
ORIGINAL RESEARCH

Segmentation of breast tumors provides image fea-
tures such as shape, morphologic structure, texture, 

and enhancement dynamics that can improve diagno-
sis and prognosis in patients with breast cancer (1–3). 
To our knowledge, reliable automated tumor segmen-
tation does not yet exist, and manual segmentation 
is labor intensive; this has precluded routine clinical 
evaluation of tumor volume despite mounting evi-
dence that it is a good predictor of patient survival (2). 
Automatic segmentation with modern deep network 
techniques has the potential to meet this clinical need.

Deep learning methods have been applied in breast 
tumor segmentation (4,5) and diagnosis (6–11) on 

mammograms; large datasets of up to 1 million images 
are available, which greatly boosts the performance of the 
machine learning systems (12,13). Unlike MRI, however, 
mammography cannot depict the exact three-dimen-
sional (3D) location and volumetric extent of a lesion. 
Breast MRI has a higher diagnostic accuracy than mam-
mography (14–16) and outperforms mammography in 
detection of residual tumors after neoadjuvant therapy 
(17). Additionally, background parenchymal enhance-
ment measured at MRI with dynamic contrast enhance-
ment is predictive of cancer risk (18). Several studies have 
automated tumor segmentation in breast MRI by using 
modern deep networks such as U-Nets or DeepMedic 
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Purpose:  To develop a deep network architecture that would achieve fully automated radiologist-level segmentation of cancers at breast 
MRI.

Materials and Methods:  In this retrospective study, 38 229 examinations (composed of 64 063 individual breast scans from 14 475 pa-
tients) were performed in female patients (age range, 12–94 years; mean age, 52 years 6 10 [standard deviation]) who presented be-
tween 2002 and 2014 at a single clinical site. A total of 2555 breast cancers were selected that had been segmented on two-dimensional 
(2D) images by radiologists, as well as 60 108 benign breasts that served as examples of noncancerous tissue; all these were used for 
model training. For testing, an additional 250 breast cancers were segmented independently on 2D images by four radiologists. 
Authors selected among several three-dimensional (3D) deep convolutional neural network architectures, input modalities, and har-
monization methods. The outcome measure was the Dice score for 2D segmentation, which was compared between the network and 
radiologists by using the Wilcoxon signed rank test and the two one-sided test procedure.

Results:  The highest-performing network on the training set was a 3D U-Net with dynamic contrast-enhanced MRI as input and with 
intensity normalized for each examination. In the test set, the median Dice score of this network was 0.77 (interquartile range, 0.26). 
The performance of the network was equivalent to that of the radiologists (two one-sided test procedures with radiologist performance 
of 0.69–0.84 as equivalence bounds, P , .001 for both; n = 250).

Conclusion:  When trained on a sufficiently large dataset, the developed 3D U-Net performed as well as fellowship-trained radiologists in 
detailed 2D segmentation of breast cancers at routine clinical MRI.
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years (mean age, 52 years 6 10 [standard deviation]). Unilat-
eral and bilateral examinations were included, totaling 64 063 
breasts (Fig 1). Of these, 3955 breasts had biopsy-confirmed 
malignant histopathologic findings (hereafter, referred to as ma-
lignant breasts), and 60 108 had benign histopathologic findings 
or showed 2 years of imaging stability (Breast Imaging Reporting 
and Data System category 1, 2, or 3) and/or no clinical evidence 
of disease (hereafter, referred to as benign breasts). The types of 
tumors included in the study are listed in Table E2 (supplement). 
Exclusion criteria are described in Appendix E1 (supplement).

The data were randomly partitioned into training, validation, 
and test sets (Fig 1, Table E1 [supplement]), ensuring that each 
breast was included in only one of the three sets. For the purpose 
of training the segmentation network, voxels were labeled as pos-
itive for tumor or negative for tumor by using two-dimensional 
(2D) segmentations performed by fellowship-trained radiolo-
gists in malignant breasts. Training of the network also included 
voxels of noncancerous tissue from a central MRI section of be-
nign breasts, which served as additional control examples nega-
tive for tumor. Therefore, the network was trained to distinguish 
cancerous from noncancerous tissue. By using the training data, 
we first selected the highest-performing network architecture, 
established the value of the available imaging sequences, and se-
lected an effective harmonization procedure.

We then compared the segmentations produced by the final 
network to those produced by fellowship-trained radiologists in 
a separate test set of 250 malignant breasts that were each seg-
mented independently by four radiologists in 2D (see below). 
Benign breasts were not included in this analysis. The purpose of 
our analysis was to determine if the performance of the network 
was equivalent to the performance of fellowship-trained radiolo-
gists at segmenting histopathologically confirmed cancers.

Data Description and Harmonization
All breast MRI examinations were performed with a 1.5-T or 
3.0-T scanner (Signa Excite, Genesis Signa, Discovery, Signa 
HDxt, and Optima MR450w; GE Healthcare). Examinations 
were performed on the sagittal plane (Fig 2A) at varying in-
plane resolutions (Fig 2B), at a section thickness of 2–4 mm, 
and at varying repetition times and echo times. The sequences 
used from each MRI examination included fat-saturated T2- 
and T1-weighted images obtained before the administration 
of contrast material (hereafter, precontrast T1-weighted image) 
and a varied number (n = 3–8) of fat-saturated T1-weighted 
images obtained after the administration of contrast material 
(hereafter, postcontrast T1-weighted image). In-plane sagit-
tal resolution was harmonized by upsampling relatively low-
spatial-resolution images by a factor of two (Fig 2B). Image 
intensity data from different scanners were harmonized by di-
viding by the 95th percentile of precontrast T1 intensity. To 
summarize the dynamic contrast enhancement, we measured 
the volume transfer constant for the initial uptake by using 
the following equation: first postcontrast T1-weighted image 
– precontrast T1-weighted image (referred to as dynamic con-
trast enhancement in), and subsequent washout (linear slope of 
intensity divided by time in the postcontrast T1-weighted im-
age images, referred to as dynamic contrast enhancement out) 

(19–25), focusing mostly on malignant tumors. With reliable, 
fully automated segmentation, the overall clinical workflow 
could be improved, and such segmentation could help radiolo-
gists in tumor detection and diagnosis.

Fast automated segmentation may help identify important 
prognostic and predictive biomarkers. Unfortunately, the avail-
able MRI datasets to train segmentation algorithms are compar-
atively small, with 50–250 MRI examinations (19–25), which 
limits the potential of modern deep networks. Some studies 
have been limited to semiautomated segmentation (26), and 
performance differs across datasets, making comparison with 
radiologist performance difficult. In a study (20) in which a for-
mal comparison was conducted on the same dataset, radiologists 
outperformed the networks.

We hypothesized that human-level performance could be 
achieved if a sufficiently large dataset was used to train a modern 
deep convolutional neural network. The goal of this research was 
to develop a deep network architecture that achieved fully auto-
mated, radiologist-level segmentation of breast cancer at MRI.

Materials and Methods

Study Design
This retrospective study was approved by the institutional re-
view board, and written informed consent was waived because 
of the retrospective nature of this study. All data handling com-
plied with Health Insurance Portability and Accountability Act 
regulations. The breast MRI examinations we analyzed may 
overlap with examinations analyzed in previous publications 
involving authors from the radiology department at Memorial 
Sloan Kettering Cancer Center.

The dataset was composed of 38 229 clinical breast MRI 
examinations performed from 2002 to 2014 for either high-
risk screening (11 929 patients) or diagnostic purposes (2546 
patients). The age range of the patient population was 12–94 

Abbreviations
3D = three dimensional, 2D = two dimensional 

Summary
When trained on a sufficiently large dataset, a volumetric deep con-
volutional neural network achieved radiologist-level performance at 
segmenting breast cancers at MRI.

Key Points
	n Convolutional neural networks were developed to perform fully 

automated segmentation of breast cancer at MRI, leveraging a 
large dataset of more than 38 000 examinations for training.

	n The highest-performing network was a three-dimensional U-Net 
trained with routine clinical dynamic contrast-enhanced MRI; it 
achieved segmentation performance comparable to that of radiolo-
gists who evaluated an independent test set.

	n The code and pretrained network have been made freely available. 

Keywords
MRI, Breast, Segmentation, Supervised Learning, Convolutional 
Neural Network (CNN), Deep Learning Algorithms, Machine 
Learning Algorithms 
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Figure 1:  Number of examinations (exams) and breasts used in training and testing. See also Table E1 (supplement). Post OP = postop-
erative procedure.

Figure 2:  (A) Example of precontrast and first postcontrast 
fat-saturated images (T1 and T1c, respectively). Initial dynamic 
contrast enhancement (DCE) in this breast with malignant tumor is 
evident after subtracting the first T1-weighted contrast-enhanced 
image from the precontrast image (DCE-in). Subsequent washout 
(DCE-out) is evident in the subsequent drop in intensity, measured as 
slope over time. (B) Graph shows the range of in-plane resolutions 
of T1-weighted contrast-enhanced scans acquired between 2002 
and 2014.
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mask was computed by using a separate U-Net operating on 
the entire image at lower spatial resolution. This network was 
trained on a smaller number of manually segmented breast 
sections (n = 100; performed by L.H.). To avoid blocking 
artifacts that are often observed in U-Nets (29), we carefully 
redesigned the conventional downsampling and upsampling 
steps. The 3D U-Net had approximately 3 million param-
eters. Details of the architectures, sampling, and training of 
the network parameters are described in Figures E2 and E3 
(supplement).

Primary Outcome Measure
For each voxel, the network estimates the probability of the voxel 
being part of the cancerous tissue (Fig 4A). A binary segmenta-
tion was obtained by thresholding this probability at a fraction 
of the maximum in the selected section (Fig 4B) and dismiss-
ing disconnected areas that did not reach the maximum. The 
primary outcome measure was the Dice score (30) for the can-
cer evaluated on the 2D section, with consensus segmentation 
as the reference (Fig 4A; Appendix E1 [supplement]). A Dice 
score of 1.0 corresponds to perfect overlap, and a score of 0.0 
indicates no overlap. To determine the sample size required for 
the comparison between the network and radiologists, we as-
sumed a mean Dice score of 0.75 as the lower bound for the ra-
diologist and of 0.80 as the lower bound for the network. Power 
analysis for a paired t test was performed with logit-transformed 
Dice scores to approximate normality (31). Use of an estimated 
standard deviation of 1.5 across examinations (based on the net-
work performance in the validation set) resulted in Cohen d of 
0.1918. With this effect size, a power of 85% at a significance of 
5% required 246 scans. We selected a sample size of 250 scans 
for the test set.

Statistical Analysis
All pairwise performance comparisons among different net-
work architectures and between the network and the radiolo-

(Fig 2A). Data collection, preprocessing, and harmonization 
are described in Appendix E1 (supplement).

Radiologist Segmentations
All segmentations were performed on 2D sections by fellow-
ship-trained breast radiologists (R1–R10: I.D.N., A.G.V.B., 
R.L.G., C.R.S., E.J.S., M.H., N.O., E.S.K., D.A., and D.L., 
with 5, 8, 5, 5, 8, 12, 7, 13, 5, and 2 years of experience, respec-
tively). At the start of this project, 2694 breasts had been seg-
mented by individual radiologists (R1–R10) by outlining the 
malignant tissue in a single section. These segmentations were 
subsequently reviewed by R1–R5 to ensure they met the inclu-
sion criteria, resulting in 2555 segmentations used for training 
and validation (Fig 1, Table E1 [supplement]; 2455 segmenta-
tions used for training and 100 for validation). An additional 
266 breast cancers were independently segmented by all four 
radiologists (R1–R4); of these cancers, 16 were used for thresh-
old tuning and 250 for testing. The common 2D section to be 
segmented, containing the largest area of the index cancer, was 
selected by R5. Radiologists performed segmentations on the 
postcontrast T1-weighted image, with the T1-weighted and 
fat-saturated T2-weighted images available for reference. For 
the test data, we also provided the dynamic contrast enhance-
ment–in value, which quantifies initial uptake. See Appendix 
E1 (supplement) for details.

Convolutional Neural Networks
We used networks based on the DeepMedic network (27) and 
a 3D U-Net (20), which have been used extensively for medi-
cal segmentation, including breast segmentation (19–24). 
The architecture of the 3D U-Net is described in Figure 3 
and that of DeepMedic in Figure E2 (supplement). Following 
previous studies, the traditional space-invariant implementa-
tion has been augmented by adding a spatial prior as input to 
the final classification (28). For the U-Net, the spatial prior 
was a breast mask, as in previous studies (20). This breast 

Figure 3:  Deep convolutional neural network used for segmentation. A three-dimensional (3D) U-Net with a total of 16 convolutional layers (red arrows) resulting in 
3D feature maps (blue blocks). The input MRI includes several modalities (Fig 2A). The network output is a prediction for a two-dimensional sagittal section, with probabili-
ties for cancer for each voxel (green and red map). The full volume is processed in nonoverlapping image patches (green square on input MRI). A breast mask provides a 
spatial prior as input to the U-Net.

http://radiology-ai.rsna.org
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Results

Model Development, Initial Assessment, and Model 
Selection
To select the preferred network architecture, input modalities, 
and harmonization method, we trained various architectures 
(Appendix E1 [supplement]). We evaluated performance on a 
validation set of 100 scans with malignant results. On the basis 
of these results (Fig E4 [supplement]), we selected a volumet-
ric implementation of a 3D U-Net (Fig 3), which takes as in-
puts the first postcontrast T1-weighted image, the initial uptake 
(postcontrast T1-weighted image − precontrast T1-weighted im-
age), and the slope of the subsequent postcontrast T1-weighted 
images (Fig 2A). These sagittal images were aligned with deform-
able coregistration (34) covering the volume of a single breast. 
Intensity was harmonized by scaling each examination separately 
with a maximum of the precontrast T1-weighted image. When 
training this network with datasets of different sizes, our hypoth-
esis that larger datasets significantly improve Dice score perfor-
mance was supported, with median values of 0.63 (240 scans 
with malignant results and 240 scans with benign results), 0.69 
(2400 scans with malignant results and 2400 scans with benign 

gists were performed by using the Wilcoxon signed rank test 
on the Dice score. This analysis accounted for the deviation 
from normality observed for the Dice scores (Shapiro-Wilk 
test, W = 0.61, P , .001 for difference in mean Dice score; 
logit-transformed Dice scores, W = 0.92, P , .001). We tested 
for equivalence in the Dice score of human and machine by 
using the two one-sided test procedure (32). In this procedure, 
performance is compared with a lower and upper equivalence 
bound, for which we selected the lowest- and highest-perform-
ing radiologists. The Wilcoxon signed rank test was used in-
stead of the conventional t test of the two one-sided test proce-
dure because Dice scores were not normally distributed. Effect 
size of the Wilcoxon test is reported as described by Vargha 
and Delaney (33). Values are medians 6 interquartile ranges. 
All statistical analyses were performed and implemented by us-
ing the software Python 2.7, package scipy.stats (version 1.2.3; 
Python Software Foundation).

Model Availability
To facilitate such studies, we have made all code and the pre-
trained network freely available in Github (https://github.com/
lkshrsch/Segmentation_breast_cancer_MRI/).

Figure 4:  Manual and automated segmentations of breast cancer. (A) Inputs to the model consisting of the first postcontrast image (T1c), postcontrast minus precon-
trast image (T1) (DCE-in), and washout (DCE-out), with an independent reference for radiologist 4 (R4) made from the intersection of radiologists 1–3 (R1–R3 [Ref4]) and 
the network output (M Probs) indicating probability that a voxel is cancer (green = low; red = high). (B) Example segmentation from all four radiologists (R1–R4) for a given 
section, and the model segmentation created by thresholding probabilities (M). Dice scores for R4 and M were computed using Ref4 as the target. (C) Zooming in on the 
areas outlined in yellow in B, showing the boundaries of segmentations for the machine as well as human-generated segmentations as drawn on the screen by R1–R4.
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results), and 0.73 (2455 scans with malignant results and 60 108 
scans with benign results), all evaluated on a separate validation 
set of 100 malignant breasts (Fig E5 [supplement]).

Model Testing
Performance of this final design was tested on an independent 
test set of 250 malignant cases. Although the network produced 
3D segmentations, evaluation was limited to 2D segmentations, 
and cancers were segmented independently by four breast ra-
diologists (R1–R4) on a single 2D section per breast (Fig 4). 
Segmentations differed across radiologists in the areas selected 
and on detailed boundaries (Fig 4C, Fig E9 [supplement]). An 
independent reference segmentation was obtained for each radi-
ologist by using segmentations from the three remaining radi-
ologists; for example, reference segmentation 1 is the intersec-
tion of the segmentations of R2–R4 and is used to evaluate R1 
(Fig 4A). The threshold for converting continuous probabilities 
at the output of the network into binary segmentations was es-
timated by using a separate set of reference segmentations (16 
not included in the test set; Fig 1, Fig E6A [supplement]). The 
resulting Dice score (averaged over the four references) had a 
5th–95th percentile range of 0.43–0.90 for the radiologists and 
0.21–0.92 for the network (Fig 5A). These median Dice scores 
did not differ significantly between the network and the radiolo-
gists (median, 0.77 6 0.26 and 0.79 6 0.15, respectively; effect 
size, 0.51; P = .72 [n = 250]). The median Dice scores for the 
network were 0.76 6 0.26, 0.76 6 0.26, 0.77 6 0.28, and 0.76 
6 0.28, and for the radiologists they were 0.69 6 0.2, 0.84 6 
0.14, 0.78 6 0.13, and 0.84 6 0.13, with one value for each 
of the four reference segmentations, indicating that the model 
may have had higher Dice scores than some radiologists but not 
others (Fig 5B). A similar result was obtained with repeated mea-
sures of analysis of variance (Appendix E1 [supplement]).

Equivalence Testing
To test for equivalence, we performed a two one-sided test 
procedure (32) with radiologist performance as the lower and 

upper bounds for equivalence (R1 and R4, respectively [Fig 
5B]). The Dice score of the network was higher than that of 
R1 (effect size, 0.37; P , .001; n = 250) and lower than that 
of R4 (effect size, 0.62; P , .001; n = 250). In total, the mean 
performance of the network and that of the radiologists were 
indistinguishable, and the median performance of the network 
was equivalent to that of the radiologists.

Segmentation Comparison between the Network and 
Radiologists
For several examinations the network had a higher perfor-
mance than the average of the four radiologists (ΔDice  
0 [Fig 5B]; see Fig 4 and E9 [supplement] for examples). In 
several instances, however, the network had a lower perfor-
mance than the radiologists (ΔDice , 0 [Fig 5B]; see Fig 6 
for examples). The network deviated from the reference in 
the areas that it selected (Fig 6A) or the exact boundary of the 
cancer (Fig 6B). Network performance differed among tumor 
types (Fig E7A [supplement]) and was somewhat lower in the 
presence of prominent background parenchymal enhance-
ment (Fig E7B [supplement]) and smaller cancer (Fig E7C 
[supplement]). Generally, images that had high Dice scores 
for the network also had high Dice scores for the radiologists, 
regardless of size or background parenchymal enhancement 
(Fig E8 [supplement]).

Similar results were obtained when the union or the majority 
vote of three radiologists as consensus reference was used (Fig E6 
[supplement]). R2 and R4 had a higher performance than the 
network with the intersection as consensus reference (Fig 5B), 
whereas R1 and R3 had a higher performance than the network 
when compared with the union as consensus (Fig E6B [supple-
ment]). This suggests that R2 and R4 opted for more specific 
tumor segmentation, whereas R1 and R3 provided more sensi-
tive segmentations (Fig E9 [supplement]). As a reference, we also 
evaluated a conventional image segmentation method (fuzzy c-
means [35]) and found poor performance on these data, which 
attested to the difficulty of the task (Dice score of 0.11, Fig E10 

Figure 5:  Network (net) and radiologist (rad) performance on the test set of 250 malignant cases. (A) Distribution of Dice 
scores in 250 test cases averaged across four reference segmentations. (B) Difference in Dice score between the network and each 
radiologist (Δ Dice) for each of the four reference (ref) segmentations (ref1, ref2, ref3, and ref4). The median Dice value was higher 
for the network for ref1 and ref3 (red median Δ Dice) and higher for the radiologist for ref2 and ref4 (blue median Δ Dice). Box 
plots show median (orange, red, or blue lines), quartiles (box), and 1.5 interquartile range (whiskers). *P < .001 (Wilcoxon signed 
rank test).
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[supplement], and 0.65 when restricted to a limited region of 
interest, as in Chen et al [26], in which case the network Dice 
score was 0.82).

Discussion
We demonstrated radiologist-level performance in fully auto-
mated segmentation of breast cancer at MRI by using routine 
precontrast and postcontrast T1-weighted images. The archi-
tecture of deep convolutional neural networks was optimized 
by using a large training dataset of more than 38 000 examina-
tions, which consisted of 2555 malignant and 60 108 benign 
breast scans. This dataset is substantially larger than those in 
previous studies involving deep networks, which have used 
only 50–250 MRI examinations (19–24).

Notably, the highest performance was obtained with a volu-
metric U-Net that was conceptually simpler than previous net-
works (20,21,23). Complex structures with fewer parameters 
may have been necessary to compensate for the smaller dataset 
sizes used in these earlier studies. For instance, Zhang et al (20) 
combined three different 2D U-Nets in a hierarchical manner; 
one network generated a breast mask, a second network produced 
segmentations of tumors, and a third network refined these seg-
mentations. We initially used a similar approach, following the 
MultiPrior network (28) with a breast mask as a spatial prior, 
and a conditional random field for postprocessing. However, we 
found that a simpler 3D U-Net without these additional mod-
ules sufficed. The U-Net also had a higher performance than 
DeepMedic (27), which we believe is the result of better integra-
tion of information at multiple spatial scales. Chen et al (21) 
used 2D U-Nets with a long short-term memory network at the 
input to process the contrast dynamic. Instead, we summarized 
the dynamic contrast enhancement on two images, capturing 

the initial contrast agent uptake and subsequent washout. This 
method allowed us to harmonize the differing sampling intervals 
and the number of postcontrast images and allowed the network 
to potentially capture a metric akin to the signal enhancement 
ratio, which has been proposed as a threshold criterion for dy-
namic contrast enhancement at breast MRI (36). El Adoui et al 
(23) used a Seg-Net that communicated only location informa-
tion through residual connections, which reduced the number 
of parameters compared with a U-Net and therefore may have 
required fewer training images. Other previously developed 
network methods coped with smaller training sets by using pre-
selected features (19) or an unsupervised clustering algorithm 
(24), or by leveraging shape priors (22).

Our final U-Net implementation differs from previous ap-
proaches in two important ways. First, we used a full 3D network 
instead of a conventional 2D network that processed individual 
sections independently (12,21,23–25). Whereas this increased 
the number of network parameters, it also captured volumet-
ric features missed at 2D processing. Our implementation also 
avoided sampling artifacts encountered in conventional imple-
mentations of U-Nets (29). Although we did this with an appar-
ent increase in complexity, our approach obviated the need for 
less carefully designed architectures to unlearn sampling errors.

Previous efforts to apply machine learning to breast cancer 
segmentation reported Dice scores of 0.60–0.77 (19–25); how-
ever, the performance of these models has, to our knowledge, 
not been compared with that of radiologists. In a direct com-
parison, Zhang et al (20) reported a Dice score of 0.72 6 0.28 
for the network and 0.78 6 0.30 for the radiologists. Dice scores 
of 0.7 are considered to be good agreement (31). In our study, 
automated segmentations matched the detailed segmentations 
of a radiologist, with a Dice score of 0.76–0.77. Radiologist 

Figure 6:  Examples of cases in which the network deviated from the segmentation of the reference radiologist (ref). (A) The network captured additional areas not 
selected by radiologist 4 (R4). Dice score shown for Ref4 (intersection of R1–R3). (B) The network output (M Probs) captured the correct area, but low probability values 
yielded a smaller region compared with the consensus segmentation (Ref2) after thresholding.
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performance in this study was in the range of 0.69–0.84, which 
is comparable to previous reports.

In our study, equivalence of network performance was dem-
onstrated on a fixed test set, which is important given the vari-
ability observed across studies by using different datasets (19–
25). The test set in our study included difficult cases with small 
cancers (,1 cm), multicentric cancers, and patients with breast 
implants, all of whom have often been excluded from previous 
studies. Note that network performance was higher on the test set 
than on the validation set (0.77 vs 0.73), which may have resulted 
from more careful manual segmentations when radiologists were 
evaluated. Regardless, the performance of the radiologists, as well 
as the limited performance of conventional semiautomatic image 
segmentation methods, point to the difficulty of segmenting an 
entire 2D section in detail on these diverse images.

Our study had limitations. The developed network clas-
sified each voxel in the image and therefore, in principle, pro-
vided volumetric segmentation. The main clinical value of this 
network would be to facilitate volumetric assessment, which is 
not broadly used despite its benefit (2,3). However, we evalu-
ated automated segmentations only on 2D sections because we 
expected higher radiologist performance compared with highly 
labor-intensive 3D manual segmentation. Another limitation 
was that we used sagittal images; assessment in that plane was 
standard practice at our institution until 2014, and it character-
ized most of the historical data. Breast MRI protocols are often 
performed on the axial plane and, with continued improvements 
in technology, with higher temporal and spatial resolution. Fu-
ture studies could focus on volumetric evaluation of segmen-
tations. Additionally, for high-spatial-resolution multiplanar 
breast MRI, one might expect to achieve higher segmentation 
performance for both the network and radiologists. Additionally, 
this study was retrospective and limited to a single institution. 
The dataset was heterogeneous, however; it was collected during 
12 years from different scanner types by using different magnet 
strengths (1.5 T and 3.0 T) and with different breast coils, which 
resulted in variable spatial and temporal resolutions. All these 
factors together added to the difficulty and clinical realism of this 
study. Finally, the power analysis in this study assumed normal-
ity of logit-transformed Dice scores. The resulting Dice scores 
did not follow a normal distribution, however; the study may 
therefore have been underpowered.

In conclusion, when trained on a sufficiently large data-
set, a 3D U-Net segmented breast cancers with performance 
comparable to that of fellowship-trained radiologists. The 
network produced detailed 3D segmentations in routine 
clinical MRI. The code and pretrained network were made 
freely available.
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