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Atherosclerosis is a chronic inflammatory disease characterized by extensive remodeling
of medium and large-sized arteries. Inward remodeling (=lumen shrinkage) of the
vascular walls is the underlying cause for ischemia in target organs. Therefore, inward
remodeling can be considered the predominant feature of atherosclerotic pathology.
Outward remodeling (=lumen enlargement) is a physiological response compensating
for lumen shrinkage caused by neointimal hyperplasia, but as a pathological response
to changes in blood flow, outward remodeling leads to substantial arterial wall thinning.
Thinned vascular walls are prone to rupture, and subsequent thrombus formation
accounts for the majority of acute cardiovascular events. Pathological remodeling is
driven by inflammatory cells which induce vascular smooth muscle cells to switch
from quiescent to a proliferative and migratory phenotype. After decades of intensive
research, the molecular mechanisms of arterial remodeling are starting to unfold. In this
mini-review, we summarize the current knowledge of the epigenetic and transcriptional
regulation of vascular smooth muscle cell phenotype switching from the contractile
to the synthetic phenotype involved in arterial remodeling and discuss potential
therapeutic options.

Keywords: arterial remodeling, epigenetic modifications, atherosclerosis, vascular smooth muscle cells (VMSCs),
phenotype switching

INTRODUCTION

Atherosclerosis (AS) is a chronic multifactorial disorder of medium and large-sized arteries
characterized by inflammation and lipid deposition within the arterial wall, leading to slowly
progressive plaque formation (Incalcaterra et al., 2013; Xu et al., 2018). Throughout plaque
development, reactive changes in the affected vessel wall known as vascular remodeling occur, in
which the flow-limiting potential of the atherosclerotic lesion may be accentuated or attenuated
(Falk, 2006). In general, arterial remodeling is orchestrated by various cell types, including
endothelial cells, macrophages, and vascular smooth muscle cells (VSMCs) (Wei et al., 2013).
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Unlike most cell types, VSMCs exhibit phenotypic plasticity,
allowing them to switch from a contractile to a proliferative
state in response to vessel injury. Therefore, VSMC phenotype
switching has a tremendous impact on the vascular remodeling
process and thus atherosclerotic lesions (Quintavalle et al., 2011).
Despite decades of research focusing on understanding the
processes controlling VSMC phenotype switching, the effective
molecular mechanisms regulating these critical transitions still
have not been precisely clarified (Frismantiene et al., 2018).
Accumulating evidence shows that epigenetic mechanisms
provide a higher level of transcriptional control leading to
phenotype switching in vascular cells followed by arterial
remodeling (Findeisen et al., 2013).

ARTERIAL REMODELING IN
ATHEROSCLEROSIS

Arterial Remodeling
Arterial remodeling reflects the structural and functional
adaptation of the atherosclerotic vessel wall to biochemical
and biomechanical stimuli triggered by disease (van Varik
et al., 2012; Jaminon et al., 2019). In general, two main forms
of arterial remodeling can be distinguished, namely outward
remodeling responsible for an increase in vessel size, and
inward remodeling resulting in a reduction of luminal diameter
through vascular wall thickening (Ward et al., 2000). Major
features of arterial remodeling comprise intimal hyperplasia,
changes in extracellular matrix (ECM) composition, fibrosis, and
vascular calcification. These wall changes generally are driven
by numerous, highly regulated and interrelated processes and
different cell types (Endo et al., 2001; Burke et al., 2002; Brasselet
et al., 2005; van Varik et al., 2012; Martínez-Martínez et al., 2014).

Atherosclerosis
In AS, low-density lipoprotein (LDL) particles enter the
subendothelial space of the tunica intima, where they get
oxidized (i.e., oxLDL) and trigger the activation of endothelial
cells (Goikuria et al., 2018). Activated endothelial cells mediate
immune cell adhesion and infiltration, eventually leading
to the initiation of inflammation (Jaminon et al., 2019).
Macrophages in turn scavenge oxLDL and convert into foam
cells, thereby building up fatty streaks and producing cytokines
that attract activated medial VSMCs to migrate and proliferate
into the subendothelial space, ultimately leading to arterial
lumen narrowing due to neointima formation (Owens et al.,
2004; Douglas and Channon, 2014). The slow advancement
of neointimal thickening can lead to ischemia or rupture
of the plaque, manifesting in thrombus formation and acute
cardiovascular events such as myocardial infarction and stroke
(Figure 1; Bentzon et al., 2014).

Role of Arterial Remodeling in
Atherosclerosis
Throughout lesion progression, reactive changes in the
underlying vessel wall trigger arterial remodeling processes,

in which the flow-limiting potential of the plaque either
may be strengthened (i.e., inward remodeling) or attenuated
(i.e., outward remodeling) (Falk, 2006). In general, inward
remodeling can be regarded as the predominant characteristic
of atherogenesis. Even though inward remodeling is
correlated with stable atherosclerotic lesions through
fibrotic cap formation, it is responsible for more severe
luminal narrowing and thus ischemia (Vink et al., 2001).
Outward remodeling in atherosclerotic arteries on the
other hand prevents ischemia by preserving a normal
lumen diameter, but, however, is associated with vulnerable
atherosclerotic lesions and thus plaque rupture (Falk, 2006;
Saam et al., 2016).

VASCULAR SMOOTH MUSCLE CELLS:
THE MAIN PLAYERS OF ARTERIAL
REMODELING

Vascular Smooth Muscle Cells and
Phenotype Switching
Vascular smooth muscle cells play a pivotal role in the different
remodeling processes as they are the most abundant cell type
found in arterial vessel walls (Lacolley et al., 2017). Mature
VSMCs principally are contractile and highly specialized in
regulation of vessel tone-diameter and blood pressure (Owens
et al., 2004; Rzucidlo et al., 2007), and are characterized
by a low proliferation rate and the expression of explicit
contractile proteins such as smooth muscle myosin heavy chain
11 (MYH11), calponin, and transgelin (TAGLN) (Owens, 1995).

Lineage-tracing experiments have shown that VSMCs are
derived from various distinct progenitor cells in embryogenesis
due to which VSMCs typically exhibit lineage-dependent
responses to signaling pathways and can have distinct
functional characteristics (Basatemur et al., 2019). Besides,
these experiments demonstrated that VSMCs give rise to
diverse cell types within lesions fulfilling positive as well as
negative roles in atherogenesis, which has led to significant
improvements in understanding the functional consequences of
developmental origin, clonality, plasticity, and fate of VSMCs
within atherosclerotic plaques (Basatemur et al., 2019).

However, unlike most cell types, VSMCs are not terminally
differentiated and consequently display plasticity in their
phenotypes (Babaev et al., 1990), ranging from contractile–
quiescent to migratory–proliferative–synthetic and osteogenic,
or macrophage-like (Jaminon et al., 2019). Upon vascular
disease such as AS, VSMCs transdifferentiate into the
synthetic phenotype by downregulation of mature VSMC-
specific marker expression (Sobue et al., 1999). Those cells
migrate from the media to the intima, where they excessively
proliferate and synthesize ECM components and promote
lipid deposition, consequently facilitating arterial wall
remodeling (Wang et al., 2017). Phenotypically modulated
VSMCs within lesions can comprise about 30% of the
total cell count as confirmed by lineage tracing experiments
(Shankman et al., 2015). When VSMC-derived fibromyocytes
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are considered to stabilize plaques (Wirka et al., 2019), then
activated VSMC transdifferentiating into chondro-/osteoblast
or inflammatory cells can lead to plaque destabilization
(Miano et al., 2021).

Factors Regulating VSMC Phenotype
Switching and Arterial Remodeling
Alterations in diverse environmental factors modulate
the transcriptional regulation of VSMC-specific genes
in AS and arterial remodeling (Jaminon et al., 2019;
Shi et al., 2019). Main transcription factors involved in
VSMC phenotype switch thereby are Krüppel-like factor 4
(KLF4) by activating the pluripotency network of VSMC
(Shankman et al., 2015; Jaminon et al., 2019), the master
regulator myocardin (MYOCD)—serum response factor
(SRF) regulated by, among others, Olfactomedin 2 and
Transcription factor 21 (TCF21) (Shi et al., 2019; Nagao
et al., 2020), and octamer binding transcription factor
(Oct4) promoting plaque stabilization (Alencar et al., 2020;
Kansakar et al., 2021).

Collectively, the mechanisms of VSMC phenotype switching
and its effect on vascular remodeling are orchestrated by diverse
transcription factors, and the mechanisms are still not fully
understood (Shi et al., 2019). A large number of VSMC genes
are transcriptionally regulated due to mitogenic stimulation,
suggesting an upper level of transcriptional regulation that
controls gene expression networks rather than individual genes
(Zhang et al., 2002). Interestingly, emerging evidence has
revealed that VSMCs undergo epigenetic alterations during
phenotypic modulation and vascular remodeling, which provide
such upper-level regulation of transcription (Shi et al., 2019).

THE UPPER-LEVEL EPIGENETIC
REGULATORS OF VASCULAR SMOOTH
MUSCLE CELL PHENOTYPE SWITCHING

Epigenetic mechanisms of gene regulation can be defined as
transcriptional memory which alter gene expression without
changing the genome (Al-Hasani et al., 2019). Overall, three
major epigenetic modifications can be distinguished, in
particular DNA methylation (Ming et al., 2021), histone
modifications (Taylor and Young, 2021), and non-coding
RNAs (ncRNAs) (Statello et al., 2021). Importantly, most
epigenetic modifications are reversible, but mitotically stable
through cell divisions (Almouzni and Cedar, 2016). Epigenetic
alterations can be influenced by diverse factors such as
environmental stimuli, age, lifestyle and disease state (Alegría-
Torres et al., 2011; Mitteldorf, 2015). These alterations, however,
modify transcription factor binding and gene expression,
which finally impacts the phenotype of a cell remarkably
(Liu et al., 2015).

The role of epigenetics in cardiovascular disease is emerging
as a critical linker and player at distinct levels, ranging from
pathophysiology to treatment (Al-Hasani et al., 2019). Likewise,
the importance of epigenetic alterations has been increasingly

recognized in AS, vascular remodeling, and VSMC phenotype
switching (Alexander and Owens, 2012; Hou and Zhao, 2021).
In the following sections, different epigenetic modifications
influencing the transition from the contractile to the synthetic
VSMC phenotype in arterial remodeling of atherosclerotic lesions
will be discussed (Figure 1).

DNA Methylation
Introduction
DNA methylation is mediated by DNA methyltransferases
(DNMTs), which, in vertebrates, covalently bind a methyl
group predominantly to the cytosine 5′-carbon in the context
of a cytidine phosphate guanosine (CpG) dinucleotide (Xu
et al., 2018). DNA methylation can be reversed by dilution
via genome replication without maintenance or inactivation
of DNMTs, or by active demethylation facilitated by Ten-
eleven translocation (TET) methylcytosine dioxygenases, which
catalyze 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine
(5-hmC) (Jurkowska et al., 2011). Cytosine hypermethylation
of CpG islands within promoter regions can cause chromatin
compaction, subsequently resulting in long term transcriptional
repression (Bird, 1986; Fisslthaler et al., 2019).

The Role of DNA Methylation in VSMC
Phenotype Switching
Genome-wide investigations concerning the level of DNA
methylation in atherosclerotic lesions have documented DNA
hypomethylation as a general phenomenon as well as a
unique DNA hypermethylation profile, which affects different
genes and pathways implicated in AS pathogenesis (Hiltunen
et al., 2002; Zaina and Lund, 2014; Aavik et al., 2015).
Moreover, research shows that DNA methylation also participates
in controlling VSMC phenotype and arterial remodeling
(Findeisen et al., 2013). In general, various genes defining
VSMC phenotypes have been found to be regulated by DNA
methylation, including SRF, platelet-derived growth factor B
(PDGF-B) of the endothelial cell GATA-6-PDGF-B pathway, and
TAGLN (Montes de Oca et al., 2010).

For example, a study executed by Liu et al., demonstrated
that TET2 acts as a master epigenetic regulator of the
VSMC phenotype (Liu et al., 2013). In these studies, Liu
et al., discovered that knockdown of TET2 inhibits the
expression of critical VSMC genes such as MYOCD and
SRF, with simultaneous transcriptional upregulation of KLF4,
promoting the reactivation of the pluripotency network and
thus phenotype switch. On the other hand, overexpression
of TET2 provides a contractile VSMC phenotype, restores
the 5-hmC epigenetic landscape, and significantly attenuates
intimal hyperplasia in vivo (Liu et al., 2013). Next to the
studies of Liu et al., experiments of Zhuang et al., indicate
that the VSMC phenotype and vascular remodeling are
influenced by the DNA methylation balance controlled by
TET2 and DNMT1. Decreased expression of TET2 attributes
to disproportionate promoter methylation, while inhibition of
DNMT1 caused the enrichment of 5-hmC in the MYOCD
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FIGURE 1 | Epigenetic factors either promoting or preventing VSMC phenotype switch in atherosclerotic artery remodeling. Atherosclerosis is initiated when LDL
particles accumulate within the subendothelial space where they get oxidized, subsequently causing monocyte extravasation. Monocytes differentiate into
macrophages which take up ox-LDL particles and gradually transform into foam cells that undergo cell death and create a necrotic lipid core within the intima. At a
specific point in time, plaque rupture and thrombus forming may occur. During atherogenesis, various (epigenetic) factors trigger VSMCs, which reside within the
tunica media, to switch from a contractile to a synthetic phenotype. Synthetic VSMCs migrate toward the intima where their proliferate and synthetize extracellular
matrix components, resulting in neointima formation and thus arterial remodeling. Created with Biorender.com. VSMC(s), Vascular smooth muscle cell(s); LDL,
Low-density lipoprotein; ox-LDL, Oxidized LDL.

promoter and prevented VSMC dedifferentiation, migration, and
proliferation (Zhuang et al., 2017).

Histone Modifications
Introduction
Histones are the central protein components of chromatin
(Shechter et al., 2007). In general, histone proteins can carry
various post-translational modifications (PTMs) on their
N-terminal tail region, which play a critical role in several

DNA-based processes including chromatin accessibility,
nucleosome dynamics, and transcription (Lawrence et al., 2016).
For this reason, they serve as epigenetic indicators of chromatin
state associated with gene activity (Kimura, 2013).

Histone PTMs include, among others, methylation,
acetylation, and ubiquitinylation, which principally can be
found on arginine (R) and lysine (K) residues (Lawrence
et al., 2016). Typically, these modifications can be observed
to exist in combinations, such as di- (me2) or tri-methylation
(me3) at histone H3K4 together with H3K9ac or H3K14ac,
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which all have an activating effect on gene expression (Kimura,
2013). Overall, acetylation by histone acetyltransferases (HATs)
weakens the interaction between DNA and histone, making
genes more accessible for transcription. The removal of
an acetyl group by histone deacetylases (HDACs), on the
contrary, strengthens the binding between DNA and histone,
resulting in repression of gene expression (Gomez et al., 2015;
Jiang et al., 2018).

The Role of Histone Modifications in
VSMC Phenotype Switching
Different histone methylation and acetylation changes have
been identified to serve a crucial role in the development of
AS and VSMC differentiation toward the synthetic phenotype,
including significant decrease in H3K9 and H3K27 methylation
(Greißel et al., 2015) with concomitant increase in H3K9
and H3K27 acetylation in advanced atherosclerotic plaques
(Greißel et al., 2016). The role of H3K27 methylation in VSMC
phenotype switching has also been observed in experiments
of Wierda et al., who found that a reduction in H3K27me3
in cells of the tunica media plays a significant role in the
differentiation and proliferation of VSMCs in AS (Wierda
et al., 2015). A study of Harman et al. (2019) showed
that reduced H3K9me2 levels in VSMC within atherosclerotic
plaques and arteries undergoing injury-induced remodeling
is connected to augmented transcription at inflammation-
responsive genes. Next to H3K27 and H3K9, H3K4 methylation
changes have been correlated with stage-specific progression of
AS (Jiang et al., 2018).

Experiments of Chen et al. (2017) demonstrated that increased
expression of the histone demethylase KDM3a in diabetic rats
promotes neointimal hyperplasia through a reduction in H3K9
di-methylation at the ROCK2 and AGTR1 loci, indicating
that the switch from the contractile to the synthetic VSMC

phenotype is enhanced by the activation of the Rho/ROCK and
AngII/AGTR1 pathways. Moreover, studies of McDonald and
Yoshida et al., demonstrated that PDGF B-induced phenotype
switching of cultured VSMCs decreases histone acetylation
mediated by Klf4-dependent recruitment of HDACs 2, 4, and 5
to various CArG dependent VSMC marker genes and enrichment
of the silencing modification H3K9me3 on VSMC promoters
(McDonald et al., 2006; Yoshida et al., 2007).

ncRNAs
Recent discoveries in molecular biology have revealed that gene
expression is primarily regulated not only by proteins but also
by ncRNAs. Among those, microRNAs (miRNAs) and long non-
coding RNAs (lncRNAs) play a crucial role in the transcriptional
regulation of genes at diverse levels (Panni et al., 2020; Statello
et al., 2021). To date, a large number of distinct ncRNAs has
been associated with the VSMC phenotype transition from the
contractile to the synthetic phenotype.

MicroRNA Involvement in VSMC
Phenotype Switching
MiRNAs are small RNA molecules with an average length of 22
nucleotides that typically regulate mRNA expression negatively
by binding to a complementary sequence often located in the
3′ UTR region of the target mRNA (Ambros, 2004; Zhang
et al., 2017). Table 1 summarizes recently discovered as well as
extensively studied miRNAs affecting VSMC phenotype switch
from the contractile to the synthetic VSMC phenotype in a direct
or indirect way.

The Role of Long Non-coding RNAs in
VSMC Phenotype Switching
LncRNAs are commonly defined as non-protein-coding
transcripts larger than 200 nucleotides (Boon et al., 2016).

TABLE 1 | Recently discovered and well-studied miRNAs affecting VSMC phenotype switch from the contractile to the synthetic phenotype in vascular remodeling of
atherosclerotic arteries.

miRNA Promoted VSMC
phenotype

Target mRNA(s) References

miR-1 Contractile KLF4, Pim-1, and HDAC4 Chen et al., 2011; Xie et al., 2011

miR-9 Contractile PDGFR Ham et al., 2017

miR-21-3p Synthetic PTEN Zhu et al., 2019

miR-22 Contractile MECP2, EVI1, and HDAC4 Yang et al., 2018

miR-24 Synthetic Trb3 Yoshida et al., 2013; Cai et al., 2019

miR-26a Synthetic Smad-1 Yang et al., 2017

mIR-27a Synthetic α-SMA Xu et al., 2019

miR-30b-5p Unidentified MBNL1 Woo et al., 2019

miR-93 Synthetic Mfn2 Feng et al., 2019

miR-124 Contractile Sp1 Tang et al., 2017

miR-128 Contractile KLF4, MYH11 Farina, Hall et al., 2020

miR-143, miR-145 Contractile KLF4, Elk-1, ACE, and UHRF1 Boettger et al., 2009; Cordes et al., 2009; Elia et al., 2018

miR-206 Synthetic ZFP580 Sun et al., 2017

miR-221 Synthetic P27kip1, c-kit Liu et al., 2009

miR-222 Synthetic P27kip1, P57kip2 Liu et al., 2009
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Through interaction with DNA, RNA, and proteins, lncRNAs
can affect chromatin function and structure, the transcription of
neighboring and distant genes, and modulate RNA translation
(Josefs and Boon, 2020; Statello et al., 2021). In the following,
recently identified lncRNAs will be discussed.

Interestingly, the most significant cardiovascular disease
related genomic locus Chr9p21.3 includes ANRIL lncRNA,
which promotes VSMC phenotype switching when overexpressed
through possibly acting as a molecular scaffold to promote
WDR5 and HDAC3 complex forming (Zhang et al., 2020).
LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1),
on the other hand, seems to promote VSMC phenotype
switch from a contractile to a synthetic cell type by inhibiting
the chromatin modifier WDR5, normally stimulating the
expression of contractile VSMC specific genes (Ahmed et al.,
2018). Another lncRNA, being SMILR (smooth muscle–induced
lncRNA), directly binds mitotic protein centromere protein
F (CENPF) mRNA and promotes VSMC proliferation and
cell cycle progression (Mahmoud et al., 2019). In agreement
with VSMC proliferation conferring with atherosclerotic plaque
stability, increased SMILR levels have been detected in unstable
compared with stable human lesions in an investigation of
Ballantyne et al., 2016 (Ballantyne et al., 2016). Another
lncRNA influencing VSMC proliferation and thus arterial
remodeling is steroid receptor RNA activator (SRA), which
generally modulates common proliferative kinase pathways.
SRA overexpression experiments in a wire-injury murine
model of vascular injury for example tremendously increased
neointimal hyperplasia by influencing the MEK-ERK-CREB
pathway (Zhang et al., 2019).

EPIGENETIC THERAPEUTIC OPTIONS

As can be seen, various epigenetic modifications can either
promote or prevent arterial remodeling in AS through directly
and indirectly affecting the phenotype of VSMCs. In recent
years, several target genes and molecules regulating all classes
of epigenetic modifications have been examined in animal
models and clinical trials for their effects in the general
treatment of AS (Jiang et al., 2018). The DNMT inhibitor
5-aza-2′-deoxycytidine (5-aza-dC) for instance has shown to
prevent the depressed expression of methylated genes and is at
present approved for the treatment of myelodysplastic syndrome
(Mossman et al., 2010). 5-aza-dC in vitro experiments by
Zhuang et al., decreased global 5-mC content and re-established
myocardin expression in VSMCs induced by PDGF, thus
inhibiting excessive VSMCs dedifferentiation (Zhuang et al.,
2017). However, 5-aza-dC does not work target specific manner
and can induce pluripotency together with a risk for developing
cancer (Taylor and Jones, 1979). Another category of chemical
compounds influencing epigenetic modifications are HDAC
inhibitors (HDACi) such as Vorinostat, which currently are
clinically utilized as anticancer agents (Suraweera et al., 2018).
A study of Ye et al., showed that Vorinostat generally reduced

atherosclerotic plaque size in ApoE−/− mice. In this experiment,
differentially expressed mRNAs and ncRNAs as well as their
interactions and pathways were identified, which to some
extent explain the anti-atherosclerotic effect of this HDACi
(Ye et al., 2018). The effects of Vorinostat on VSMC specific
epigenetic modifications could be investigated in follow up
experiments. On the other hand, miRNA-based therapeutics,
which currently are in preclinical development, work with
synthetically derived oligonucleotide duplexes mimicking target
specific miRNAs or work as antisense-miRNAs. Next to
cancer, in vivo delivery of miRNA-based therapeutics has been
successfully performed in murine models of cardiac diseases,
hepatitis, and diabetes-associated kidney fibrosis, making it an
interesting approach in modulating VSMC phenotype switching
(Saliminejad et al., 2019).

DISCUSSION AND FUTURE
PERSPECTIVES

In conclusion, current research increasingly reveals the
critical role of epigenetic transcriptional regulation in VSMC
phenotype switching. Nevertheless, a large number of factors
and mechanisms still need to be clarified. AS is a multifactorial
disease, and arterial remodeling and plaque composition present
a high level of interindividual heterogeneity (Box et al., 2007;
Incalcaterra et al., 2013). Epigenetic modulations also are
typically controlled by multiple factors like environmental
parameters, age, lifestyle, and the gut microbiome, making the
identification of factors and pathways initiating and controlling
the epigenetics of VSMC phenotype switching a difficult task
(Alegría-Torres et al., 2011; Mitteldorf, 2015; Alam et al., 2017).

Regarding future epigenetic therapeutical options, antisense
oligonucleotide therapy (AOT) seems to present a promising
approach to VSMC phenotype modulation due to its target
specificity. At present, antisense oligonucleotides against
lipoprotein small a (Ionis Pharmaceuticals, CA, United States)
appear to form an attractive way for the treatment of AS
(Tsimikas et al., 2020). Extracellular vesicles loaded with
proteins, DNA oligonucleotides or RNA, on the other hand,
form a potential theoretical approach to fight against trained
immunity (i.e., prolonged secretion of inflammatory cytokines),
continuously triggering arterial remodeling and thus VSMC
phenotype switch (Doyle and Wang, 2019). However, for this
purpose, the epigenetic modifications responsible for trained
immunity, as well as the possibilities to enhance trained immune
tolerance in patients, need to be elucidated.
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