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Abstract: In this paper, the corrosion resistance of FeCoSiBPC amorphous alloy after pre-oxidation
and non-oxidation heat treatment is investigated. The corrosion behaviors of Fe80Co3Si3B10P1C3

amorphous alloys in 1 mol/L NaCl solution were investigated by the electrochemical workstation.
The pre-oxidation heat treatment can improve the corrosion resistance of FeCoSiBPC amorphous
alloy through an increase in the Ecorr value from −0.736 to −0.668 V, which makes it easy to reach a
passive state. The corroded morphology and products of amorphous alloys were tested by scanning
electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM/TEM analysis
showed that, after pre-oxidation treatment, the oxide layer was divided into two layers: the inner
layer was amorphous, the outer layer appeared crystalline, and the main oxide was Fe2O3. During
the oxidation process, Co and P elements diffused from the inner layer to the outer layer, forming
phosphorus and cobalt oxides with high corrosion resistance on the surface of the ribbon, thereby
improving the corrosion resistance of the ribbon.

Keywords: amorphous alloy; pre-oxidation; corrosion resistance; oxidation layer

1. Introduction

Amorphous alloy is a kind of metal alloy with a long-range disordered and short-
range ordered structure, which has a high saturation magnetization, high permeability,
low coercivity, low loss, and other excellent magnetic properties. At the same time, it
also demonstrated high strength, good elasticity, corrosion resistance, and other good
mechanical properties, due to it having no dislocation and grain boundary defects. It is
widely used in aerospace, the power sector, electronics, automobiles, new energy, and other
fields [1,2].

Among amorphous alloys, Fe-based amorphous alloys have been widely used in
various fields as new energy-saving, environment-protecting, and green materials due
to their remarkable soft magnetic properties and low preparation cost. At present, the
main amorphous alloys on the market are FeSiB and FeSiBC, which have good amorphous-
forming abilities and high saturation magnetic induction intensities [3]. The industrial
production of amorphous alloy ribbons is basically carried out in air, and most of their heat
treatment is carried out in a low vacuum or even air. Therefore, the oxidation performance
is key to their application. In production and application, the addition of a variety of
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elements will lead to an increase in chemical activity on the surface of the amorphous
alloy, resulting in an oxidation corrosion phenomenon in varying degrees, which will
change the properties of the amorphous alloys [4]. Equipment that contains amorphous
materials may work in environments mixed with high temperature and humidity [5] such
as motors, transformers, etc. The oxidation corrosion of amorphous materials will affect
the performance, life, and reliability of the equipment. FeCoSiBPC, as a recently developed
high Bs amorphous alloy, has a good market application prospect. However, the addition
of various elements increases the chemical activity of the surface of the amorphous alloy,
which is more likely to cause surface oxidation, thereby changing the properties of the
amorphous alloy.

Therefore, it is urgent to explore the oxidation and corrosion behavior of FeCoSiBPC
amorphous alloys in different heat treatment environments and establish the relationship
between oxidation and corrosion. In this paper, the effect of oxidation behavior on the cor-
rosion resistance of strips was investigated, and the relationship between surface oxidation
and corrosion resistance was established. This research has certain guiding significance for
the FeCoSiBPC amorphous alloy in the non-vacuum heat treatment process.

2. Materials and Methods

Multi-component alloy ingots with nominal compositions of Fe80Co3Si3B10P1C3 were
prepared by induction-melting the mixtures of high pure Fe (99.99% wt.%), Co (99.99% wt.%),
Si (99.99% wt.%), pre-alloyed Fe–C (5.0 wt.% C) ingots, pre-alloyed Fe–P (16.5 wt.% P),
and a pre-alloyed Fe–B ingot (17.6 wt.% B) in a purified argon atmosphere. Amorphous
alloy ribbon was fabricated by a single copper roller melt-spinning method in an argon
atmosphere. The width of the amorphous ribbon was about 5 mm. The thickness of the
amorphous ribbons was approximately 20 µm. In order to determine the heat treatment
temperature for the best soft magnetic properties of the ribbon, the ribbon was heat-treated
for 10 min at 230–320 ◦C in vacuum and non-vacuum conditions. The non-vacuum heat
treatment process was carried out in the atmosphere. The annealing treatment of the
amorphous ribbon is to remove the ribbon stress. The optimal heat treatment temperature
should be lower than Tx1 to avoid the ribbon becoming brittle due to crystallization during
the annealing process. The coercivity measurement is shown in Figure 1. The results show
that the optimum temperature for the amorphous ribbon was 280 ◦C. Pre-oxidized and
unoxidized samples were obtained by heat-treating the amorphous ribbons at 280 ◦C for
10–90 min under vacuum and non-vacuum conditions.
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Figure 1. Hc value of 10 min pre-oxidation treated samples.

Electrochemical experiments were performed on the free side of the tape, and the other
side was sealed with ethyl acetate. To verify the effect of the oxide layer on the corrosion
resistance of the ribbon, dilute hydrochloric acid (HCL) was used to remove the yellow
oxide layer on the surface of the ribbon. The corrosion products of hydrochloric acid were
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removed with alcohol, then washed with ultrapure water, and dried quickly with cold air
for electrochemical experiments.

A VMP3 electrochemical workstation was used to determine the corrosion perfor-
mance of the amorphous samples after pre-oxidation and vacuum heat treatment. The
corrosion solution was 1 mol/L NaCl solution. A Calomel electrode was used as the refer-
ence electrode, a platinum electrode was used as the auxiliary electrode, and the sample
was used as the working electrode. The result was analyzed by the EIS analysis software
Zsimpwin (AMETEK, Berwyn, PA, USA). The MSXD-3 X-ray diffractometer, which was
produced by Beijing Beida Smart Microstructure Analysis and Testing Center Co., Ltd.
(Beijing, China), was used for XRD analysis. The scanning angle was 10◦–90◦, and the
Cu Kα target was used. The wavelength was λ = 1.54056 nm. The magnetic properties
were measured using a Japanese EXPH-100 B-H measuring instrument. Thermal anal-
ysis was performed by Mettler Toledo TGA/DSC (Columbus, OH, USA) at a heating
rate of 40 K/min. Nova NanoSEM 450 (Nebraska Center for Materials and Nanoscience,
Lincoln, NE, USA) scanning electron microscopy (SEM) was used to observe the surface
morphology. FEI Strata 400S (FEI, Lausanne, France) focused ion beam scanning electron
microscopy (FIB-SEM) was used to cut the ribbon, and FEI Talos F200s (FEI, Lausanne,
France) transmission electron microscopy (TEM) was used to observe the cross section of
the ribbon.

3. Results and Discussion

The crystallization process of the melt-spun Fe(Co)SiBPC ribbon was investigated
by DSC at a heating rate of 40 ◦C/min. As shown in Figure 2, two obvious exothermic
peaks corresponding to two different crystallization phases were detected. According to
our previous research, the first exothermic peak (Tx1) corresponded to the crystallization of
a–Fe phase, and the second exothermic peak (Tx2) corresponded to that of Fe–P, Fe–B hard
magnetic compounds.
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Figure 3 shows the XRD patterns of an FeCoSiBPC amorphous alloy after heat treat-
ment in vacuum and non-vacuum for 10–90 min at 280 ◦C. It can be seen that the XRD
curves of the samples after vacuum and non-vacuum heat treatment showed a good
steamed-bread peak shape, indicating that the thin ribbons after heat treatment were
still amorphous. Judging from the surface color of the heat-treated ribbon, the vacuum
heat-treated samples maintained good metallic luster without oxidation. The color of the
non-vacuum heat-treated ribbon gradually deepened with the prolongation of heat treat-
ment time, indicating that the degree of oxidation became gradually severe. Because the
X-ray penetration depth of XRD phase analysis was limited, it indicated that the thickness
of the oxide layer on the surface of the ribbon was extremely thin.
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Figure 3. XRD curve and pictures of the FeCoSiBPC amorphous alloy at 280 ◦C; (a) vacuum;
(b) non-vacuum.

Figure 4 shows the polarization curves of the FeCoSiBPC amorphous alloy treated
by vacuum and non-vacuum in a 1 mol/L NaCl solution at room temperature. It is seen
in Figure 4a,b that all samples had a tendency for passivation. A passivation platform
appeared at around −0.575 V, indicating that a passive film was formed. The minimum
value (peak value) in the figure represents the corrosion resistance potential of the amor-
phous ribbon. The polarization curves of the samples after vacuum heat treatment are
very close to the as-quenched sample, and the corrosion potential peaks moved slightly to
the left. The polarization curves of pre-oxidation treated samples are obviously different.
The corrosion potential peaks moved to the right, which means an improvement in the
corrosion resistance.
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Figure 4. The polarization curves of FeCoSiBPC amorphous alloy at 280 ◦C; (a) vacuum;
(b) non-vacuum.

The surface morphology was observed after heat treatment, and the results are shown
in Figure 5. After heat treatment, the surface roughness of the ribbon became rougher with
the extension of time, and the surface roughness affected the corrosion resistance. The
rougher the surface, the worse the corrosion resistance [6]. However, due to the amorphous
ribbon, the annealing temperature was lower than Tx1 = 363 ◦C, the surface of the ribbon
itself was defective, the surface roughness had little impact on the corrosion resistance
of the ribbon, and the corrosion potential of the vacuum sample moved only slightly to
the left. The change in surface roughness of the ribbon after pre-oxidation treatment was
more obvious than the change in vacuum, but due to the formation of an oxide layer on
the surface of the ribbon, the oxide layer could promote the formation of a passivation
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film, which could improve the corrosion resistance of the ribbon. The longer the pre-
oxidation treatment, the more obviously the oxide layer improved the corrosion resistance
of the ribbon.
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Figure 5. The surface morphologies after heat treatment at 280 ◦C for different times. (a) as-
quenched, (b) pre-oxidated for 30 min, (c) pre-oxidated for 60 min, (d) vacuum heat-treated for 30 min,
(e) vacuum heat-treated for 60 min.

In order to further prove that the oxide layer is beneficial to the improvement of the
corrosion resistance of the samples, gently wipe the surface of the oxidized sample with
a cotton swab dipped in dilute hydrochloric acid. Remove the brown oxide layer on the
surface, then rinse off the hydrochloric acid and hydrochloric acid corrosion products
with alcohol and ultrapure water, quickly dry the ribbon with cold air, and then measure
the sample polarization curve. The result is shown as the curve in Figure 6. It can be
seen that, after removing the surface yellow-brown oxide layer, the corrosion potential
moves back to the vacuum sample, indicating that the corrosion resistance of the ribbon
decreases after removing the oxide layer. The oxide layer has an improving effect on the
corrosion resistance; the corrosion resistance of the sample after removing the surface oxide
layer decreases worse than the sample after vacuum heat treatment. This might be due to
the fact that the hydrochloric acid does not remove all of the oxide layer; only the oxide
layer of the surface is removed, and the residual oxide layer fails due to the destruction of
the overall structure, and the protective effect fails. On the contrary, it will promote the
corrosion reaction.

Figure 7 shows the impedance curve and equivalent circuit diagram of the vacuum
and pre-oxidation treatment samples of the amorphous FeCoSiBPC alloy in a 1 mol/L NaCl
solution at room temperature. It can be seen that the vacuum and pre-oxidation treatment
samples showed capacitive resistance characteristics; with the prolongation of time, the
capacitive arc of the pre-oxidation sample was gradually expanded, and the capacitive arc
of the vacuum sample was shrunk to varying degrees. The impedance curve was fitted by
Zsimwin software (AMETEK, Berwyn, PA, USA), and the equivalent circuit is shown in the
figure [7].
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Figure 7. Impedance curve and equivalent circuit diagram of the sample’s heat treatment at 280 ◦C:
(a) vacuum, (b) non-vacuum.

Here, Rs is the solution resistance between the reference electrode and the work-
ing electrode, QPE1 and R1 represent the capacitance and resistance of the protective
layer/corrosion layer, representing the reaction of the interface of the solution and pro-
tective layer/corrosion layer [8]; QPE2 and R2, respectively, represent the double-layer
capacitance and charge-transfer resistance due to the deviation caused by the rough and
uneven sample surface. The double-layer capacitor C is often replaced by the constant
phase element QPE [9]; the impedance of the QPE can be replaced by ZQPE:

ZQPE= Y−1
0 ω−n[cos

(nπ

2

)
− j sin

(nπ

2

)
] (1)

where Y0 is a constant; ω is the angular frequency; n is the deviation parameter, whose
value is 0 to 1, representing the degree to which QPE deviates from the capacitance; and
QPE is equivalent to capacitance C when n = 1. QPE2 and R2 represent the capacitance and
resistance of electrolyte solutions in electrochemical reactions at the interface of an amor-
phous alloy [8]. It can be seen from Figure 7 that the QPE1 and QPE2 of the vacuum-treated
sample showed a parallel relationship, and the equivalent circuit diagram of the sample
after pre-oxidation treatment was in series, indicating that the passivation film formed by
the pre-oxidized ribbon in 1 mol/L NaCl solution was denser than the passivation film
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formed by the vacuum heat treatment sample, which could play a better protective role [10].
This result was consistent with the polarization curve result.

The fitting results of each component in the equivalent circuit are shown in Table 1.
As can be seen from Table 1, the value of the R2 was greater than R1, which indicates that
the inner layer of the passivation film formed was relatively dense, the outer layer was
looser, and the inner passivation film played a decisive role in the corrosion resistance of
the amorphous alloy [11]. Comparing the R values of vacuum and quenched samples, it
was found that vacuum heat treatment had less influence on R1 and R2, and it could be
considered that vacuum heat treatment at 280 ◦C for 10 to 90 min had little impact on the
corrosion resistance of ribbon. The R-value of the sample after pre-oxidation treatment
changed greatly, which meant that the pre-oxidation treatment had a greater impact on the
corrosion resistance of the ribbon. The R2 increased with the extension of the pre-oxidation
time, which suggests that the corrosion resistance of the ribbon had gradually enhanced.
This is consistent with the results of the polarization curve [12].

Table 1. Impedance curve fitting data.

Sample Rs (ohm) QPE1 (S·sn) n1 R1 (ohm) QPE2 (S·sn) n2 R2 (ohm)

As quenched 0.5254 1.368 × 10−4 1 42.6 2.184 × 10−4 0.8556 815.9

Vacuum

10 min 0.5120 1.670 × 10−4 1 42.42 2.288 × 10−4 0.8419 771.9
30 min 0.4746 1.324 × 10−4 1 24.39 2.780 × 10−4 0.8218 733.9
60 min 0.8117 1.124 × 10−4 0.9796 10.74 2.468 × 10−4 0.8040 932.5
90 min 0.4274 1.234 × 10−4 1 48.55 2.429 × 10−4 0.8141 689.4

Pre-oxidation

10 min 1.821 2.81 × 10−4 0.8983 1.609 2.617 × 10−4 0.8781 1224
30 min 1.916 4.06 × 10−4 0.8533 2.272 2.090 × 10−4 0.8785 1299
60 min 0.6352 1.75 × 10−4 0.9070 3.047 1.822 × 10−4 0.8467 1515
90 min 0.7792 7.15 × 10−4 0.6059 10.06 1.474 × 10−4 0.8514 1756

HCl treated 0.4031 5.587 × 10−4 1 127.7 4.210 × 10−4 0.9244 835.6

Comparing the vacuum sample and the pre-oxidation sample, the R1 of the vacuum
sample was greater than the R1 of the pre-oxidation sample for 10–60 min, but its R2
was less than the R2 of the pre-oxidation sample. This indicates that the density of the
inner layer of the passivation film increases after the pre-oxidation treatment, and the
degree of the densification of the outer layer decreases. The difference between R1 and R2
after the pre-oxidation treatment was greater than the difference between the vacuum and
quenched samples. The reason could be that during the pre-oxidation treatment, oxidation
lead to an increase in the roughness of the ribbon surface, resulting in a decrease in the
corrosion resistance of the outer layer of the oxide layer. The diffusion of elements would
cause corrosion resistance of the inner layer of the oxide layer to increase, and the oxide
could promote the formation of a passivation film, which could also increase the corrosion
resistance [13]. This was specifically manifested when the value of R1 was decreased and
when R2 rose. Because the corrosion resistance of the inner layer played a decisive role, the
overall corrosion resistance of the ribbon was improved. At the same time, comparing the
n1 values, the n1 of the vacuum and as-quenched samples were all around 1, indicating
that the thickness uniformity of the protective layer/passivation layer formed was better.
The n1 values after pre-oxidation treatment had different degrees of deviation, and the
uniformity of the thickness of the protective layer/corrosion layer changed, which may be
due to the uneven thickness of the oxide layer.

After removing the oxide layer of the pre-oxidized 60min sample with diluted hy-
drochloric acid (HCl treated in Figure 7a), the equivalent circuit diagram changed from
series to parallel mode, and the R2 dropped from 1515 ohm to 835.6 ohm. The corrosion
resistance of the ribbon after removing the oxide layer dropped to a similar level of vacuum
heat treatment, but the surface oxide layer was not completely removed, so its R1 value is
relatively high.
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The above Table 1. shows that the oxide layer played a protective role in the ribbon and
could promote the formation of the passivation film. We soaked the ribbon in 1 mol/L NaCl
solution for 5 days and observed the surface of the corrosive sample. The result is shown in
Figure 8 after corrosion; the sample surface appeared granular on the corrosion products,
and cracking was observed, which may be caused by the drying of corrosion products. The
crack density of vacuum and as-quenched corrosion products was greater than that of the
pre-oxidation samples, indicating that the corrosion product layer/passivation layer of the
pre-oxidation samples had a high degree of density and strong corrosion resistance.
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In order to explore the reasons for the improvement of corrosion resistance of ribbon
after pre-oxidation treatment, we selected ribbon with the pre-oxidation treatment of 60 min,
using FIB to cut the ribbon, and observed the structural morphology of the ribbon oxide
layer. In Figure 9a, we can clearly see the presence of the oxide layer, the thickness is about
10–20 nm, the outermost layer is the Pt protective layer sprayed when Fib cutting, and the
innermost an amorphous alloy matrix. The thickness of the oxide layer is uneven, and
there is a bulge in the outer layer, which is due to defects and unevenness on the surface
of the ribbon itself. Figure 9b on the right is an enlarged plot of the oxide layer, which
has obvious stratification, which can be expected, and the stratification of the oxide layer
has been observed in previous studies [14–17]. The oxide layer is mainly divided into
two layers, layer 1 and layer 2. Layer 2 and the amorphous alloy matrix maintained an
amorphous structure; layer 1 was crystallized and nanocrystals were formed (as shown
in the mixed region). Nanocrystals have higher corrosion resistance than amorphous
alloy [18,19], thereby improving the corrosion resistance of the ribbons.

Figure 10a is the result of cross-sectional scanning of the oxide layer. The main compo-
nent of the oxide layer was Fe and its oxides, and there was an aggregation distribution
phenomenon at the junction between the oxide layer and the amorphous matrix (oxidation
front). The elemental distribution map of Co has a brighter line at the oxidation front.
Combined with the EDS line sweep results of (b) (the line sweep direction is shown by
the orange arrow in Figure 10a), it can be understood that, in addition to Co, P will also
show that there is an aggregation distribution in the oxidation front. The thickness of the
aggregation area was about 2–4 nm, which indicated that there was an element diffusion
migration phenomenon during the pre-oxidation treatment process. Comparing the content
inside and outside the oxidation front of these two elements, the inner Co content was
higher than the outer oxide layer, and the element diffusion direction was from the outer
layer to the oxidation front diffusion aggregation. On the contrary, the oxide layer content
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of P was higher than the matrix content; therefore, it was considered that element P was
diffused from the internal matrix to the oxidation front. It can be seen from Figure 10c that
the atomic radius of Co was large, and diffusion from the outside to the inside could reduce
the number of dislocations formed when the outermost oxide layer crystallizes. Due to the
aggregation of P and Co, the corrosion resistance of the oxidation front is improved, because
the addition of Co and P elements will improve the corrosion resistance of amorphous
alloys [20–22], but due to its low thickness, after removing the surface oxide layer, the
protective effect on the ribbon could not be expressed. Due to the removal of the oxide
layer with dilute hydrochloric acid, the overall structure of the oxide layer was destroyed,
and the corrosion resistance of the ribbon was reduced.
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As there was an element diffusion migration phenomenon, the composition of the
oxide layer changed, which could lead to a change of crystallization temperature, and the
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oxidation caused a drop in crystallization temperature [23,24]. Therefore, crystallization
occurred in layer 1 at 280 ◦C for 60 min.

4. Conclusions

(1) After the FeCoSiBPC amorphous ribbon was pre-oxidized at 280 ◦C, the corrosion re-
sistance of the ribbon in 1 mol/L NaCl solution increased, and the corrosion resistance
of the vacuum heat-treated sample at the same temperature was basically unchanged
or decreased. Heat treatment changed the roughness of the ribbon surface.

(2) The oxide layer formed by the pre-oxidation treatment had a protective effect on the
ribbon and could promote the formation of a dense passivation film. The impedance of
the ribbon exhibited dual capacitive impedance characteristics, the as-quenched and
the vacuum sample were in parallel, and the pre-oxidation treatment was in parallel.

(3) During the pre-oxidation process, the amorphous ribbon had the phenomenon of
element migration, Co migrated from the outside to the oxidation front, and P mi-
grated from the inside to the oxidation front. At the same time, there was a small-scale
element (mainly Co and P) aggregation at the junction between the oxide layer and the
amorphous matrix, which improved the corrosion resistance of the amorphous alloy.

(4) By studying the effect of pre-oxidation heat treatment on the corrosion resistance of
FCoSiBPC amorphous alloy, it had certain guiding significance for the production of
amorphous alloy, heat treatment process, and later application.
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