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A B S T R A C T

Clinical trials play a critical role in drug development which involves a series of phases and requires a
significant amount of time and effort. Efficient clinical trial designs are necessary to investigate a new drug.
Investigators strongly desire to use the time-to-event endpoint as the primary endpoint for Phase II studies,
which evaluates the therapeutic efficacy of the new drug, with the hypothesis that the new drug improves the
median survival time. The one-sample log-rank test has been used for single-arm Phase II trials, but it generally
requires more samples. Recently, the median event time test was proposed to provide a simple, straightforward
decision rule, which compares the observed median survival time for the new drug with the threshold, which
is determined through the numerical search. We improve the computation of the method for the two-stage
design of single-arm clinical trials based on the median event time test. By utilizing the large sample theory
of order statistics, we provide the explicit formulas to calculate the sample size for the first and second stages
and propose the testing procedure. The performance of the proposed method is evaluated through simulations
and a trial example.
1. Introduction

Drug development is a complex process that involves a series of
phases, requiring a significant time and effort. Clinical trials play a
critical role investigating new drugs. The therapeutic efficacy of the
new drug is assessed in Phase II and then further confirmed with usually
hundreds or thousands of patients in Phase III. This confirmation is
necessary to establish whether the experimental treatment provides
a longer overall survival compared to a placebo or standard control.
Phase II clinical trial designs have traditionally relied heavily on a
binary response endpoint. For example, in cancer clinical trials, a
binary indicator of having a complete response or a partial response
to therapy is used. According to Response evaluation criteria in solid
tumors (RECIST) forms, a complete response is defined as the removal
of all target lesions, and a partial response is defined as a reduction of
at least 30% in the total number of target lesions [1]. However, it may
not be desirable to use the response rate as a surrogate for the desired
survival time, which is a gold standard endpoint for Phase III studies.
For example, the tumor shrinkage may not be measurable in rapidly
lethal cancers or may not be available in uveal cancer [2]. Moreover,
it is critical to avoid unexpected failures in Phase III studies after
successful Phase II results. To address these issues, it is recommended
to evaluate the new drugs based on the time-to-event endpoint in Phase
II studies.

∗ Corresponding author.
E-mail address: ypark56@wisc.edu (Y. Park).

The one-sample log-rank test has been commonly used to compare
the survival distribution of the experimental treatment with a historical
control, without making parametric survival assumptions. It was first
introduced by Breslow [3]. Tu and Gross [4] derives a Bartlett-type
correction for the two-sided one-sample log-rank test, and Sun et al. [5]
derives the correction to the one-sided one-sample log-rank test based
on Edgeworth expansion. Kerschke et al. [6] improves the one-sample
log-rank test based on the transformation of the underlying counting
process martingale to correct the conservativeness. Several studies,
including Sun et al. [5],Finkelstein et al. [7],Wu [8], and Schmidt et al.
[9], provide sample size formulas to achieve the desired power for
the one-sample log-rank test. The one-stage procedure and two-stage
designs based on the one-sample log-rank test are proposed by Sun
et al. [5],Kwak and Jung [10], and Belin et al. [11]. They compare
the survival curves or hazard rates to evaluate the promising nature
of the new drug. Instead of comparing entire survival curves, another
approach to assess the efficacy of drugs is to compute the survival
probability at a clinically meaningful time point, e.g., one-year survival
probability [2,12–14].

Our previous work uses the parametric survival distributions to
develop the median event time test for single-arm Phase II trials whose
primary endpoint is time-to-event [15]. It extends the idea of Simon’s
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two-stage design [16] for a time-to-event endpoint based on the me-
dian event time test. In clinical practice, clinical investigators and
practitioners report the median survivals as a measure of the time-
to-event endpoints. The median information is easily accessible from
historical trials, and it provides a straightforward understanding of the
therapeutic efficacy of the drugs based on median survival. For clinical
purposes, the median event time test is useful as it allows for a simple
and straightforward interpretation. It tests the improvement of median
survival and can be easily implemented by comparing the observed
median survival time for the new drug with a prespecified threshold.
Park [15] determines sample size and threshold of clinical trial design
based on median event time test through the numerical search for the
given target type I and II error rates.

This paper aims to develop a new method for the median event
time test, which provides explicit formulas for determining the sample
size in two-stage designs. Compared with the existing literature, we
make three major contributions. First, we derive explicit sample size
formulas for the two-stage design in order to attain the desired power
of the one-sided median event time test with a significance level. The
explicit formulas eliminate the computational burden associated with
our earlier work. Second, we determine the decision rule for the median
event time test with the optimal choice of design parameters, which
minimizes the expected total sample size under the null hypothesis.
Third, we provide a user-friendly shiny application which is freely
available and easy to use.

This article is organized as follows. Section 2 describes the two-stage
design of single-arm trials whose primary endpoint is time-to-event and
provides explicit formulas determining the sample size based on the
median event time test. We also provide the practical considerations
and software which is freely available to use the proposed method
for the trial implementation. The performance of the proposed method
is investigated through simulations in Section 3. We illustrate the
application of the method with a real trial example in Section 4 and
provide the concluding remarks in Section 5.

2. Sample size determination

Consider a two-stage design of single-arm Phase II clinical trials
whose clinical endpoint is time-to-event. For the first stage, 𝑛1 patients
are accrued, and an interim analysis is performed to determine the
go/no-go of the trial when the total accrual reached 𝑛1 patients. If the
trial continues, we determine the required sample size, say 𝑛2, for the
second stage. In the second stage, the 𝑛2 patients are enrolled while the
first stage patients are being followed for the efficacy evaluations at the
final analysis. The final analysis will be performed after the follow-up
of all 𝑛 patients, where 𝑛 = 𝑛1 + 𝑛2.

Let 𝑌1,… , 𝑌𝑛 be random variables from an exponential distribution
with mean 𝜇. Then, the median 𝜙 of the exponential distribution is
𝜇 log 2. We want to test the null hypothesis 𝐻0 ∶ 𝜙 = 𝜙0 versus the
alternative hypothesis 𝐻𝑎 ∶ 𝜙 = 𝜙1 based on the one-sided median
event time test (METT) at a significance level of 𝛼 to attain the power
≥ 1 − 𝛽. The null and alternative values are specified by clinicians.
For example, in intervention clinical trials, the null value of 𝜙0 is the
median time of the standard drug and the alternative value of 𝜙1 is the
expected median time from the intervention (for improvement). Let 𝑍1
and 𝑍2 be test statistics for a two-stage design at the interim and final
analyses, respectively. The test statistic at the interim, denoted by 𝑍1,
is calculated by the observed median survival time of the first stage,
and the test statistic at the final analysis, denoted by 𝑍2, is calculated
by the observed median survival time of all enrolled patients after the
follow-up. Let 𝑆̂𝑛(𝑡) be the estimate of the survival function based on
the sample of size 𝑛. The observed median survival time based on the
sample of size 𝑛, denoted by 𝑀𝑛, is the time at which 50% of individuals
re expected to have survived, i.e., 𝑀𝑛 = min{𝑡 ∈ 𝑇 ∶ 𝑆̂𝑛(𝑡) ≤ 0.5}. Then,
e have 𝑍1 = 𝑀𝑛1 and 𝑍2 = 𝑀𝑛2 based on the estimate of the survival

unction at interim and final analyses, respectively. The nonparametric
2

i

stimator with the Kaplan–Meier estimator can be used to calculate the
est statistics 𝑍1 and 𝑍2. We assume that a censoring rate is less than
0% at the interim so that we obtain reasonably precise estimates of
he median survival time 𝑍1. The assumption can be relaxed to handle
he case when we do not observe 𝑍1 (See practical considerations

below). Let 𝑡1 and 𝑡2 be the threshold to be compared with the observed
median survival at the interim and final analysis, respectively. Then,
METT compares the observed median survivals 𝑍1 and 𝑍2 with the
corresponding thresholds 𝑡1 and 𝑡2 at the interim and final analysis,
espectively. We stop the trial for futility at the interim analysis if 𝑍1 ≤
𝑡1. Otherwise (i.e., 𝑍1 > 𝑡1), the trial continues to enroll the second-
stage patients. At the final analysis, we compare 𝑍2 with 𝑡2 to argue that
the experimental treatment shows sufficient improvement in efficacy.
When 𝑍2 > 𝑡2, the experimental treatment is considered promising.
This framework follows Simon’s two-stage design but extends Simon’s
two-stage design to a time-to-event endpoint based on the median event
time test.

Park [15] determines the decision rule of METT by using the
empirical search, which requires a lot of computation time. In this
work, to save the computational cost, we use the true survival dis-
tribution to determine the decision rule for the two-stage design and
show that the proposed decision rule is not sensitive to censoring
information, provided the median survival time is observed at interim.
Specifically, we use the theoretical results in Mosteller [17] for the
observed survival time. The median of 𝑌1,… , 𝑌𝑛 follows asymptotical
normal distribution with mean 𝜙 and variance 0.25∕[𝑛{𝑓 (𝜙)}2], where
𝑓 (𝑦) = (log 2∕𝜙) exp(−𝑦 log 2∕𝜙) denotes the density function of the
exponential distribution with median 𝜙.

Let 𝛼1 and 𝛽1 be given such that 1 − 𝛼1 denotes the probability
of correct decision at the interim analysis under the null hypothesis,
i.e., Pr(𝑍1 ≤ 𝑡1|𝐻0) = 1 − 𝛼1, and 1 − 𝛽1 denotes the probability of cor-
rect decision at the interim analysis under the alternative hypothesis,
i.e., Pr(𝑍1 > 𝑡1|𝐻𝑎) = 1 − 𝛽1. Since 𝑍1 asymptotically follows normal
distribution with mean 𝜙0 and variance 0.25∕[𝑛1{𝑓 (𝜙0)}2] under the
null hypothesis, we obtain

𝑡1 =
0.5𝑧𝛼1

√

𝑛1𝑓 (𝜙0)
+ 𝜙0, (1)

here 𝑧𝛼1 denotes the critical value of the standard normal distribution
t 𝛼1, i.e., Pr(𝑍 ≥ 𝑧𝛼1 ) = 𝛼1, where 𝑍 is a standard normal variable.
herefore, by the normality of 𝑍1 under 𝐻𝑎, we have

1 =
(

𝑓 (𝜙1)
𝑓 (𝜙0)

𝑧𝛼1 + 𝑧𝛽1

)2( 0.5
𝑓 (𝜙1)(𝜙1 − 𝜙0)

)2
, (2)

where 𝑧𝛽1 denotes the critical value of the standard normal distribution
t 𝛽1.

Since the type I error rate is at most 𝛼 and the expected power
s at least 1 − 𝛽, we want to have Pr(𝑍2 > 𝑡2, 𝑍1 > 𝑡1|𝐻0) ≤ 𝛼 and
r(𝑍2 > 𝑡2, 𝑍1 > 𝑡1|𝐻𝑎) ≥ 1−𝛽. We notice that Pr(𝑍2 > 𝑡2, 𝑍1 > 𝑡1|𝐻0) ≥
r(𝑍2 > 𝑡2|𝐻0) − Pr(𝑍1 ≤ 𝑡1|𝐻0) and Pr(𝑍2 > 𝑡2, 𝑍1 > 𝑡1|𝐻𝑎) ≥ Pr(𝑍2 >
2|𝐻𝑎) − Pr(𝑍1 ≤ 𝑡1|𝐻𝑎), because

r(𝑍2 > 𝑡2 or 𝑍1 > 𝑡1) = Pr(𝑍2 > 𝑡2)+Pr(𝑍1 > 𝑡1)−Pr(𝑍2 > 𝑡2, 𝑍1 > 𝑡1) ≤ 1.

hen, it suffices to have Pr(𝑍2 > 𝑡2|𝐻0) = 𝛼 and Pr(𝑍2 > 𝑡2|𝐻𝑎) −
r(𝑍1 ≤ 𝑡1|𝐻𝑎) = 1−𝛽 in order to attain Pr(𝑍2 > 𝑡2, 𝑍1 > 𝑡1|𝐻0) ≤ 𝛼 and
r(𝑍2 > 𝑡2, 𝑍1 > 𝑡1|𝐻𝑎) ≥ 1 − 𝛽. Setting the quantity of Pr(𝑍2 > 𝑡2|𝐻0)
o be 𝛼, we obtain

2 =
0.5𝑧𝛼

√

𝑛𝑓 (𝜙0)
+ 𝜙0. (3)

etting the quantity of Pr(𝑍2 > 𝑡2|𝐻𝑎) − Pr(𝑍1 ≤ 𝑡1|𝐻𝑎) to be 1 − 𝛽, we
btain

2 =
(

𝑓 (𝜙1)
𝑓 (𝜙0)

𝑧𝛼 + 𝑧𝛽2

)2( 0.5
𝑓 (𝜙1)(𝜙1 − 𝜙0)

)2
− 𝑛1, (4)

where 𝛽2 = 𝛽 − 𝛽1. The details of the derivation of (1)–(4) are provided

n Appendix A.
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Fig. 1. Sign of the sample size for the second stage when 𝛼 ≤ 𝛼1 ≤ 0.5 and 0 < 𝛽1 < 𝛽.
The sample size 𝑛2 is calculated from (4) when 𝜙0 = 3, 𝜙1 = 6, 𝛼 = 0.05, and 𝛽 = 0.2.

Optimal choice of 𝛼1 and 𝛽1 To calculate the sample size using (1)–
(4), 𝛼1 and 𝛽1 should be specified. We choose optimal values of 𝛼1
and 𝛽1 in that they minimize the expected total sample size under the
null hypothesis. In the proposed two-stage design, the sample size is
random. Specifically, the sample size for the first stage is fixed as 𝑛1,
but the sample size for the second stage, denoted by 𝑛̃2, is random. If
we observe at interim 𝑍1 ≤ 𝑡1, the trial is terminated due to the futility
and 𝑛̃2 = 0. If we observe at interim 𝑍1 > 𝑡1, then the trial continues to
enroll 𝑛2 patients for the second stage and 𝑛̃2 = 𝑛2. Then, the expected
total sample size under the null hypothesis is E(𝑛|𝐻0) = 𝑛1+E(𝑛̃2|𝐻0) =
𝑛1+𝑛2𝛼1, where 𝑛1 and 𝑛2 are functions of 𝛼1 and 𝛽1. We notice that the
threshold 𝑡1 for the first stage lies between 𝜙0 and 𝜙1. It implies that 𝑧𝛼1
is nonnegative. Therefore, the optimal values of 𝛼1 and 𝛽1 are identified
by minimizing the expected total sample size E(𝑛|𝐻0) over 𝛼 ≤ 𝛼1 ≤ 0.5
and 0 < 𝛽1 < 𝛽. Since 𝑛2 is nonnegative, the values of 𝛼1 and 𝛽1 which
lead to 𝑛2 < 0, i.e.,

{

(𝛼1, 𝛽1) ∶ (𝑧𝛼 − 𝑧𝛼1 )𝑓 (𝜙1)∕𝑓 (𝜙0) < 𝑧𝛽1 − 𝑧𝛽−𝛽1
}

, are
excluded to consider possible expected total sample size. For example,
when the median progression-free survival (PFS) of the standard drug
is 3 months and the investigational drug is expected to improve PFS
to 6 months, we have 𝜙0 = 3 and 𝜙1 = 6. Using the target error rates
𝛼 = 0.05 and 𝛽 = 0.2, we observe the sign of 𝑛2, which is displayed in
Fig. 1. The green colored region of (𝛼1, 𝛽1) which yields the negative
value of 𝑛2 is not considered to obtain the optimal values of 𝛼1 and 𝛽1.

Practical considerations and preservation of type I error rate The
null and alternative median values could be specified by adopting clin-
ical background and knowledge (e.g., pilot results or historical trials).
For the given hypothetical median values, the proposed method deter-
mines the sample size and thresholds assuming that the test statistics
𝑍1 and 𝑍2 exist, i.e., the median survivals at interim and final analysis
are observed. However, in practice, depending on the effect size and
accrual rate, the median survival would not be observed because of a
few events observed. In addition, some superior drugs cure patients and
it could be infeasible to obtain a median survival even after sufficient
follow-up. In these cases, the smallest fitted survival of the Kaplan–
Meier curve is larger than 50%. Therefore, when 𝑍1 does not exist, we
do not want to stop the trial for futility based on 𝑛1 patients but rather
continue the trial to enroll the patients for the second stage. This allows
us to have more evidence to evaluate the therapeutic efficacy at the end
of the trial.

When the median 𝑍1 based on the first 𝑛1 patients is not observed
at the interim, we do not make any decisions for early stopping, which
implies that we do not spend any errors at the interim. Thus, we suggest

∗

3

replacing 𝑡2 with the threshold denoted by 𝑡 . In other words, when 𝑍1
does not exist, we continue to enroll additional 𝑛2 patients. At the final
analysis, we compare the observed median 𝑍2 based on all 𝑛 = 𝑛1 + 𝑛2
enrolled patients to the threshold 𝑡∗ defined as

𝑡∗ =
0.5𝑧𝛼

√

𝑛∗𝑓 (𝜙0)
+ 𝜙0, (5)

where

𝑛∗ =
(

𝑓 (𝜙1)
𝑓 (𝜙0)

𝑧𝛼 + 𝑧𝛽

)2( 0.5
𝑓 (𝜙1)(𝜙1 − 𝜙0)

)2
. (6)

The quantities 𝑡∗ and 𝑛∗ in (5) and (6) are obtained from a single-stage
esign based on METT yielding the power 1−𝛽 at the significance level
f 𝛼.

We evaluate the performance through simulations and observe that
the approach using 𝑡∗ works well to control error rates for faster accrual
rates. In practice, we recommend running preliminary simulations to
report the operating characteristics of the designs using threshold 𝑡2 or
∗ for the suggested accrual rate of the trial. The preliminary studies
ill be helpful to choose the decision rule which preserves the overall

ype I error rate of the trial design and avoid unnecessarily losing power
rom using a relatively stringent cutoff.

oftware and trial implementation To facilitate the use of the two-
tage design based on METT, we develop a shiny application, which
s freely available at https://yeonhee.shinyapps.io/METTSS/. It allows
sers to obtain a decision rule for the trial. Fig. 2 shows the screenshot
f the application website. As seen in Fig. 2, users need to specify the
ollowing parameters

• Null median event time denoted by 𝜙0 in months
• Alternative median event time denoted by 𝜙1 in months
• Type I error rate denoted by 𝛼
• Type II error rate denoted by 𝛽
• Survival distribution. Users choose one of the parametric survival

distributions among exponential, uniform, and Weibull distribu-
tions based on knowledge or background of the study.

• If you choose Weibull distribution, what is the shape parameter? Users
specify a positive value for the shape parameter of the Weibull
distribution. The shape parameter is known as the Weibull slope.
For a shape parameter being larger than 1, the survival time
follows the Weibull distribution with an increasing hazard. For
a shape parameter smaller than 1, it follows the Weibull distri-
bution with a decreasing hazard. For a shape parameter of 1, it
follows the Weibull distribution with a constant hazard, which is
equivalent to an exponential distribution. The value of the shape
parameter can be specified by historical trial data or literature
information.

• Increment for alpha1. It provides a sequence from 𝛼 to 0.5 by the
specified increment for searching the optimal value of 𝛼1. The
default is 0.005.

• Increment for beta1. It provides a sequence from 0 to 𝛽 by the
specified increment for searching the optimal value of 𝛽1. The
default is 0.005.

fter hitting the button ‘‘Run’’ with the specifications, the application
eturns the decision rule in the right-side panel.

. Evaluation of the two-stage design

The proposed method was conducted for the hypothesis testing
0 ∶ 𝜙 = 𝜙0 versus 𝐻𝑎 ∶ 𝜙 = 𝜙1, where 𝜙0 denotes the null median

urvival time and 𝜙1 denotes the alternative median survival time. We
et the type I error rate 𝛼 = 0.05 and the type II error rate 𝛽 = 0.2
or the hypothesis testing. Design parameters such as 𝛼1 and 𝛽1 were
umerically searched with the increment 0.005 over the 𝛼1 between

0.05 and 0.5 and 𝛽1 between 0.001 and 0.199. Using formulas (1)–(4),
the required sample sizes 𝑛 and 𝑛 for stages 1 and 2, respectively, and
1 2

https://yeonhee.shinyapps.io/METTSS/
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Fig. 2. METTSS shiny application to determine sample size and threshold for the two-stage design based on METT.
Table 1
Decision rules for two-stage design considering hypothesis testing of median survivals
𝜙0 months versus 𝜙1 months based on target error rates of 𝛼 = 0.05 and 𝛽 = 0.2.
𝜙0 𝜙1 Decision rule

𝑛1 𝑡1 𝑛2 𝑡2 𝑡∗

3 5 28 3.501 54 3.786 4.073
3 6 17 3.692 29 4.050 4.453
3 7 13 4.219 26 4.140 4.780
8 14 25 9.557 44 10.285 11.164
8 17 15 10.728 33 10.740 12.245
10 17 27 11.701 47 12.759 13.706

the thresholds 𝑡1 and 𝑡2 at the interim and final analysis, respectively,
are provided in Table 1. For example, when the null median 𝜙0 is
3 months and the alternative median 𝜙1 is 6 months, the proposed
method yields 𝑛1 = 17, 𝑡1 = 3.692, 𝑛2 = 29, and 𝑡2 = 4.050. It implies
that the two-stage design accrues 𝑛1 = 17 patients for the first stage.
At the interim based on data of the first 17 patients, we stop the study
for futility if the observed median 𝑍1 is less than or equal to the first
threshold 𝑡1 = 3.692 months. Otherwise, i.e., if 𝑍1 > 𝑡1, we additionally
accrue 𝑛2 = 29 patients for the second stage, which results in a total
sample size of 𝑛 = 𝑛1 + 𝑛2 = 46 patients. At the end of the trial, based
on all 𝑛 = 46 patients data, if the observed median 𝑍2 is larger than
𝑡2 = 4.050 months, the null hypothesis is rejected and we claim that
the experimental treatment is sufficiently promising. When 𝑍1 is not
observed, we continue to the second stage enrolling 𝑛2 = 29 patients
and we replace the threshold 𝑡2 = 4.050 with 𝑡∗ = 4.453 determined by
the formulas (5)–(6) for final analysis.

We measured the computing time to determine the decision rules
for the two-stage design and provided it in Table 2. The computing
time was measured with Apple M1 Ultra and 128 GB memory. Using
the proposed method, the decision rules in Table 1 were obtained
very quickly with less than 0.2 s. However, using the numeric search
proposed in Park [15], it took several hours to obtain the decision
rules in Table 2 of Park [15], which was computationally expensive.
Table 2 shows that the proposed method improves the computation to
determine the decision rules for the two-stage design.
4

Table 2
Computing time to determine decision rules for two-stage design consid-
ering hypothesis testing of median survivals 𝜙0 months versus 𝜙1 months
based on target error rates of 𝛼 = 0.05 and 𝛽 = 0.2.
𝜙0 𝜙1 Numeric search Asymptotic theory

[15] (Proposed method)

3 5 13.50 h 0.053 s
3 6 4.17 h 0.053 s
3 7 69.91 min 0.053 s
8 14 8.39 h 0.051 s
8 17 2.82 h 0.123 s
10 17 11.92 h 0.046 s

We investigated the operating characteristics of the proposed design
through simulations. We considered both null and alternative scenarios
for each hypothesis testing described in Table 1. Null scenario indicates
the case where there is no improvement from the experimental treat-
ment, i.e., the true median for the experimental treatment is the same
as the null hypothesized value 𝜙0, and the alternative scenario indicates
that experimental treatment improves the median survival time and
the true median is the same as the alternative hypothesized value
𝜙1. True survivals were generated from the exponential distribution
whose median is the null or alternative hypothesized value described in
Table 1 for the null or alternative scenario, respectively. We assumed
that patients arrived according to a Poisson process with the accrual
rate of 1.04 patients per month, and we continued follow-up for 24
months after the last patient was enrolled. We replicated 10000 times to
obtain simulation results such as the rejection probability (denoted by
𝛼̂ or 1−𝛽 under null or alternative scenarios, respectively), the expected
sample size (denoted by EN0 or EN𝑎 under null or alternative scenarios,
respectively), and the probability of early termination (denoted by PET0
or PET𝑎 under null or alternative scenarios, respectively).

Table 3 shows that both type I and II error rates were preserved at
the target rates of 𝛼 = 0.05 and 𝛽 = 0.2, respectively. Since the decision
rules were derived by the asymptotic method, the overall error rates in
Table 1 were not necessary to be the same as the exact test’s results.
For example, 𝛼̂ = 0.039 or 𝛽 = 1−0.869 = 0.131 was acceptable because
they were smaller or equal to the target error rates (or even target error
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Table 3
The operating characteristics of the two-stage design considering hypothesis testing of median survivals 𝜙0
months versus 𝜙1 months based on target error rates of 𝛼 = 0.05 and 𝛽 = 0.2. The results of 𝛼̂ and 1 − 𝛽
have two columns: the results without parenthesis are obtained by using 𝑡2 at the final analysis while the
results in the parenthesis are obtained by using the threshold 𝑡∗ at the final analysis when 𝑍1 does not exist
at the interim.
𝜙0 𝜙1 𝛼̂ 1 − 𝛽 EN0 EN𝑎 PET0 PET𝑎

3 5 0.043(0.043) 0.864(0.864) 43.6 75.9 0.711 0.112
3 6 0.051(0.051) 0.869(0.868) 25.5 42.8 0.708 0.110
3 7 0.041(0.039) 0.849(0.844) 18.6 35.3 0.786 0.144
8 14 0.046(0.045) 0.841(0.836) 38.0 63.0 0.705 0.137
8 17 0.039(0.019) 0.805(0.786) 25.4 41.8 0.684 0.187
10 17 0.044(0.042) 0.835(0.827) 41.7 67.4 0.688 0.140
Fig. 3. The plot of operating characteristics of the proposed design using the threshold 𝑡∗ at the final analysis when the median 𝑍1 does not exist at the interim for the testing
𝜙0 = 3 versus 𝜙1 = 6 months. The expected sample size EN is obtained under the null scenario (i.e., EN0). The left panel shows the result when the follow-up time is varied, and
the right panel shows the results when the accrual rate is varied.
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rates plus some reasonable margin bound). We also observed that EN0 is
much smaller than the total planned number of patients, i.e., 𝑛 = 𝑛1+𝑛2,
and EN𝑎 is close to 𝑛. Specifically, the two-stage design used on average
3.5% of the total sample size when the drug is not good enough, which
aves a lot of patients treated with subtherapeutic drugs and could
void experiencing unnecessary adverse events. This resulted from the
ffective futility monitoring to stop the trial earlier when the drug is
ot good enough. As seen in Table 3, PET0 is actually relatively higher
o stop the trial earlier. On average, the probability of early stopping
hen the drug is not good enough is 0.714. It implies that our futility
onitoring works well across all scenarios.

As sensitivity analyses, we evaluated the sensitivity of the proposed
wo-stage design to follow-up time and accrual rate. Back to the setting
f the second scenario in Table 1, i.e., 𝐻0 ∶ 𝜙0 = 3 and 𝐻𝑎 ∶ 𝜙1 = 6, we
aried the follow-up time 6, 9, 12, 15, 18, 21, 𝟐𝟒, 27, 30, 36 months and ac-
rual rate 0.5, 0.7, 0.9, 𝟏.𝟎𝟒, 1.1, 1.3, 1.5, 1.7, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10,11,
3, 15, 17 patients per month to reflect the different clinic situations. We
eplicated 10,000 times and reported the operating characteristics, such
s EN0, 𝛼̂, and 𝛽, of the two-stage design using the identified decision
ule with 𝑛1 = 17, 𝑡1 = 3.692, 𝑛2 = 29, 𝑡2 = 4.050, and 𝑡∗ = 4.453.
he results are summarized in Fig. 3. It shows that the proposed two-
tage design is robust to the follow-up time but impacted by the accrual
ate. When the accrual rate is high (i.e., patients are accrued quickly),
t is less likely to observe the median at interim because of few events,
nd we do not perform an early stopping test but continue the trial to
he second stage. Specifically, in the figure, we observed that the black
olid line indicating the expected sample size under the null hypothesis
uddenly increases when the accrual rate is higher than 2 patients per
onth and then reaches the close value to the total sample size of 46.
s described in Fig. 3, even though the proposed design was impacted
y the accrual rate, error rates are generally controlled in most cases.
pecifically, when we varied the accrual rate, the overall type I error
ate ranges from 0.0166 to 0.0496, and the overall type II error rate
anges from 0.105 to 0.219.
5

p

urther investigations for accrual distributions and true survival
istributions

As a further investigation of the proposed method, we considered
hree different accrual distributions from Table 3: (1) uniform accrual
hich ranges from 0 to 3 (2) nonhomogeneous Poisson process with

low accrual rate (i.e., 0.5 patients per month) at the first stage and then
ast accrual rate (i.e., 1.5 patients per month) at the second stage (3)
onhomogeneous Poisson process with fast accrual rate (i.e., 3 patients
er month) at the first stage and slow accrual rate (i.e., 0.5 patients per
onth) at the second stage. Using the decision rules in Tables 1 and 4

hows the simulation results with the different accrual distributions. We
ncluded the results of Table 3 assuming the homogeneous accrual rate
ollowing the Poisson process for the comparison of the performance.

e observed that the proposed method works well to preserve the error
ates at the target rates regardless of the accrual distributions.

We learned several lessons from the simulation studies. As seen in
able 4, the proposed design using the decision rule (𝑛1, 𝑡1, 𝑛2, 𝑡2)
orks well once the median survival exists at the interim. However,
hen the median survival does not exist at the interim, the proposed
esign using the practical consideration, i.e., (𝑛1, 𝑡1, 𝑛2, 𝑡2, 𝑡∗), works
ell. For example, suppose that we consider the hypothesis test of the
ull median of 8 months versus the alternative median of 17 months,
nd the accrual rate is fast in the first stage and then low in the
econd stage. We could have trouble observing the median survival at
nterim because of the fast accrual rate, and we observed the overall
ype I error rate of 0.057 when (𝑛1, 𝑡1, 𝑛2, 𝑡2) was used. However,

following the practical suggestion using the cutoff 𝑡∗ when the median
was not observed at interim, both type I and II error rates are controlled
(i.e., 𝛼̂ = 0.012 and 𝛽 = 0.135). This illustrates how to use the proposed

ethod for the practice. Using the cutoff 𝑡∗ is helpful but it might
e stringent to apply to all cases. As seen in Table 3, the rejection

∗
robability decreases by replacing 𝑡2 with 𝑡 . Therefore, we strongly
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Table 4
Simulation results considering different accrual distributions when the hypothesis
testing of median survivals 𝜙0 months versus 𝜙1 months is conducted based on target
error rates of 𝛼 = 0.05 and 𝛽 = 0.2.
𝜙0 𝜙1 𝛼̂ 1 − 𝛽 EN0 EN𝑎 PET0 PET𝑎

Accrual rate follows from homogeneous Poisson process
3 5 0.043 0.864 43.6 75.9 0.711 0.112
3 6 0.051 0.869 25.5 42.8 0.708 0.110
3 7 0.041 0.849 18.6 35.3 0.786 0.144
8 14 0.046 0.841 38.0 63.0 0.705 0.137
8 17 0.039 0.805 25.4 41.8 0.684 0.187
10 17 0.044 0.835 41.7 67.4 0.688 0.140

Accrual rate follows from uniform distribution
3 5 0.046 0.855 42.7 75.6 0.728 0.118
3 6 0.048 0.879 25.4 43.1 0.709 0.099
3 7 0.039 0.866 18.1 35.7 0.802 0.126
8 14 0.047 0.857 37.4 63.8 0.719 0.118
8 17 0.035 0.828 23.0 42.5 0.757 0.166
10 17 0.043 0.851 40.8 68.2 0.707 0.124

Accrual rate is slow in the first stage and then
fast in the second stage

3 5 0.043 0.863 43.5 75.9 0.712 0.113
3 6 0.044 0.878 25.4 43.0 0.709 0.103
3 7 0.040 0.866 18.3 35.7 0.794 0.126
8 14 0.045 0.855 37.4 63.7 0.718 0.121
8 17 0.039 0.830 22.9 42.6 0.759 0.163
10 17 0.049 0.854 41.1 68.3 0.699 0.121

Accrual rate is fast in the first stage and then
slow in the second stage

3 5 0.048 0.849 43.7 75.3 0.710 0.124
3 6 0.049 0.854 25.9 42.3 0.693 0.127
3 7 0.039 0.844 20.4 35.1 0.714 0.149
8 14 0.049 0.822 45.1 62.5 0.544 0.149
8 17 0.057 0.909 37.0 45.5 0.334 0.076
8 17a 0.012 0.865 37.5 45.4 0.318 0.078
10 17 0.049 0.838 52.9 68.0 0.450 0.129

a Obtained from using practical consideration with 𝑡∗ instead of 𝑡2 when the median
𝑍1 does not exist at the interim.

suggest biostatisticians run simulations with the determined decision
rules, (𝑛1, 𝑡1, 𝑛2, 𝑡2) and (𝑛1, 𝑡1, 𝑛2, 𝑡2, 𝑡∗), to ensure that which decision
rule is appropriate for the given accrual rate, hypothetical values, and
target errors.

The proposed method is applicable to any parametric survival distri-
bution with the density function 𝑓 (𝑦) in order to determine the decision
rules using (1)–(4). We considered non-exponential survival assump-
tions such as uniform survivals or Weibull survivals with an increasing
hazard function. Using the simulation setting used for Table 3, the
simulation results are provided in Table 5. The proposed method works
well to control error rates regardless of the parametric distribution of
the survivals.

Comparison with existing methods
Lastly, we compared the proposed two-stage design (called METTSS)

with existing two-stage designs such as (1) a restricted KJ design,
r-KJ, which tests for survival curves based on one-sample log-rank
test [11]; (2) a two-stage design minimizing expected sample size
called OES [14]; (3) a two-stage design minimizing the expected total
study length called OETSL [14]. The r-KJ uses one-sample log-rank
test statistics proposed by Kwak and Jung [10], and both OES and
OETSL use the normalized Z-statistic to test and determine decision
rules at each stage. The methods of r-KJ, OES, and OETSL require
specifying the clinically meaningful time point. In our simulations,
we used 6 months. The null and alternative values of the 6 months
survival probability were determined by the survival distribution with
hypotheses 𝜙0 and 𝜙1, respectively. For the proposed two-stage design

ETTSS, we considered three designs assuming exponential, uniform,
nd Weibull survivals. The decision rules for each parametric survival
ssumption are present in Tables 1 and 5, and Appendix (See Table 7).
6

s

We assumed the accrual rate is 1.04 patients per month and the
follow-up time is 24 months.

Table 6 provides the comparison results in terms of EN0 and PET0
for hypothesis tests. Note that r-KJ does not restrict to certain sur-
vival distributions but specifies the hazard ratio and 6-month survival
probability from the exponential distribution. Both OES and OETSL
assume the Weibull survivals. In most cases, METTSSW used a smaller
expected sample size and stopped the trial early for futility when
therapeutic intervention is not effective. We observed that METTSSW,
OES, and OETSL yielded very similar values of EN0, but METTSSW
led to smaller PET0 than OETSL. Specifically, when 𝜙0 = 3, OETSL
topped the trial early with an average of 74.7% while METTSSW led
o smaller PET0 of 55% on average. This is because METTSS designs
assed the interim monitoring when the median did not exist, which
ould lead to smaller PET0 when the true median is large enough and
he sample size is small. So, the quantitative difference in PET0 is
ot much meaningful to compare. We also found that the benefit of
sing METTSS becomes greatly increasing as the null median is large.
nder METTSS assuming exponential survivals, on average 29.2, 35.2,
3.7 patients were expected to be tested for 𝜙0 = 3, 6, 10, respectively;
nder METTSS assuming uniform survivals, on average 14.3, 18.8, 38.1
atients were expected to be tested for 𝜙0 = 3, 6, 10, respectively; under
ETTSSW, on average 8.8, 11.7, 22.7 patients were expected to be

ested for 𝜙0 = 3, 6, 10, respectively; under r-KJ, on average 20.0, 39.4,
122.5 patients were expected to be tested for 𝜙0 = 3, 6, 10, respectively;
under OES, on average 8.4, 19.2, 51.7 patients were expected to be
tested for 𝜙0 = 3, 6, 10, respectively; and under OETSL, on average
.7, 19.5, 51.8 patients were expected to be tested for 𝜙0 = 3, 6, 10,
espectively.

. An example trial

To illustrate the application of the sample size determination for a
wo-stage design, we consider a study with ClinicalTrials.gov Identifier
CT00871923. The goal of the study was to determine the effect
f combining whole brain radiation therapy with Tarceva (Erlotinib
ydrochloride) in patients with brain metastases from Non-Small Cell
ung Cancer. The historical controls are patients who have not met
riteria (1) Karnofsky Performance Status Scale (KPS) < 70 with an
verage survival of 2.3 months or (2) KPS > 70 and age < 65 years
o live approximately 7.1 months. They have an average survival of
.2 months, which indicates a median survival of 2.9 months. Inves-
igators assumed that survival times are exponentially distributed and
he therapeutic approach will improve the mean survival by 43% to 6
onths, which indicates a median survival of 4.2 months. The study

tarted on March 26, 2009, and was completed to collect final data for
he primary outcome measure on December 4, 2019. The study results
n ClinicalTrials.gov show a median survival of 11.8 months with a
5% confidence interval (7.4, 19.1) based on 40 patients treated with
arceva after radiation therapy completed.

We redesigned the trial with a two-stage design using METT. Using
ur shiny application with 𝜙0 = 2.9 and 𝜙1 = 11.8, we obtained 𝑛1 = 6,
1 = 5.556, 𝑛2 = 19, and 𝑡2 = 4.276 based on type I error rate of 0.05
nd type II error rate of 0.2. At the interim, based on 6 subjects, if the
bserved median event time is smaller than or equal to 5.556 months,
e stop the study for futility. Otherwise, we additionally accrue 19
atients for the second stage. At the end of the trial, based on all 25
ubjects, if the observed median event time is larger than 4.276 months,
e reject a null hypothesis.

The study NCT00871923 was designed with a uniform accrual rate
f 1.7 patients per month and a 9-month follow-up. Using the infor-
ation on the accrual rate and follow-up, we conducted simulations

o evaluate the two-stage design. It led to the overall type I error rate
f 0.027 and power of 82.4% to detect the improvement of median

urvivals from the intervention.
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Table 5
Decision rules and operating characteristics of two-stage design when survivals are assumed to follow non-exponential
distributions. The hypothesis testing of median survivals 𝜙0 months versus 𝜙1 months is conducted based on target error
rates of 𝛼 = 0.05 and 𝛽 = 0.2.

𝜙0 𝜙1 Decision rule

𝑛1 𝑡1 𝑛2 𝑡2 𝑡∗

Uniform 3 5 14 3.432 22 3.822 4.077
3 6 8 3.666 14 4.052 4.424
3 7 6 4.169 13 4.132 4.745
8 14 12 9.558 21 10.291 11.102
8 17 7 10.491 15 10.805 12.161
10 17 13 11.914 25 12.668 13.678

Weibull 3 5 7 3.465 13 3.796 4.073
3 6 4 3.854 10 3.951 4.453
3 7 3 3.986 6 4.187 4.780
8 14 6 9.552 12 10.237 11.164
8 17 4 10.641 7 10.862 12.245
10 17 7 11.671 11 12.797 13.577

𝜙0 𝜙1 Operating characteristics

𝛼̂ 1 − 𝛽 EN0 EN𝑎 PET0 PET𝑎

Uniform 3 5 0.033 0.821 20.7 32.9 0.693 0.139
3 6 0.029 0.803 12.4 19.6 0.688 0.171
3 7 0.024 0.787 9.8 16.4 0.71 0.202
8 14 0.031 0.786 20.5 29.2 0.595 0.180
8 17 0.032 0.851 16.8 20.1 0.350 0.124
10 17 0.030 0.788 24.5 33.5 0.541 0.180

Weibull 3 5 0.036 0.804 11.6 17.9 0.644 0.165
3 6 0.034 0.810 8.4 12.2 0.559 0.176
3 7 0.045 0.863 6.3 8.3 0.446 0.117
8 14 0.043 0.866 14.6 16.8 0.284 0.102
8 17 0.051 0.932 9.8 10.7 0.175 0.040
10 17 0.047 0.872 15.3 17.1 0.242 0.082
s
t
t
𝛽

a
s

s
o

Table 6
Comparison of the expected sample size and probability of early termination under
the null hypothesis with existing designs. The hypothesis testing of median survivals
𝜙0 months versus 𝜙1 months is conducted based on target error rates of 𝛼 = 0.05 and
𝛽 = 0.2. ‘‘Exp" indicates an exponential distribution.
𝜙0 𝜙1 EN0

METTSS r-KJ OES OETSL

Exp Uniform Weibull

3 5 43.6 20.7 11.6 29.7 9.8 10.6
3 6 25.5 12.4 8.4 17.6 6.9 8.4
3 7 18.6 9.8 6.3 12.8 −∗ 7.0
6 9 66.5 32.6 18.1 74.5 27.6 27.8
6 11 32.6 16.7 11.0 37.5 18.5 18.8
6 13 22.5 14.5 9.8 25.5 15.8 16.2
6 15 19.1 11.4 7.9 19.9 14.9 15.3
10 13 153.8 74.6 40.5 250.0 −∗∗ −∗∗

10 15 67.3 33.9 21.2 114.4 64.7 64.8
10 17 41.9 24.7 15.4 72.4 48.7 48.8
10 19 31.8 19.3 13.5 53.2 41.6 41.7

𝜙0 𝜙1 PET0

METTSS r-KJ OES OETSL

Exp Uniform Weibull

3 5 0.71 0.69 0.64 0.56 0.40 0.72
3 6 0.71 0.69 0.56 0.54 0.18 0.76
3 7 0.79 0.71 0.45 0.54 –a 0.76
6 9 0.66 0.69 0.55 0.57 0.63 0.70
6 11 0.71 0.58 0.34 0.57 0.58 0.70
6 13 0.70 0.50 0.28 0.56 0.58 0.71
6 15 0.68 0.36 0.19 0.55 0.56 0.71
10 13 0.65 0.66 0.66 0.57 –b –b

10 15 0.65 0.65 0.38 0.57 0.66 0.68
10 17 0.68 0.53 0.24 0.57 0.65 0.68
10 19 0.70 0.36 0.15 0.59 0.65 0.69

a Not applicable because all patients can be accrued before the event time.
b Not applicable because sample size exceeds specified accrual rates/time.
7

5. Discussion

The median event time test proposed by Park [15] provides a valu-
able tool for study developers to determine the required sample size in
order to achieve sufficient power (at least 1 − 𝛽) at a significance level
of 𝛼 for hypothesized median survivals. This approach is appealing due
to its simplicity in decision-making and the ease of understanding the
drug’s efficacy based on the median event time. However, the method
determines the sample size and threshold through the numerical search,
which would require much time to search over the fine grid and be a
computational burden. In this article, we addressed this challenge and
propose explicit formulas for calculating the sample size and determin-
ing the threshold for the decision rules. We evaluated the performance
of the proposed method in various clinical scenarios, considering the
presence of censoring events to reflect the characteristics of the time-
to-event endpoint. Simulation studies demonstrated that the proposed
method effectively maintains the overall type I and II error rates and
performs favorably compared to existing methods.

The design parameters 𝛼1 and 𝛽1 are searched over the grids to find
the optimal pair minimizing the expected total sample size under the
null hypothesis. The searching algorithm can be modified by applying
the error spending function such as the O’Brien–Fleming spending
function [18] to specify 𝛽1. It means that the expected total sample
ize becomes a function of 𝛼1 for the fixed 𝛽1. The idea of using
he error spending function allows us to extend the two-stage design
o multi-stage clinical trials by splitting the type II error rate 𝛽 into
𝑘, 𝑘 = 1,… , 𝐾, where 𝐾 indicates the number of analyses and 1 − 𝛽𝑘

indicates the probability of correct decision at the 𝑘th analysis under
the alternative hypothesis, i.e., ∑𝐾

𝑘=1 𝛽𝑘 = 𝛽. In addition, the idea can
lso be used to extend the two-stage design used for Phase II to group
equential design for Phase III randomized controlled trials.

Since the proposed method uses the large sample theory of order
tatistics, it is likely to result in a large maximum sample size. To
btain a smaller maximum sample size, the minimax approach can be
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Table 7
Decision rules for two-stage design and operating characteristics for hypothesis testing of median survivals 𝜙0 months versus 𝜙1 months at
target error rates of 𝛼 = 0.05 and 𝛽 = 0.2.

𝜙0 𝜙1 Decision rule Operating characteristics

𝑛1 𝑡1 𝑛2 𝑡2 𝛼̂ 1 − 𝛽 EN0 EN𝑎 PET0 PET𝑎

Exp 6 9 43 6.581 69 7.345 0.043 0.864 66.5 105.8 0.659 0.090
6 11 21 7.274 40 7.823 0.042 0.843 32.6 55.6 0.710 0.136
6 13 14 7.826 28 8.197 0.049 0.827 22.5 37.5 0.695 0.16
6 15 11 8.650 25 8.373 0.042 0.817 19.1 31.5 0.677 0.179
10 13 94 10.63 173 11.45 0.047 0.846 153.8 249.1 0.654 0.104
10 15 43 10.97 69 12.24 0.047 0.849 67.3 105.0 0.648 0.102
10 17 27 11.70 47 12.76 0.044 0.836 41.9 67.6 0.684 0.137
10 19 20 12.66 39 13.09 0.043 0.814 31.8 52.2 0.696 0.174

Uniform 6 9 20 6.742 40 7.274 0.034 0.806 32.6 53.6 0.685 0.159
6 11 10 6.914 16 7.935 0.030 0.789 16.7 23.2 0.582 0.175
6 13 7 8.119 15 8.104 0.026 0.815 14.5 19.5 0.497 0.166
6 15 5 8.072 10 8.548 0.031 0.854 11.4 13.8 0.361 0.117
10 13 44 10.71 91 11.42 0.040 0.813 74.6 122.2 0.664 0.141
10 15 20 11.24 40 12.12 0.036 0.780 33.9 52.6 0.652 0.185
10 17 13 11.91 25 12.67 0.034 0.793 24.7 33.6 0.531 0.177
10 19 9 11.89 16 13.29 0.035 0.825 19.3 22.9 0.356 0.131

Weibull 6 9 10 6.491 18 7.345 0.039 0.783 18.1 24.9 0.552 0.170
6 11 5 6.932 9 7.903 0.042 0.85 11.0 13.0 0.337 0.112
6 13 4 8.438 8 8.055 0.043 0.916 9.8 11.4 0.281 0.071
6 15 3 8.936 6 8.373 0.050 0.943 7.9 8.7 0.191 0.042
10 13 24 10.79 48 11.40 0.036 0.790 40.5 63.8 0.656 0.171
10 15 10 10.82 18 12.24 0.042 0.798 21.2 25.4 0.377 0.147
10 17 7 11.67 11 12.80 0.047 0.868 15.4 17.0 0.237 0.088
10 19 5 12.66 10 13.06 0.047 0.925 13.5 14.5 0.152 0.046
F

A

d
a
a
d
t

considered, but it would require a constraint because the maximum
sample size depending on 𝛽2 is attained when 𝛽2 goes to 𝛽 (i.e., 𝛽1 goes
to 0).

As a future study, it is of interest to investigate the decision rule of
the METT describing in terms of the number of events rather than the
number of patients. This would address the practical issue of not being
able to observe the median at the interim. Recently, Kundu et al. [19]
provides the variance of the sample median based on a certain number
of events for Weibull and exponential survivals. The idea of Kundu
et al. [19] can be applied to improve the proposed monitoring rule. It
is also interesting to extend the median event time test in the Bayesian
framework and apply it to the two-stage adaptive clinical trials.

Supplementary materials

R codes are provided at https://github.com/funnypyh/METTSS and
a shiny application is available at https://yeonhee.shinyapps.io/METT
SS/.
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Appendix A. Derivation of sample size determination

The details of the derivation of (1)–(4) are given as follows. By
the definition of 𝛼1 and 𝛽1, we have Pr(𝑍1 ≤ 𝑡1|𝐻0) = 1 − 𝛼1 and
Pr(𝑍1 > 𝑡1|𝐻𝑎) = 1 − 𝛽1. Using the asymptotic normality of 𝑍1 under
the null hypothesis, we have

𝑡1 − 𝜙0
√

0.25
𝑛1{𝑓 (𝜙0)}2

= 𝑧𝛼1 ,

which implies Eq. (1). Similarly, using the asymptotic normality of 𝑍1
under the alternative hypothesis, we have

𝑡1 − 𝜙1
√

0.25
𝑛1{𝑓 (𝜙1)}2

= −𝑧𝛽1 ,

which implies that

𝑡1 =
−0.5𝑧𝛽1

√

𝑛1𝑓 (𝜙1)
+ 𝜙1. (7)

rom Eqs. (1) and (7), we have

0.5𝑧𝛼1
√

𝑛1𝑓 (𝜙0)
+ 𝜙0 =

−0.5𝑧𝛽1
√

𝑛1𝑓 (𝜙1)
+ 𝜙1.

We solve the last equation for the sample size 𝑛1. Thus, we obtain
the formula in (2). The derivation of (3) and (4) is the same as the
derivation of (1) and (2). It uses the fact that Pr(𝑍2 > 𝑡2|𝐻0) = 𝛼 and
Pr(𝑍2 > 𝑡2|𝐻𝑎) − Pr(𝑍1 ≤ 𝑡1|𝐻𝑎) = 1 − 𝛽.

ppendix B. Decision rules of METT for Table 6

We provided in Table 7 the decision rule of the proposed two-stage
esign for the hypothesis tests we considered in the comparison. We
lso reported the operating characteristics for the different parametric
ssumptions of the survivals such as exponential, uniform, and Weibull
istribution. Note that the decision rule and operating characteristics of
he two-stage designs for the first three hypothesis testings in Table 6
re described in Tables 1 and 5.
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