TrkB activation also modulates ion
channels that can alter neuronal excitability, including Na+,
Ca2+, and K+ channels through intracellular cascades (Blum
et al., 2002; Tucker and Fadool, 2002). For example, BDNF/TrkB
activation alters neuronal excitability by gating of Na+ current
via Nav1.9 (Blum et al., 2002). Metabotropic receptors such
as A2aRs also activate TrkB to induce release of intracellular
Ca2+ from ER stores. This in turn activates a PLC cascade to
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generate inositol triphosphate (IP3) which releases Ca2+ from
IP3-sensitive stores, activating PKC.

Considering the interplay between the actions of BDNF
and glutamate, there are several possible avenues leading to
interactions between neuronal activity and BDNF. Synaptic
hyper-excitability and increased intrinsic excitability of
susceptible neurons in ALS are clearly observed in human
patients (Bostock et al., 1998; Mogyoros et al., 1998; Kanai
et al., 2006; Sirabella et al., 2018) and in animal models of ALS
(van Zundert et al., 2008; Fogarty et al., 2015; Sirabella et al.,
2018). The increased firing and synaptic activation of glutamate
receptors would likely result in increased intracellular Ca2+,
enhancing BDNF release, which could trigger further release of
glutamate. This proposed mechanism would perturb the neuron’s
ability to regulate its activity, leading to glutamate excitotoxicity
and neuronal death (Figure 4).

BDNF/TrkB Crosstalk With Inhibitory
Neurotransmission
Considering that the physiological functioning of neurons
requires a balance between excitatory and inhibitory neuro-
transmission, hyper-excitability of MNs in ALS can also result
from reduced inhibition. γ-aminobutyric acid (GABA) and
glycine are the primary neurotransmitters regulating chloride
(Cl−) mediated inhibition in CNS by binding to their post-
synaptic receptors. The strength of synaptic inhibition critically
depends on intracellular Cl− concentration, hence on Cl−
homeostasis (Rivera et al., 1999). A key regulator of Cl−
concentration, the potassium chloride cotransporter (KCC2)
(Rivera et al., 1999) has been shown to be depleted in MNs
(Boulenguez et al., 2010; Fuchs et al., 2010), contributing to
the hyper-excitability of MNs. Furthermore, BDNF/TrkB has
been shown to be associated with KCC2 regulation (Lee-Hotta
et al., 2019) and BDNF/TrkB dependent KCC2 depletion has
also been described in MNs (Fuchs et al., 2010; Lee-Hotta
et al., 2019). Thus, BDNF/TrkB activation down regulates the
expression of KCC2 thereby reducing the Cl− extrusion capacity
in MNs (Rivera et al., 2002, 2004), suppressing Cl− dependent
inhibition which as a result makes the neuron hyper-excitable.
Also, the role of microglia induced synaptic inhibition cannot
be ignored because KCC2 modulation is required to achieve
synaptic balance (Fiumelli and Woodin, 2007; Ferrini and De
Koninck, 2013). Indeed, BDNF is released not only from neurons
but also from microglia, making BDNF/TrkB a major signaling
point of interaction between microglia and neuron (Trang et al.,
2011), eventually affecting Cl− homeostasis (Rivera et al., 2002,
2004; Coull et al., 2005; Zhang et al., 2008). Besides, microglial
activation and dysfunction observed in MNs of ALS mice
contributes to the progression of disease (Brites and Vaz, 2014)
making microglial BDNF a potential actor.

DETRIMENTAL EFFECTS OF BDNF/TrkB
IN ALS

The ability of BDNF/TrkB to promote neuronal survival
and resistance to toxic insults is well characterized

(Kowianski et al., 2018). Several studies documented the
neuroprotective effects of BDNF on glutamate induced
excitotoxicity in vivo (Bemelmans et al., 2006; Henriques
et al., 2010) and functional recovery of motor neurons in vitro
following exogenous BDNF application (Shruthi et al., 2017).
Contrary to the view stated in this review, potentiating BDNF has
been one of the strategies to delay the disease progression of ALS.
The modulation of TrkB via small molecule drug formulations
to enhance BDNF signaling also enhanced neuronal survival
in degenerating neurons in vitro (Guerzoni et al., 2017) and
improved motor function and motor neuron loss in ALS model
mice (Korkmaz et al., 2014). BDNF potentiation has also been
demonstrated to enhance MN survival in vitro (Tsai et al.,
2013) and in other neurodegenerative diseases (Aytan et al.,
2018). Additionally, transactivating TrkB by A2a receptors
has also been reported to enhance survival of MNs in culture
(Komaki et al., 2012). However, despite these neuroprotective
effects observed there is also evidence to show that therapeutic
interventions aimed at enhancing BDNF/TrkB are unable to
promote survival or prevent death of neurons in vivo (The
BDNF Study Group Phase III, 1999; Silani et al., 2001; Pansarasa
et al., 2018). This suggests that the detrimental actions of BDNF
also need to be considered. Under certain circumstances, many
studies report that BDNF/TrkB can exert negative effects on
MN survival, making MNs more vulnerable to insults (Hu
and Kalb, 2003; Mojsilovic-Petrovic et al., 2006). Moreover,
BDNF is potent at enhancing excitotoxic insult, by enhancing
glutamatergic activity in neurons (Kafitz et al., 1999). Several
studies report BDNF and TrkB to be key players in rendering
MNs vulnerable to excitotoxic insult (Fryer et al., 2000; Hu
and Kalb, 2003; Mojsilovic-Petrovic et al., 2005). Additionally,
muscle from ALS patients expresses elevated levels of BDNF,
suggesting the possible negative action of BDNF (Kust et al.,
2002). Furthermore, BDNF can accelerate glutamate-induced
death in rat neuroblastoma cells, and this effect was promoted
by TrkB activation (Maki et al., 2015). BDNF also elicited
glutamate excitotoxicity in cultured cortical neurons (Koh et al.,
1995; Kim et al., 2003), and TrkB inhibition ameliorated these
detrimental effects of BDNF (Kim et al., 2003). Additional
evidence for the role of BDNF/TrkB in promoting neuronal
death comes from a study, where exogenous nitic oxide
(NO)/sodium nitroprusside-induced cell death in cortical
neurons was enhanced by BDNF, and this effect was inhibited
by TrkB antagonism (Ishikawa et al., 2000). Fryer et al. (1999,
2000) also demonstrated that BDNF enhanced glutamate
excitotoxicity in cultured embryonic spinal cord MNs, and this
response involved activation of TrkB. Furthermore, directly
blocking TrkB activation protected embryonic cultured MNs
from toxic insults thought to be involved in the pathogenesis
of ALS, such as excitotoxicity and the presence of SOD1
mutations (Hu and Kalb, 2003; Mojsilovic-Petrovic et al., 2006;
Jeong et al., 2011). Additionally, TrkB-T receptors have been
shown to be enhanced in MNs in ALS and deletion of TrkB-T
receptors delayed the progression of disease in SOD1G93A mice
(Yanpallewar et al., 2012) which further adds to the role of
TrkB in ALS. Similarly, impaired BDNF/TrkB signaling and
altered TrkB-T isoform was observed in the neuromuscular
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FIGURE 4 | Schematic figure representing activity-dependent interplay between glutamate-induced excitotoxicity and BDNF-TrkB signaling. The arrival of action
potential (step 1), triggers the influx of Ca2+ ions into pre-synaptic terminal (step 2), the rise in intracellular calcium (step 3) in turn triggers the fusion of synaptic
vesicles with pre-synaptic membrane to release glutamate (light purple dots) from the terminal (step 4). Membrane depolarization also results in BDNF secretion
(orange dots) (step 4) and release pre-synaptically into the synaptic cleft. Dysfunctional glutamate transporters (EAAT2) in ALS results in retention of excessive
glutamate in the synaptic cleft (step 5). Post-synaptically, Ca2+ enters through voltage gated calcium channels and via calcium-permeable glutamate receptors
(NMDA, green; AMPA magenta; step 6). BDNF binding to TrkB alters the neuronal excitability of ion channels and also enhances post-synaptic glutamate receptor
activation causing influx Ca2+ of ions post-synaptically (step 7). Excessive glutamate in the synaptic-cleft over-activates its receptors increasing the intracellular
Ca2+ furthermore (step 8). Impaired Na+/Ca2+ exchanger and ATP pumps in SOD1G93A mice results in enhanced Ca2+ intracellularly (DeJesus-Hernandez et al.,
2011; Sirabella et al., 2018). Ca2+ released from the intracellular store adds to the Ca2+ concentration (step 8). Enhanced Ca2+ in the post-synaptic neuron also
triggers increased Ca2+ dependent secretion and release of BDNF extracellularly causing enhanced BDNF extracellularly (step 9). Trans-activation of TrkB by A2aRs
also triggers calcium dependent signaling, activating adenylyl cyclase and leading to increased cAMP and PKA phosphorylation, which in turn influences BDNF
secretion (step 10). This increased BDNF in the synaptic cleft binds to its receptors TrkB and repeats the process of Ca2+ influx and modulation of glutamate
receptors, eventually leading to Ca2+ overload (step 11) making the neurons hyper-excitable (step 12) which eventually leads to neuronal death (step 13).

junction of pre-symptomatic SOD1G93A mice (Just-Borras et al.,
2019). Furthermore, removal of the TrkB-T receptor at the
pre-symptomatic stage in SOD1G93A mice improved the disease
symptoms rescuing hippocampal interneurons and regulating
long term potentiation (Quarta et al., 2018) found to be enhanced
in ALS (Spalloni et al., 2006).

In addition to the above BDNF-TrkB signaling effects,
blocking A2aRs, which co-localize with and directly transactivate
TrkB, protected cultured MNs from these detrimental effects
(Mojsilovic-Petrovic et al., 2005, 2006; Ng et al., 2015; Cunha,
2016). Similarly the inhibition of TrkB or A2aRs also prevents
toxicity following expression of the G85R or G37R SOD1
mutations, which are highly toxic to cultured MNs (Mojsilovic-
Petrovic et al., 2006; Jeong et al., 2011). These pro-toxic

effects of BDNF/TrkB are not merely an artifact of culturing
embryonic MNs. It has also been shown that in vivo conditional
deletion of TrkB in MNs of adult transgenic mice carrying a
G85R SOD1 mutation attenuates SOD1 toxicity, resulting in
extension of life span and motor function, slowing MN loss
and causing persistence of neuromuscular junctions (Zhai et al.,
2011). Furthermore, in a recent study utilizing SOD1G93A rats,
phrenic motor neurons displayed an increased expression of
BDNF and phosphorylated ERK at end stage disease, consistent
with possibly increased BDNF function and basal protein levels
(Nichols et al., 2017).

Hyper-activity induced activation of BDNF and TrkB have
also been observed in other disease states, such as epilepsy and
traumatic brain injury (Dai et al., 2010; Iughetti et al., 2018).

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 August 2019 | Volume 13 | Article 368

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00368 August 10, 2019 Time: 15:58 # 11

Pradhan et al. BDNF/TrkB in ALS

Upregulated expression of BDNF and TrkB has been well
documented, resulting in alteration of excitability and neuronal
network activity contributing to epileptogenesis (Scharfman,
1997; Iughetti et al., 2018). Enhancing BDNF expression or its
systemic administration enhanced seizure activity in mice (Croll
et al., 1999; Scharfman et al., 2002; Iughetti et al., 2018), while
inhibiting TrkB reduced seizure development in these animals
(Heinrich et al., 2011; Liu et al., 2014; Iughetti et al., 2018).
Additionally, genetic or pharmacological inhibition of A2aRs in
epilepsy has been shown to reduce seizures and neuronal damage
(El Yacoubi et al., 2008, 2009). Despite these numerous reports,
the concept of hyper-activity induced glutamate excitotoxicity
resulting in overexpression of BDNF and TrkB activation in
neuronal death still needs further investigation.

CONCLUSION

Amyotrophic lateral sclerosis is an incurable multi-factorial
disease state where synaptic and intrinsic hyper-activity
of MNs is a significant early factor (Mogyoros et al.,
1998; Kanai et al., 2006; van Zundert et al., 2008; Fogarty
et al., 2015). Therapeutic avenues until now have aimed
at a reduction of this excitable state. Neuronal hyper-
activity is plausibly a result of processes that take place
simultaneously, one of them being the secretion of BDNF
and activation of its receptor TrkB. Several lines of evidence
show that increased BDNF-TrkB is evident in a number of

neurodegenerative diseases, including ALS (Kust et al., 2002;
Hu and Kalb, 2003; Nichols et al., 2017). This suggests that
neuronal damage may be a result of excessive rather than a
shortage of, neurotrophic support. A broader understanding
of the factors that regulate altered neuronal activity and
BDNF could help to identify new therapeutic targets in
neurodegenerative diseases. Certainly, therapies that enhance
endogenous BDNF have failed to produce any success in
prevention or slowing of MN death in ALS. It is important
to further investigate both pro- and anti-trophic functions
of BDNF/TrkB in the hope of discovering novel therapeutic
avenues to alleviate this devastating disease and other
neurodegenerative conditions.
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