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Abstract

Objective—Investigate role of dose/duration of zoledronic acid (ZOL), a powerful anti-resorptive 

(pAR), on prevalence of medication-related osteonecrosis of the jaw (MRONJ) in rice rats 

(Oryzomys palustris), a species with natural susceptibility to food impaction-induced localized 

periodontitis (FILP). We hypothesize that ZOL induces MRONJ lesions in rice rats with FILP, and 

that the prevalence of MRONJ rises with increasing dose and duration of ZOL treatment.

Methods—We performed a toxicology experiment with clinically-relevant doses of ZOL in 

female rats (N = 230) fed standard (STD) rodent chow. At age 4 weeks (baseline), 12 rats were 

necropsied. The rest were randomized into five groups that began to receive 0, 8, 20, 50 or 125 

µg/kg ZOL IV/q 4 weeks. After 12, 18, 24 and 30 weeks, subgroups (N = 9–16) from each of the 

dose groups were necropsied. High-resolution macroscopic photos of all jaw quadrants were given 

a gross quadrant grade (GQG) (0–4 or MRONJ) that classified FILP lesion severity and 

determined presence of gross MRONJ. Quadrants with GQG ≥ 1 were examined 

histopathologically. Logistic regression analysis (ZOL dose/duration) of MRONJ prevalence was 

completed.

Results—We found: 1) 75% of 0 µg/kg ZOL rats developed FILP lesions; 2) baseline rats and 

rats treated with 0 µg/kg ZOL had no MRONJ; 3) 29 gross MRONJ cases were identified; 4) all 

gross MRONJ cases were confirmed histopathologically by the observation of exposed necrotic 

bone, and 53 new cases were discovered (total = 82); 5) ZOL dose (P < 0.001), but not duration (P 
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= 0.326), was a significant predictor of MRONJ prevalence; 6) 13% prevalence of gross MRONJ 

among all rats, with 22% prevalence among rats exposed to ZOL oncologic doses (20–125 µg/kg); 

7) 38% prevalence of histopathologic MRONJ among all rats, with 73% prevalence among rats 

exposed to ZOL oncologic doses.

Conclusions—This is the first experiment to show a dose response relationship between 

clinically relevant doses of ZOL and MRONJ prevalence.
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1. Introduction

Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe adverse event 

in humans primarily associated with powerful anti-antiresorptive (pAR) drugs, including 

nitrogen-containing bisphosphonates (N-BPs) [1–5] and receptor activator of NFκB ligand 

(RANKL) antibodies [6–8]. It is also associated with anti-angiogenic therapies, such as 

tyrosine kinase and vascular endothelial growth factor inhibitors [9–11]. The American 

Association of Oral and Maxillofacial Surgeons (AAOMS) defines MRONJ as exposed 

bone, or bone that can be probed through a fistula in the maxillofacial region that has 

persisted for more than eight weeks in patients with no history of radiation therapy to the 

jaws, no obvious metastatic disease in the jaws, and a history of pARs and/or anti-

angiogenic therapy [12].

The role of the medications implicated in the etiology and pathophysiology of MRONJ has 

not been fully elucidated. Randomized, prospective human studies indicate that oncologic 

doses of ZOL, and longer duration of ZOL treatment, increase MRONJ incidence. For 

instance, a trial of 3300 women taking oncology doses of ZOL, reported increasing 

cumulative MRONJ incidence in the ZOL group, with a maximum of 2.1% after six years 

treatment [13–15], compared to a 0.0% cumulative incidence in the non-ZOL group. In 

comparison, a trial of over 8000 women taking ZOL for osteoporosis (OP) reported a 

cumulative MRONJ incidence of only ~0.01% with a dose that was only 10-fold lower than 

that used in oncology patients [16]. Despite these findings, the dose relationship between 

ZOL and MRONJ incidence appears to be disproportionate, given the ~200-fold lower 

incidence in OP patients that occurs at a dose only 10-fold lower than the oncology doses. 

Furthermore, the relatively low prevalence of MRONJ among patients receiving even the 

highest doses of pARs [13–15], raises a strong likelihood that risk factors other than the 

medications themselves are crucial [17,18].

The localization MRONJ to the jaws suggests that pre-existing or coinciding oral risk factors 

play an important role in the disease. Multiple preclinical experiments have already 

investigated aspects of event-related MRONJ by observing tooth extraction-related healing 

in pAR-treated small animals [19–27]. Reducing event-related MRONJ incidence by 

strategically timing tooth extractions in pAR patients is a highly successful recommendation 

already in place [28,29]. In contrast, spontaneous MRONJ, which accounts for one third of 

all cases, is inherently more difficult to prevent and treat due to the absence of an identifiable 

Messer et al. Page 2

Bone. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



precipitating event. Spontaneous MRONJ, appears to be associated with oral inflammation 

and infection, including periodontitis (PD) and periapical infection [27,30–34]. PD is a 

bacteria-driven inflammatory disease of the periodontium, and is an important risk factor for 

both spontaneous and event-related MRONJ [1,4,12,28,29]. However, there have been no 

prospective studies to formally investigate the dose and duration relationship between pARs 

and MRONJ in animals affected by oral infection or inflammatory conditions, such as PD.

The rice rat (Oryzomys palustris) spontaneously develops two distinctive types of PD. When 

fed a high sucrose casein diet (HSC), rice rats develop a well-described generalized form of 

PD by age 12–18 weeks [35–39]. Furthermore, when combined with intravenous (IV) 

oncologic doses of pARs (clodronate, alendronate, or ZOL), HSC-fed rice rats develop 

MRONJ-like lesions in alveolar bone [32,40]. More recently, rats fed standard rodent chow 

(STD) have been shown to develop food impaction-induced localized periodontitis (FILP) 

[41], which is distinctive from the generalized PD seen in HSC-fed rice rats. FILPs occur 

with 1) high prevalence of ~60–80% between ages 16–34 weeks; 2) consistent location at 

the palatal aspect of the interdental space between theM2M3 maxillary molars; and 3) 

relatively stable size and severity level in untreated rats. These features suggest that the FILP 

rice rat model could be used in toxicology studies that address the interaction of oral 

infection and inflammation with pARs, or other medications, that may cause MRONJ.

The purpose of this study was two-fold: 1) generate pre-clinical evidence that a pAR induces 

MRONJ in FILP-affected rats; and 2) conduct a toxicology study in FILP-affected rats that 

examines the relationship of MRONJ prevalence to increasing dose and duration of pAR 

treatment. We hypothesize that ZOL induces MRONJ lesions in rice rats with FILP and that 

the prevalence of MRONJ rises with increasing dose and duration of ZOL.

2. Materials and methods

2.1. Animal care

A monogamous continuous-breeding system was used to generate pups for the studies. At 

weaning (age 4 weeks), clinically normal females [BW ≥ 30 g and body condition score 

(BCS) ≥ 3.0] [42] were randomized into the experiment, with efforts made to distribute 

littermates among different groups. Experimental animals ate STD diet (Envigo Teklad 

LM-485 (irradiated 7912) Rodent Diet; Tampa, FL USA). BW was measured bi-weekly. 

Rats with BW loss and/or BCS deterioration were offered gel diet and supplemental fluids. 

Breeder animals ate rodent breeder chow (Envigo Teklad, irradiated 2919). All rats were 

housed (2–5 rats per cage) in static filter top cages (area: 143 in.2) with pine shavings as 

bedding and continuous access to food and water. The housing room was maintained at 68–

79 °F with an average humidity of 30–70% and a 12:12 h light:dark cycle. Breeder pairs 

were housed in the same conditions as experimental rats, but with a 14:10 h light:dark cycle. 

The Animal Care Services resource at the University of Florida (UF) is an AAALAC-

accredited animal care and use program. Both protocols were approved by the UF 

Institutional Animal Care and Use Committee (IACUC).
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2.2. Study design

2.2.1. Study 1: effects of an oncologic dose of ZOL—The extent that MRONJ 

lesions could be induced in STD diet rice rats prone to FILP lesions was examined. We 

hypothesized that STD-fed rice rats IV-injected with oncologic ZOL (80 µg/kg) every 4 

weeks (q4wk) would develop MRONJ. Female rice rats (n = 48, age 4 weeks) were fed STD 

diet and injected in the tail vein with either vehicle (saline, ZOL0, N = 24) or ZOL80 (N = 

24) starting at age 4 weeks, and then every four weeks, thereafter. Half the rats from each 

group were randomly euthanized after 12 weeks (age 16 weeks) and the remainders were 

euthanized after 18 weeks (age 22 weeks).

2.2.2. Study 2: effects of ZOL dose and duration on MRONJ prevalence—Two 

hundred thirty female rice rats were BW-randomized into a baseline necropsy group (N = 

12, age 4 weeks), or one of five dose groups (N = 43–54) (Fig. 1). All groups were fed STD 

diet and received IV injections of 0, 8, 20, 50 or 125 µg/kg of ZOL q4wk, starting at age 

four weeks [43]. These doses encompass the osteoporosis (8 µg/kg) and oncologic doses 

(20–125 µg/kg) of ZOL (see below).

After 12, 18, 24 and 30 weeks of treatment, duration sub-groups (N = 9–16) of rats from 

each of the five dose groups were necropsied. Rats were pre-assigned to dose groups at the 

start of the experiment, but not to duration sub-groups. Each duration subgroup was 

populated with rats that had lost ≥15% BW from its maximum, in order to comply with 

humane endpoints specified in the IACUC protocol. The rest of the group was completed by 

BW-randomization. No more than 25% of the rats in each subgroup were preselected as a 

result of reaching endpoint criteria for euthanasia due to BW lost.

2.3. ZOL dose and duration explanation

The minimum dose of ZOL that fully blocks ovariectomy-induced bone loss in adult rats is 8 

µg/kg IV q4wk [44], but there are no predictive animal studies that have tested oncology 

outcomes of ZOL, such as prevention of bone metastases and hypercalcemia of malignancy. 

The ZOL oncology dose for Study 1 was 80 µg/kg BW, 10-fold higher than the OP ZOL 

dose. This was estimated from the 9.6:1 ratio (roughly 10-fold) of oncologic (48 mg IV/yr) 

to OP (5 mg IV/yr) ZOL in human medicine. The doses for Study 2 ranged from 8 to 125 

µg/kg, to include both the OP dose and several doses in an oncologic range (20–125 µg/kg). 

ZOL was dissolved in normal saline (pH 7.2) and injected at 1 ml/kg BW IV. Zoledronic 

acid was kindly provided by Novartis Pharma AG (Basel, Switzerland).

Although our previous findings indicate that MRONJ lesions could be induced by 80 µg/kg 

ZOL in HSC diet rice rats after 18–22 weeks, the duration of this study was extended to 30 

weeks since duration and cumulative exposure appear to play important roles in MRONJ. 

Cumulative dose, not dosing interval, is the primary determinant of N-BP efficacy [45]. Our 

oncology dose represents pre-clinical dose-interval combinations that yield a cumulative 

dose of 240 µg/kg quarterly or 40 µg/kg 2×/mo.
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2.4. Euthanasia and tissue collection

Rats were euthanized by CO2 inhalation followed by cervical dislocation. Maxillae and 

mandibles were excised and trimmed, leaving gingiva and oral mucosa intact. When 

necessary, saline irrigation was used to remove excessive accumulation of bacterial plaque 

that obscured molars. High resolution (HR) photographs from the ventral aspect of each 

hemi-maxilla (Fig. 2) and medial aspect of each hemimandible (Supplemental Fig. 1) were 

taken with a digital camera (Canon EOS 6D; Tokyo, Japan) attached to a macro lens (Canon 

EF 100 mm 1:2.8; Tokyo, Japan). The right femur was disarticulated from the acetabulum 

and separated from the tibia. All tissue samples were fixed in freshly prepared 4% 

paraformaldehyde at 4 °C for 48 h then transferred to 70% ethanol for storage at 4 °C.

2.5. Gross analysis of oral lesions

2.5.1. Identification and grading of gross oral lesions—Photographs of jaws were 

analyzed independently in a blinded fashion by three observers (JGM, DBK, JIA). 

Quadrants were assigned a gross quadrant grade (GQG) (0–4, or MRONJ) (Table 1). 

Photographs of representative maxillae and mandibles at each GQG are shown in Fig. 2A 

and Supplemental Fig. 1A, respectively. Pocket depth or clinical attachment level evaluation 

by probing was not completed. When GQG was not consistent between investigators jaws 

were re-examined as a group to reach consensus. When at least one quadrant from a rat had 

a GQG ≥ 3 that included an area of exposed bone, the rat was considered positive for gross 

MRONJ.

2.5.2. Quantification of gross oral lesion area—The areas (mm2) of gross oral 

lesions in each quadrant with GQG ≥ 1 were measured using the outline tool as previously 

described using AxioVision SE64 Rel software version 4.9.1 (Carl Zeiss, Germany) [41]. 

Total maxillary area (Tt.Mx.Ar) was demarcated mesially by a perpendicular line mesial to 

M1; caudally, a perpendicular line distal to M3, dorsally, a line along the gingival margins, 

and approximating the mesial and distal lines; and ventrally, a longitudinal line, along the 

sagittal palatal line, and approximating the mesial and distal lines (Fig. 2B). Total hemi-

mandible area (Tt.Mb.Ar) was demarcated mesially by a perpendicular line mesial to M1; 

caudally, a perpendicular line distal to M3, dorsally, a line along the gingival margins, and 

approximating the mesial and distal lines; and ventrally a longitudinal line along the dorsal 

border of the incisor, and approximating the mesial and distal lines (Supplemental Fig. 1B). 

FILP area (FILP.Ar), lesion area (Le.Ar), MRONJ lesion area (MRONJ.Ar), Tt.Mx.Ar, and 

Tt.Mb.Ar were collected. FILP.Ar, Le.Ar, and MRONJ.Ar are then expressed as a 

percentage of Tt.MxAr or Tt.Mb.Ar (=100 * FILP.Ar or MRONJ.Ar/Tt.[Mx or Mb]Ar). Fig. 

2A and Supplemental Fig. 1A show panels of photos that include representative cases of 

maxillary and mandibular GQG scores (0–4) and MRONJ lesions, respectively. All lesions 

(n = 343; Supplemental Table 1) were measured in random order by one investigator blinded 

to GQG (JIA).

2.6. Histopathological assessment of oral lesions

2.6.1. Specimen selection, preparation, and examination of jaw quadrant 
sections—All quadrants containing a gross MRONJ lesion, and any quadrant with GQG 
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1–4 underwent histopathological examination to identify and/or confirm exposed, necrotic 

bone (see below). Quadrants were decalcified in 5% formic acid under gentle agitation for 

four weeks, with three acid changes per week. Decalcified quadrants were trimmed to 

include the molar region, surrounding alveolar bone, and, for maxillae, the hard palate. 

Tissue was paraffin-embedded, and serially sectioned in the mesio-distal plane at 5-µm 

thickness at five to six different levels for quadrant. Each level was separated by about 250 

µm. Multi-level examination of each quadrant was conducted on palatal or lingual tissues 

(one or two levels), interdental regions (M1M2, M2M3; three levels), and buccal regions 

(one level). Leica/Jung 2265 and Accu-Cut SRM 200 Sakura microtomes were used to 

section (Sakura Finetek Europe B.V, Zoeterwoude, The Netherlands). Sections were stained 

with H&E and coverslipped, and analyzed by one observer, blinded to the GQG.

2.6.2. Histological definition of MRONJ lesion—MRONJ lesions were defined 

histologically as bone that was both exposed and necrotic in at least one level within a 

quadrant. Exposed bone was identified by a lack of overlying soft tissue including gingival 

epithelium, lamina propria, connective tissue, and periodontal ligament (PDL) (Fig. 5). 

Necrotic bone was defined as a region of bone matrix containing ≥10 adjacent empty 

osteocyte lacunae, or lacunae with pyknotic osteocyte nuclei, as previously described 

[46,47]. These lacunae occasionally appeared enlarged and/or contained cellular debris. 

Exposed necrotic bone was almost always associated with adherent bacterial plaque. When 

at least one quadrant in a rat was assigned a histopathologic diagnosis of MRONJ, the rat 

was considered positive for histopathologic MRONJ.

2.6.3. Histological quantification of empty osteocyte lacunae—To assess necrotic 

bone the number of lacunae that were empty or contained pyknotic nuclei were counted. 

Data collection was performed at 200× magnification in sections within a 0.15–0.25 mm2 

region of interest (ROI) that contained exposed bone matrix in an MRONJ lesion or an area 

of bone with periodontal tissue destruction and inflammation in FILP lesions with GQG ≥ 1. 

Total bone area (Tt.Ar;mm2), total number of osteocyte lacunae (#OtLc), and number of 

empty osteocyte lacunae (#Em.OtLc) were measured. The number of lacunae per bone area 

(density of osteocyte lacunae; #OtLc/mm2), number of empty lacunae per bone area 

(#Em.OtLc/mm2), and percentage of empty lacunae (100 × #Em.OtLc / #Ot.Lc) were 

calculated. For analysis, means were calculated from quadrants with 1) FILP lesions with 

GQG 1; 2) FILP lesions with GQG 2; 3) FILP lesions with GQG 3–4; 4) MRONJ lesions 

identified solely by histology; or 5) gross MRONJ lesions confirmed histologically.

2.7. Peripheral quantitative computed tomography (pQCT)

pQCT analysis of the right femur was used to verify the antiresorptive efficacy of ZOL. 

Femurs were scanned at 1 mm-thick cross sections using a Stratec XCT Research M 

instrument (v 5.40, Norland Medical Systems; Fort Atkinson, WI). Sites of interest were 5 

mm proximal to the distal end of the femur (total metaphysis), and at the longitudinal 

midpoint of the femur (mid-diaphysis). Volumetric bone mineral content (vBMD, mg), 

volumetric bone mineral density (vBMD, mg/cm3), and cortical area (mm2) were 

determined for total bone (trabecular and cortical bone at the metaphysis, and cortical bone 

at the mid-diaphysis), as previously described [48].
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2.8. Statistical analysis

Data are expressed as mean ± SD for each group, except BW which is express as mean ± 

SEM. For Study 1, Fisher's Exact test was used to assess prevalence of MRONJ lesions in 

ZOL0 and ZOL80 groups at 12 and 18 weeks. For Study 2, data were evaluated to assess 

intergroup differences using one-way ANOVA with Holm-Sidak post hoc tests for BW, 

percent of empty osteocyte lacunae, and vBMD, vBMD and cortical bone area. When 

assumptions of data normality were not met, a Kruskal-Wallis ANOVA test followed by 

Dunn's multiple comparison was applied. Multiple logistic regression was used to test the 

effects of ZOL dose/duration on MRONJ prevalence. Pearson correlation test was used to 

test for an association between FILP GQG and the area (mm2) of oral lesions. P values 

<0.05 were considered statistically significant.

3. Results

3.1. Study 1

3.1.1. ZOL0—FILP lesions were generally discrete and localized at the lingual surface of 

the interdental area of M2M3, with minimal/moderate gingival recession (Fig. 2A; GQG = 

1–3). 75% of rats had FILP lesions in at least one maxilla was after 12 and 18 weeks (Fig. 

3). FILP GQGs ranged from 1 to 3, with a median of 1 (data not shown). No differences in 

GQG or FILP.Ar/T.Ar were observed between rats on STD diet for 12 vs. 18 weeks (data not 

shown). Similar to previous findings, no FILP or PD-like lesions were observed in the 

mandible [41] (Fig. 3), and no rats developed MRONJ.

3.1.2. ZOL80—Like ZOL0, 75% of ZOL80 rats showed FILP lesions in at least one 

maxilla (Fig. 3), ranging from QGQ1–4, with median GQG2 (data not shown). FILP lesions 

tended to be larger and more severe in ZOL80 rats than in time-matched ZOL0 rats, with 

greater areas of recession/ulceration often involving the entire gingival margin of M2M3 

(Fig. 2A; GQG scores 3–4). Some ZOL80 rats also had gross oral lesions in mandibles 

similar to PD lesions that have been previously reported in rice rats [32] (Fig. 3; 

Supplemental Fig. 1A).

Unlike ZOL0 rats, ZOL80 rats had gross maxillary MRONJ lesions at 12 and 18 weeks, with 

a prevalence of 25% and 50%, respectively (Fig. 3). In maxillae, MRONJ lesions were found 

at locations where FILP lesions also developed (Fig. 2A). MRONJ lesions were never 

observed in mandibles (Fig. 3). Histopathologic analysis confirmed the existence of 

exposed, necrotic bone in all gross MRONJ cases. Prevalence of MRONJ lesions was 

associated with jaw (maxilla) and ZOL treatment (P < 0.001).

3.2. Study 2: dose and duration effects of ZOL on MRONJ prevalence

3.2.1. Prevalence of rats with gross MRONJ—No MRONJ lesions were present at 

four weeks. The prevalence of rats with MRONJ by ZOL dose and treatment duration is 

shown (Fig. 4A). ZOL dose (P < 0.001), but not duration of ZOL treatment (P = 0.297), was 

a significant predictor of MRONJ. The overall prevalence of gross MRONJ in the whole 

study was 13%. The prevalence of rats with MRONJ was 22% in rats receiving oncologic 
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doses of ZOL (≥20 µg/kg), which was significantly greater than 0 or 8 µg/kg (P < 0.001 and 

P < 0.001, respectively).

Four quadrants were missing, broken, or the HR photo was of insufficient quality for 

analysis. Supplemental Table 1 shows Le.Ar, expressed as Le.Ar/Tt.Ar, and number of GQG 
(0–4) and MRONJ lesions by arch and ZOL dose. At age 4 weeks (baseline), rats had no 

MRONJ or FILP lesions. A total of 916 jaw quadrants were given a GQG. At ages 16–34 

weeks, 573 quadrants were lesion-free (63%; 41% of maxillae and 84% of mandibles). More 

maxillary quadrants than mandibular quadrants had lesions (P < 0.001). A positive 

correlation was found between lesion area and GQG (Pearson r = 0.867), independent of 

dose and duration of ZOL (Supplemental Table 1).

56 MRONJ lesions (Supplemental Table 1) were distributed among 29 rats. There were no 

MRONJ lesions in control or OP ZOL (8 µg/kg) rats. All 29 rats with MRONJ lesions had at 

least one maxilla with an MRONJ lesion. 79% of MRONJ lesions were in the maxilla (P < 

0.001 vs mandible). Mandibular MRONJ lesions were never found without accompanying 

maxillary MRONJ lesions.

3.2.2. Histopathological analysis—FILP lesions were located primarily at the 

maxillary M2M3 interdental region (Fig. 6A and B). ZOL0 rats had FILP lesions with GQG 
≤ 3, but never had MRONJ. FILP lesions displayed substantial hyperplasia of the gingival 

epithelium; inflammatory cell infiltration of the lamina propria (Fig. 6A and B); PDL 

disruption; apical migration of the junctional epithelium; and alveolar bone crest resorption. 

Isolated, empty osteocyte lacunae were occasionally observed, but most lacunae were 

occupied by round basophilic osteocyte nuclei (Figs. 6B).

We found that 96% of quadrants with gross MRONJ lesions (54/56) contained exposed 

necrotic bone, and that all 29 rats with gross MRONJ lesions fulfilled the histopathologic 

criteria for an MRONJ positive case (Figs. 5, 6C, and D). We identified an additional 53 rats, 

not diagnosed with gross MRONJ, that had at least one quadrant with histopathologic 

features of MRONJ [GQG 1 (n = 0/100), GQG 2 (n = 15/96), 3 (n = 28/71), or 4 (n = 

10/20)].

There was a significantly higher percentage of empty osteocyte lacunae (P < 0.001) (Fig. 

6E) and a greater number of empty osteocyte lacunae/mm2 (P < 0.001) (Fig. 6F) in MRONJ 

lesions than in GQG 1–4 quadrants not diagnosed with MRONJ. No differences in these 

endpoints were found between gross and histopathologic MRONJ lesions (Fig. 6E and F).

3.2.3. Prevalence of rats with histopathologic MRONJ—Fig. 4B shows the 

prevalence of rats with histopathological MRONJ by dose and duration. The prevalence of 

rats with histopathologic MRONJ in the whole study populations was 38%. The prevalence 

of histopathologic MRONJ in rats exposed to oncologic doses of ZOL (≥20 µg/kg) was 73%, 

with most cases occurring at ≥18 weeks. Several duration groups had 100% prevalence of 

MRONJ (Fig. 4B). Only 5% of MRONJ cases occurred in rats given 8 µg/kg ZOL (OP 

dose), all at 30 weeks (Fig. 4B). ZOL dose (P < 0.001), but not duration (P=0.326), was a 

predictor of histopathologic MRONJ prevalence (Fig. 4B). Prevalence in ZOL-treated rats 
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was 31% (13/42); 62% (26/42); 57% (23/40), and 36% (20/55) at 12, 18, 24 and 30 weeks, 

respectively. To examine the effect of pre-selecting rats for necropsy due to BW loss on the 

effect of ZOL duration on MRONJ prevalence, ZOL-treated rats with BW loss were 

removed from the analysis at the 12 (n = 6), 18 (n = 16), and 24 week (n= 10) time points, 

and data were re-analyzed. When BW loss cases were removed, MRONJ prevalence was 19, 

38, 43, and 36% at 12, 18, 24, and 30 weeks, respectively, and both ZOL dose (P < 0.001) 

and duration (P = 0.017) were significant predictors of MRONJ prevalence (Supplemental 

Fig. 4). The proportion of rats with histopathologic MRONJ within each GQG was also 

determined (Supplemental Fig. 5). There were no cases of histopathologic MRONJ in 

animals with GQG 0 or 1. In rats with GQG 2, 3, and 4 the proportion of animals with 

MRONJ was about 40, 80, and 100%, respectively, at each time point.

3.2.4. Body weight—BW of rats in all experimental groups increased with age throughout 

the study, with no significant effects of ZOL (Supplemental Fig. 2A). However, when this 

study population was grouped into rats that had either gross MRONJ, histopathologic-only 

MRONJ, or PD 0, we found significantly lower BW in rats with gross MRONJ compared to 

GQG 0 rats at 12–24 weeks of ZOL treatment (Supplemental Fig. 2B). In addition, BW 

were lower in rats with histopathologic-only MRONJ, but only at week 24 of ZOL treatment 

compared with GQG0 rats (Supplemental Fig. 2B).

3.2.5. Anti-resorptive efficacy of ZOL in the femur—Total metaphyseal vBMD and 

vBMD, and cortical area were significantly greater in all ZOL groups compared to the ZOL 

0 group (P < 0.001) at all time points (Supplemental Fig. 3A–C). Cortical BMC was higher 

in groups treated with ZOL only after 18 weeks compared to ZOL 0 (Supplemental Fig. 3D). 

Total metaphyseal vBMD and vBMD; and cortical bone area and BMC were significantly 

greater at ZOL doses ≥20 µg/kg compared to ZOL dose 8 µg/kg, particularly at 24 and 30 

weeks (P < 0.05) (Supplemental Fig. 3A–D).

4. Discussion

These studies demonstrate that MRONJ can be induced in rice rats fed a STD diet when 

simultaneously given clinically relevant doses of ZOL at both the osteoporosis and oncology 

range. The MRONJ lesions in this model resemble those seen in human MRONJ, and were 

localized primarily to the same location where FILP lesions occurred. Additionally, higher 

doses of ZOL were associated with higher prevalence of MRONJ. To our knowledge, this is 

the first experiment to show a dose response relationship between clinically relevant doses of 

ZOL and MRONJ prevalence.

Our results show that the prevalence of histopathological MRONJ was 0% in the ZOL0 

group, 5% in rats given the OP dose (8 µg/kg), and 73% in rats given oncology doses of 

ZOL (20–125 µg/kg), indicating that higher doses of ZOL are associated with more 

prevalent MRONJ. MRONJ lesions were found after 12 weeks, reaching peak prevalence at 

18 weeks after 5 monthly injections of ZOL oncology doses. This treatment regimen 

produced cumulative doses of 100, 250, and 625 µg/kg for the 20, 50, and 125 µg/kg doses, 

respectively at peak prevalence. MRONJ prevalence in groups of rice rats given oncologic 

doses of ZOL was 40–100% within 18–24 weeks of treatment, and appeared to plateau 
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around the 50 µg/kg dose. Therefore, MRONJ in the rice rat FILP model occurs with 

sufficient prevalence, and in a reasonable amount of time, to allow future studies that can 

effectively address strategies to prevent or treat MRONJ.

MRONJ prevalence did not appear to be associated with duration in this study. The lower 

prevalence of MRONJ in rice rats at 30 weeks may be due to the necropsy of rats with 

greater than 15% BW loss at the earlier time points. Shorter durations may have been 

disproportionately populated with rats that required earlier necropsy, leading to an 

artificially high proportion of healthy rats at later time points, reducing MRONJ prevalence 

at 30 weeks. Moreover, analysis of MRONJ prevalence at each time point after removing 

animals with BW loss resulted in a significant duration effect on MRONJ prevalence, 

supporting this idea. These findings appear to contrast with, human studies where 

cumulative MRONJ incidence increased steadily at 39, 59, and 74 months at 0.7% [13], 

1.1% [14], and 2.1% [15], respectively. However, these clinical findings could also reflect 

new cases of event-related MRONJ related to discrete dental events (e.g., tooth extractions, 

etc.) that occurred during the follow-up period. Cases of human MRONJ have also been 

known to spontaneously heal. Therefore, the 30 week time point may have also included rats 

resistant to FILPs or with MRONJ lesions that had spontaneously healed.

Histopathological analysis revealed that MRONJ in rice rats was similar to human MRONJ 

[4,29,49–52], in that both show exposed necrotic bone with confluent areas of empty 

osteocyte lacunae that is frequently colonized by bacteria. Observation of tissues in serial 

sections were especially valuable because we were able to fully characterize the appearance 

of the lesions, identify multiple areas where necrotic bone may have existed, and therefore 

confidently determine positive MRONJ cases. Importantly, empty osteocyte lacunae were 

never present beneath fully intact gingiva. If necrotic bone had an epithelial covering in one 

level, then necrotic bone without an epithelial covering was always found in an adjacent 

level of the same quadrant. This finding may suggest that MRONJ could be present in 

persons taking pARs, under gingiva that is recessed or ulcerated that lacks overtly exposed 

bone.

Although there is no direct human equivalent to the GQG scoring system, this analysis was 

valuable as a preclinical tool to quickly identify lesion-free quadrants, and quadrants with 

gross MRONJ. Gross analysis was particularly important because visibly exposed necrotic 

bone is one of the primary criteria for the diagnosis of MRONJ in humans. Subsequent 

histopathologic examination of gross MRONJ lesions confirmed the presence of exposed 

necrotic bone in 95% of these cases, indicating that we were able to accurately identify 

MRONJ cases when animals had severe lesions with frank bone exposure. The GQG system 

was also a practical laboratory tool that enabled efficient prioritization of quadrants for 

sectioning and subsequent histopathological examination. In fact, the histopathological 

examination of less severe gross lesions (GQG 1–4) revealed nearly three-fold as many cases 

of MRONJ as gross analysis alone. GQG1 never had histopathological MRONJ, but GQG 
2–4 had increased prevalence of histopathological MRONJ (Supplemental Fig. 5). One of 

the primary features distinguishing the levels of severity was the extent of gingival 

ulceration, and larger lesions tended to be more likely to have exposed bone (Supplemental 

Table 1). GQG2 was marked by recession/ulceration of gingival tissue around impacted 
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materials, while GQG1 was characterized only by the presence of impacted materials 

between the molars without ulceration or marked recession. This finding suggests that 

GQG2 may represent a grossly identifiable initial stage of a MRONJ-lesion that may have 

histopathological MRONJ in this model.

Our findings support the idea that gingival/mucosal lesions may be an identifiable non-

surgical dental event in ZOL patients that triggers what has been previously termed 

“spontaneous” MRONJ. Our data raise the possibility that ZOL negatively affects the 

healing of oral lesions, thereby contributing to higher risk of MRONJ [22,26]. Previous 

animal studies have also shown a link between “spontaneous” MRONJ and oral risk factors 

other than tooth extraction [30–34]. These studies induced MRONJ by combining pARs 

with infection and inflammatory conditions in rodents, including experimental PD, and 

exposure of the dental pulp to induce periapical infection [27,30–34]. One other study has 

taken advantage of spontaneous oral events that require no mechanical manipulation or 

dentoalveolar surgical procedures, by using C57BL/6J mice that is prone to maxillofacial 

abscesses. Like FILPs in rice rats, those lesions are characterized by impacted hair and food 

debris. Similar to our study, these lesions also progressed to MRONJ when mice were given 

ZOL [53].

The MRONJ lesions in this study were localized to the same quadrants, and the same 

anatomical location as FILPs. Therefore, this model of MRONJ appears to primarily affect 

the maxilla, rather than then mandible, where human MRONJ is more commonly observed 

in humans. The majority of untreated rice rats developed at least one FILP lesion by 12 

weeks, and the highest FILP lesion prevalence preceded the time point of the highest ZOL-

associated MRONJ prevalence. Furthermore, 73% of ZOL-treated rats that had at least one 

quadrant with GQG ≥ 1 had MRONJ. These data suggest that FILP lesions in rice rats 

initiate MRONJ in ZOL-treated rats. Further studies are required to establish that ZOL-

induced MRONJ in STD diet-fed rice rats is linked directly to the prior or concurrent 

development of a FILP lesion. Specifically, these experiments would require oral exams in 

live animals which would track the initiation and clinical progression of both FILPs and 

MRONJ. The visibility and predictable location of these lesions would also allow 

intervention studies that reduce the frequency of impaction by removing impacted materials, 

or preventing impactions by dietary alterations.

A subpopulation of rice rats (45%) treated with oncologic ZOL doses for 30 weeks never 

developed any FILP or MRONJ lesions. An additional 28% of such rats had minor lesions 

that were never more severe than GQG=1. This may indicate that some rice rats are resistant 

to the development of ZOL-induced MRONJ, even with a cumulative ZOL dose up to 1000 

µg/kg over 30 weeks. Differential susceptibility in rice rats may be, at least partly, due to 

individual tooth/gingival morphology that facilitates the retention of impacted materials in 

some rats, or some rats may have an immune response that permits progression of FILP 

lesions into MRONJ lesions. It is possible that dental cofactors are integral to the 

development of MRONJ in ZOL-treated rats and that “resistant” rats never develop those 

dental cofactors. A MRONJ-resistant subpopulation of rice rats also has clinical implications 

because the majority of pAR-treated patients also never develop MRONJ.
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FILP lesions appear to be a localized reaction to the hair and food debris impacted in the 

interdental space. In humans, food impaction lesions have been reported in follow-ups of 

implant prostheses [54], inducing peri-implantitis [17], and in embrasures between implant-

supported fixed dental prostheses and adjacent teeth [18]. The rice rat FILP may also be 

comparable to oral clinical conditions that result from debris (e.g. food or fibers) retained 

between teeth, and in periodontal pockets, that can cause gingivitis, periodontitis, halitosis, 

pain, gingival abscess, alveolar bone loss, and root caries [55]. FILPs may therefore replicate 

the discrete injury, and subsequent inflammatory response, seen in humans with such 

problems. Compared to humans, however, FILPs with GQG 2–4 with gingival ulceration 

along the gingival margin, are more severe than food impaction lesions typically found in 

humans. The lack of progression of food impaction lesions in pAR treated humans could be 

due to the daily oral hygiene practices employed by most humans.

Although this study included a range of osteoporosis and oncology doses of ZOL in a large 

number of rice rats, the study design has several limitations. MRONJ due to pAR treatment 

is an adverse event that occurs in patients first exposed to pARs in adulthood. Though the 

majority of ZOL injections in these experiments were given when the rat skeleton had 

reached young adulthood, each rat received two ZOL injections when the rat skeleton is 

considered juvenile (ages 4 and 8 weeks). The initial skeletal distribution and subsequent 

redistribution of N-BPs differs significantly between the juvenile and adult skeletons, due to 

the rapid rate of bone modeling-associated bone resorption and formation that is found only 

in the juvenile skeleton [56]. Therefore, bone modeling in the juvenile skeleton may have 

played a role in MRONJ pathophysiology in this experiment that could not exist in adult 

humans, since adults display mostly bone remodeling activity. Future rice rat MRONJ 

studies in which pARs and anti-angiogenic agents are given only after age 12 weeks, when 

the rat skeleton is no longer rapidly growing, would assist in resolving this limitation.

In humans, MRONJ diagnosis is made only after bone exposure of eight weeks duration 

[12,28,29]. Reliance on photographs taken at necropsy for the gross analysis did not allow 

verification of the length of bone exposure before necropsy, and perhaps contributed to 

underestimation of MRONJ because diagnostic criteria that are available in the clinical 

setting (e.g., periodontal pocket probing, patient-reported pain, dental radiography, cone 

beam CT, etc.) cannot be achieved in a rodent study. The inability to determine the duration 

of bone exposure, raises the possibility that some MRONJ lesions may have been present for 

less than eight weeks at necropsy. Therefore, lesions may have been identified at a higher 

prevalence than if we had strictly used criteria applied to humans. Longitudinal observation 

would also allow observation of spontaneous healing of MRONJ. Spontaneous healing of 

MRONJ, or gradual healing during daily use of antiseptic mouth rinses, is known to occur in 

humans [12,28,29].

5. Conclusion

Powerful anti-resorptives provide unparalleled benefits to patients with both cancer and 

osteoporosis by reducing mortality and comorbidities associated with both diseases [57–60]. 

Despite the existence of MRONJ, the risk-benefit ratio for pARs is strongly positive 

[12,28,29,61, 62]. Therefore, the use of pARs in patients with cancer and osteoporosis will 
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continue. Our findings raise the possibility that dental cofactors are an important element 

that can lead to the development of MRONJ when they are present prior to, or develop 

during, ZOL treatment. Our findings support the use of STD-diet fed rice rats as an animal 

model prone to a local periodontal event that can be used to clarify the pathophysiology of 

MRONJ. Prevention and intervention strategies for MRONJ are needed to manage the 

concerns of both patients and the dental and medical communities over this potentially 

severe adverse event.
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FILP food impaction-induced localized periodontitis
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Fig. 1. 
Study design. Two hundred thirty weanling female rice rats were BW-randomized into a 

baseline necropsy group (N = 12, age 4 weeks), or one of five dose groups (N = 43–54) Five 

doses of ZOL (0, 8, 20, 50, or 125 µg/kg) were given IV (tail vein) once every four weeks 

(q4wks), starting at age 4 weeks. Duration subgroups of 9–16 rice rats were necropsied 

(diamonds) after 12, 18, 24, and 30 weeks of treatment for each dose level.
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Fig. 2. 
High Resolution Photographs of Maxillary gross quadrant grades [(GQG) 0–4 and MRONJ]. 

(A) GQG scores are at the top of each HR photograph. GQG0: Normal Maxilla. GQG1 
(slight): Discrete lesion containing impacted food and hair at lingual aspect of interdental 

region of M2 M3 (arrow); FILP lesion occupies less than half of the lingual gingival margin 

of M2. GQG2 (mild): Lesion occupies two-thirds of lingual gingival margin of M2 and one-

third of M3 (arrow), but does not extend toward midline. GQG3 (moderate): Lesion 

occupies complete lingual-gingival margin of M2 and two-thirds of M3, and extends almost 

halfway to the midline (arrows). GQG4 (severe): Lesion in left maxilla occupies complete 

Messer et al. Page 19

Bone. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lingual-gingival margin of M1–M3 and extends more than halfway to midline (arrows). 

MRONJ: A lesion of GQG = 3–4 (arrows) with exposed alveolar bone (*). (B) Total 

maxillary area (Tt.Mx.Ar) (black lines).
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Fig. 3. 
Prevalence of gross oral lesions (study 1). In ZOL0 rats, the prevalence of GQG = 1–4 oral 

lesions in the maxilla was 75% at both 12 and 18 weeks treatment. Mandibles had no oral 

lesions at either time point. In ZOL80 rats, the prevalence of GQG = 1–4 oral lesions (non-

MRONJ) in the maxilla was 50% at 12 weeks and 17% at 18 weeks. The prevalence of 

MRONJ lesions in the maxilla was 25% at 12 weeks and 50% at 18 weeks. The prevalence 

of GQG = 1–4 oral lesions (non-MRONJ) in the mandible was 17% at both time points.
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Fig. 4. 
Prevalence of MRONJ lesions (study 2). (A) Prevalence of rats with gross MRONJ by ZOL 

dose and duration. Prevalence increased with increasing ZOL dose (P < 0.001), but not 

increasing duration of ZOL exposure (P=0.297). Gross MRONJ lesions were not found in 

ZOL0 or osteoporosis (OP) ZOL (8 µg/kg) groups. (B) Prevalence of rats with 

histopathologic MRONJ by time and ZOL dose in quadrants with GQG ≥ 1. Prevalence of 

histopathologic MRONJ increased with increasing ZOL dose (P < 0.001) but not increasing 

duration of ZOL exposure (P = 0.326). Histopathologic MRONJ was never found in ZOL0 

rats; two cases were present in the OP ZOL (8 µg/kg) group at 30 weeks.
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Fig. 5. 
Histologic features of MRONJ lesions in ZOL-treated rats. Necrotic bone in MRONJ lesions 

was predominantly present in maxillae at (A) palatal and/or (C and E) M2M3 interdental 

space. B, D, and F are magnified fields of the rectangles demarcated in A, C, and E, 

respectively. (A, C, E) MRONJ lesions with characteristic exposed bone (black arrows) 

lacking overlying gingival epithelium, lamina propria, connective tissue, and PDL. Large 

fields of empty osteocyte lacunae (B, D, F) that were occasionally enlarged, containing 

nuclear debris (Ω). Adherent bacterial colonies resembling Actinomyces sp. (yellow 

asterisks) were frequently found on exposed bone. Dotted black line demarcates a region 
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with extensive necrotic bone (Ω), overlying a region of vital bone (α) (A and B). Severe 

inflammatory cell infiltration and fibrosis were often observed surrounding necrotic palatal 

and alveolar bone (†). Five-µm sections stained with H&E.
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Fig. 6. 
Histologic Features of FILP and MRONJ lesions and osteocyte lacunae data in ZOL-treated 

rats. Five-µm sections stained with H&E. B and D are magnified fields of the rectangles 

demarcated in A and C, respectively. (A & B) FILP lesion with GQG3 with vital alveolar 

bone characterized by basophilic osteocyte nuclei within lacunae (α) and only a few 

scattered, empty lacunae (green arrowheads [B]); substantial hyperplasia of the gingival 

epithelium (green arrows [A]), inflammatory cell infiltration of the lamina propria (†), 

disruption of the periodontal ligament (PDL), apical migration of the junctional epithelium, 

and alveolar bone crest resorption. (C and D) MRONJ lesion with bone exposed to the oral 
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cavity (black arrows) with adherent bacteria (yellow asterisks); confluent area of necrotic 

bone with empty osteocyte lacunae (Ω) is shown above an area of vital bone, demarcated by 

dashed line [D]. Note presence of impacted hair and food debris (red asterisks) in both FILP 

and MRONJ lesions. (E and F) Quantification of empty osteocyte lacunae as (E) a percent of 

total lacunae (#Em.Lc/Tot.#.Lc) and as (F) number per bone tissue area (#Em.Lc/Tt.Ar). 

Both gross and histopathologic-only MRONJ lesions had significantly higher percentage of 

empty lacunae compared to GQG 1–4 lesions without MRONJ. Data are Mean ± SD. a- 

different from GLG 1 (P < 0.05). b- different from GLG 2 (P < 0.05); c- different from 

GLG3–4 (P < 0.05).
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Table 1

Criteria for gross quadrant grade (GQG).

GQG Degree Gross lesion description

0 Absence None

1 Slight Discrete lesion, area of M2M3 or M1M2; minimal gingival recession; visible impacted materials (hair, food 
debris); inflammation at margin of impacted materials

2 Mild Single large lesion area of M2M3 or M1M2 with ulceration/recession of lingual gingiva along 1/2 to 2/3 the 
mesiodistal aspect of the lingual gingival margin of one involved molar; limited extension into the lingual 
mucosa; OR presence of two separate GQG = 1 lesions within the same hemimaxilla/hemimandible; 
inflammation/swelling/redness at margin of impacted material

3 Moderate Continuous recession/ulceration of gingiva involving entire mesiodistal aspect of lingual gingival margin of both 
involved molars; ulceration extending into lingual mucosa toward midline in maxilla or onto lingual mucosa 
(lingual plate) in mandible; inflammation/swelling/redness at margin of impacted material; possible involvement 
of buccal mucosa

4 Severe Continuous gingival recession/ulceration involving all three molars; ulceration extending into lingual mucosa 
toward the midline and onto the buccal mucosa; gingival inflammation/swelling/redness at margin of impacted 
material; possible tooth migration or loss

MRONJ lesion Lesion of GQG = 3 or 4 with exposure of alveolar or palatal bone

See Fig. 2A for corresponding photographs.
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