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Background: Immunogenic cell death (ICD) can reshape the immune microenvironment of tumors. Driven by stressful pressure, by
directly destroying tumor cells and activating the body’s adaptive immunity, ICD acts as a modulator of cell death, enabling the body
to generate an anti-tumor immune response that produces a more effective therapeutic effect, while tumor cells are driven to kill.
Hence, this research aimed to find and evaluate ICD-related genetic signatures as cervical cancer (CC) prognostic factors.
Methods: Data of CC patients from the Tumor Genome Atlas (TCGA) were used as the basis to obtain immunogenic cell-death-
related prognostic genes (IPGs) in patients with CC, using the least absolute shrinkage and selection operator and Cox regression
screening, and the IPGs scoring system was constructed to classify patients into high- and low-risk groups, with the Gene Expression
Omnibus (GEO) dataset as the validation group. Finally, the difference analysis of single-sample gene set enrichment analysis, tumor
microenvironment (TME), immune cells, tumor mutational burden, and chemotherapeutic drug sensitivity between the high-risk and
low-risk groups was investigated.

Results: A prognostic model with four IPGs (PDIA3, CASPS, IL1, and LY96) was developed, and it was found that the group of CC
patients with a higher risk score of IPGs expression had a lower survival rate. Single and multifactor Cox regression analysis also
showed that this risk score was a reliable predictor of overall survival. In comparison to the low-risk group, the high-risk group had
lower TME scores and immune cell infiltration, and gene set variation analysis showed that immune-related pathways were more
enriched in the high-risk group.

Conclusion: A risk model constructed from four IPGs can independently predict the prognosis of CC patients and recommend more
appropriate immunotherapy strategies for patients.
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Introduction
One of the top four causes of mortality for women globally and one of the four most prevalent malignancies in women is
cervical cancer. Surgery, radiation, and chemotherapy are the major treatments for advanced CC; however, owing to
tumor recurrence and metastasis, the prognosis for these patients is very poor.” Therefore, it is critical to urgently search
for changes in the factors associated with CC prognosis and the molecular mechanisms involved to provide effective
treatment and improve patient prognosis.

Immunogenic cell death (ICD) is activated by stress-driven activation, such as chemotherapeutic agents or phy-
siotherapy modalities, enhancing tumor immunogenicity, recruiting dendritic cells (DCs) to the tumor and driving their
anti-tumor effects, and activating specific cytotoxic T lymphocyte (CTL) attack on the tumor.” ICD can be considered
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a new way to treat tumors: cancer cells killed by chemotherapy and radiotherapy can activate ICD, allowing the body’s
CTL to perform cancer cell clearance again; in addition, ICD can also reduce drug resistance produced by tumors and
enhance CTL anti-tumor immunity via ICD-mediated immune response.* Moreover, there are ICD-based anti-cancer
drugs, such as FDA-approved belantamab mafodotin, for treating patients with relapsed or refractory multiple myeloma
and lurbinectedin for the treatment of metastatic small-cell lung cancer.>® However, the immune microenvironment of
ICD involved in CC remains unknown. Therefore, we examined ICD-related genes with significant prognostic value in
this investigation. Prognostic features were developed based on four ICD-associated genes (PDIA3, CASPS, IL1B, and
LY96), and patients were classified into high-risk and low-risk groups based on the features to explore differences in
prognosis, enrichment pathways, immune microenvironment, immunotherapy, and drug sensitivity between high-risk and
low-risk groups.

Materials and Methods

To make our entire study easier to understand, we made a flowchart as shown in Figure 1.

Dataset and Preprocessing

In this study, RNA sequencing data from 309 samples in the Cancer Genome Atlas (TCGA) database (https://tcga-data.
nci.nih.gov/tcga/) and patient samples in the Gene Expression Omnibus (GEO: GSE44001, GSE168652, GSE6791)
database (http://www.ncbi.nlm.nih.gov/geo/) and their patients with complete gene expression data and clinical prognosis

information were removed to carry out following analysis. Fragments per kilobase of transcript per million fragments
mapped values were converted to transcripts per million values for analysis to reduce cross-sample inaccuracies in
sample quantification.” From previous literature and studies, 49 genes associated with ICD were obtained.® '

Gene Set Variation Analysis

The “RCircos” R package was used to analyze the frequency of copy number variant (CNV) gain or deletion in 49 related
genes on 23 pairs of human chromosomes to analyze the mutations of ICD-related genes in CC.'* The mutation
frequency, mutation type, and base changes of ICD-related genes in the TCGA cohort were investigated using the
“maftools” R package.'*

49 related genes with CESC project of TCGA
immunogenic cell death datasets(n=309)

'

Differential expression analysis,
Univariate Cox and K- survival
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Figure | Flow chart of this study.
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IRG Expression-Based Clustering Grouping

Using the R package “ConsencesclusterPlus”,'>"'® tumor samples were stratified and clustered based on the expression of
ICD-related genes in CC samples. Prognostic differences between groups were analyzed using Kaplan—Meier (K-M)
curves, and principal component analysis was used to validate the reliability of the clustering analysis. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the
biological differences between different groups, and differences in pathway enrichment were analyzed between groups.
The r package “clusterProfiler” carried out an analysis of the functional annotations from the Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.'’

Construction of a Risk Score Model Related to ICD

The expression of ICD survival-related genes was determined using the “limma” R package.'® The R package “glmnet”
was used to narrow down the candidate genes using the least absolute shrinkage and selection operator (LASSO) and
Cox regression.'”** The risk score of the IPGs model was calculated as follows: RiskScore = [1(Expi * Coefi), where
Coefi represents the risk coefficient and Expi represents gene expression.”’ ROC curve and AUC evaluation with the
“survivalROC” R program.*” The receiver operator characteristics (ROC) curves were used to determine the risk model
accuracy. Univariate and multivariate Cox regression analyses were conducted together with clinical data to ascertain if
the risk score may be used as an independent predictive predictor of prognosis in patients with CC. Threshold values
were established utilizing the “maxstat” R package to define prognostically meaningful high- and low-risk groups.?

The Correlation Analysis Between IRG and Immune Infiltrating Cells and

Immunotherapy Prospects

This was achieved using the “ESTIMATE” R package.”**> The ImmuneScore, StromalScore, and ESTIMATEScore were
calculated, representing the immune infiltration score, stromal cell infiltration score, and the estimated score, which is
a combination of the stromal cell and immune cell scores. The degree of immune cell infiltration in different groups was
assessed using a single-sample gene set enrichment analysis (ssGSEA).>° The “pRRophetic” package was used to
calculate drug sensitivity differences between risk groups.’’” We also used the Tumor Immune Dysfunction and
Exclusion (TIDE) (http://tide.dfci.harvard.edu/) algorithm to predict the effects of immunotherapy in different risk

groups of patients.

Experimental Materials

The human CC-related cell lines HeLa and C33a were purchased from Meisen (Zhejiang, China), and SiHa and ME180
were purchased from Pricella (Wuhan, China). All cultures were supplemented with RPMI 1640 medium, 0.25% trypsin
ethylenediamine tetraacetic acid, and fetal bovine serum (Gibco, NY, USA) and maintained below 5% CO, at 37 °C.
PDIA3 antibody (Proteintech, Wuhan, China), GAPDH antibody (CST, Shanghai, China), goat anti-rabbit IgG antibody
secondary antibody (Zsbio, Beijing, China), and goat anti-mouse IgG H&L/Cy3 (Beyotime, Shanghai, China).

Immunofluorescence
For PDIA3 co-localization analysis, the CC cells were treated with a PDIA3 antibody (1:2000 dilution) overnight at 4 °C.
The cells were then restained with goat anti-rabbit IgG H&L/FITC (1:2000 dilution).

Western Blot

The total protein concentration of CC cells was determined using the BCA protein concentration assay kit. A total of 20
pg protein loading volume was separated by 10% SDS polyacrylamide gel electrophoresis, transferred to polyvinylidene
fluoride (PVDF) membrane, and closed with TBST solution containing 5% BSA at room temperature. After that, the
membrane was incubated with diluted antibodies PDIA3 (1:2000) and GADPH (1:2000) at 4°C overnight, respectively.
Finally, the samples were re-incubated with goat anti-rabbit IgG antibody secondary antibody (1:5000) at room
temperature for 1 h, washed three times with TBST, and developed by enhanced chemiluminescence (ECL).
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Immunohistochemistry

We collected 8 pairs of cervical cancer tissues matched with their adjacent normal tissue samples at Fujian Provincial
Cancer Hospital. The use of cervical cancer specimens for this study was approved by the ethics committee of Fujian
Cancer Hospital. Informed consent was signed after the patients were fully informed of the purpose of the study. The
tissues were routinely dewaxed with water, washed with PBS, treated with methanol solution at room temperature for 10
min, washed again with PBS, and the citric acid antigen repair solution was boiled for 10 min, then moved to room
temperature and cooled at rest. Blocking Buffer for 10 min. The diluted primary antibody was incubated at 4 °C
overnight, and the diluted secondary antibody was incubated at room temperature for 1 h. Finally, the AEC chromogenic
kit was used for 10 min, then the sections were rinsed with distilled water, counterstained with hematoxylin for 3 min,
sealed with water-soluble tablets, and observed under the microscope after drying.

Real-Time Quantitative PCR

After receiving approval from the Fujian Cancer Hospital’s Ethics Committee, we obtained 8 normal ovarian tissues and
24 samples of CESC tissue to perform quantitative real-time PCR (qPCR). Utilizing the Total RNA Extraction Kit from
Promega, total RNA was extracted from the tissue samples (Shanghai, China). After RNA extraction, we produced cDNA
by reverse transcribing whole RNA using the Transcriptor First Strand cDNA Synthesis Kit in Shanghai, China. We used
SuperReal PreMix Plus from Tiangen Biotech to conduct qPCR to determine the expression level of IPGs in the signature
(Beijing, China). The sequences of the IPGs primers that we bought from Sangon Biotech in Shanghai, China, are
reported in Supplementary Table 1.

Statistical Analysis

R software (version 4.1.3) was used for statistical analysis. We compared overall survival between high-risk and low-risk groups
using K-M analysis with the Log-rank test. The Mann—Whitney test was used to compare immune cell ssGSEA scores and
immune-related pathways between groups. Two-tailed p-values < 0.05 were considered statistically significant.

Results

Inheritance and Mutation of IRG in CC Samples
Based on previous ICD literature reports, 49 IRG were included in this study. Presentation of the top 15 differentially expressed
genes based on IRG mRNA expression levels in normal and cervical cancer tissues in the TCGA dataset, where genes with higher
amplification frequencies of BAX, CASPS, and CALR were also significantly more expressed in cancerous tissues (Figure 2A).
The genes with a high copy number amplification frequency included PIK3CA, TNF, SLAMF7, and NLRP3, while
those with a high copy number deletion frequency included HMGB1, CASP8, CASP1, and PDIA3 (Figures 2B and D).
We found that 130 of 289 CC samples had mutations in IRG, with a mutation frequency of 44.98%. The PIK3CA gene
had the highest mutation frequency, followed by CDK12, CASPS8, and IFNGR1 genes (Figure 2C). Furthermore, we
investigated the role of IRG in CC prognosis, and most of the associated genes had the same impact on CC prognosis.
For example, the adverse factors PDIA3, ATGS, CD8B, and IL10 were positively associated (Figure 2E).

Analysis of Immune Cell Infiltration Characteristics of Different Groups Based on IRG

Expression Clustering

We performed IRG expression-based clustering analysis of CC patients in the TCGA dataset using the R package
“ConsencesclusterPlus” to further investigate IRG. When the CC samples were divided into groups A, B, and C, testing
with k = 2-9 revealed that k = 3 had the best cluster stability. The best groupings had higher partial correlations within
groups and lower correlations between groups (Figures 3A and Supplementary Figure 1).

Heat maps were then used to compare IRG expression levels across the three groups, and the results revealed that
most IRG expressions were upregulated in clustered groups A and B. Both groups A and B had a worse prognosis than
group C (Figures 3B and C). ssGSEA revealed significant differences in the content of 29 immune cells between the three
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groups, with both groups A and B showing a high infiltration of immune cells, primarily immunosuppressive cells such
as macrophages, mast cells, and regulatory T cells (Figure 3D).

The Biological Behavior of DEGs in Different Clustering Groups
To explore differences in biological behavior among IRG clusters, we searched for differentially expressed genes (DEGs)
between groups and performed GO and KEGG enrichment analyses. The findings revealed that DEGs in CC samples

LERNT3

were primarily enriched in immune function, particularly “T cell activation”, “leukocyte cell-cell adhesion”, “immune
receptor activity”, “MHC protein complex binding”, “cytokine receptor activity”, and other activities (Figure 4A).
According to KEGG enrichment analysis, differential genes upregulated “Cytokine-cytokine receptor interaction”,
“Chemokine signaling pathway”, and other pathways (Figure 4B). Next, we performed a KEGG-related GSVA analysis.

The findings revealed that the “T-cell receptor signaling pathway”, “B-cell receptor signaling pathway”, and “JAK/STAT
signaling pathway” were significantly upregulated in IRG clustering groups A and B (Figures 4C-E).

Model Construction and Validation Based on IPGs
Transcriptomic data from the TCGA and GEO cohorts screened for cervical cancer samples were matched to survival
data. Sankey plots were used to show IRG clustering grouping, risk, and survival outcome (Figure 5A).

A Cox regression analysis was used for the initial screening of IRG (Supplementary Figure 2). By using LASSO

regression, four significant genes were evaluated (Figures 5B and C). From the risk scores of the four IPGs, the median
score was calculated (risk score = PDIA3 x 1.1277967 + CASP8 x 0.4558879 + IL1B x 0.3471111 + LY96 x
—0.4902444), separating CC patients into low-risk and high-risk groups.

Furthermore, we investigated the relationship between risk scores and the two clustering subgroups, and the results
revealed significant differences in risk scores among the various clustering subgroups. The median risk score in group
A was higher than in IRG clustering group B, and the prognosis was worse in group A than in group B (Figure 5D). The
expression of IRG varied significantly amongst risk groupings (Figure SE). Next, CC patient samples from the TCGA
and GEO cohorts were used as the train and test sets, respectively. The findings showed that the prognosis of patients in
the low-risk group was superior to that of patients in the high-risk group (p < 0.001, Figure 5F). We also performed
a survival analysis in the test set to assess the predictive prognostic consistency of the risk score (Figure 5G). The
sensitivity and specificity of the ROC assessment of the prognostic model were also consistent (Figures SH and I),
indicating that the risk score is a more reliable predictor of prognosis in CC (all AUCs for survival exceeded 0.6).

IPGs-Risk Score Model for Predicting Patient Prognosis

Patients in the experimental and test groups were at increasing risk from left to right according to the median of the risk score
formula. In both the experimental and test groups, the risk score increased, the number of deaths increased, and the prognosis of
patients worsened (Figures 6A—F). Based on the TCGA dataset, column line plots with risk groups and clinicopathological factors
comprising prognostic IPGs features were created in consideration of the problematic practical use of these features in predicting
the survival of CC patients. The risk score was an independent predictor of a poor prognosis in CC, according to results of
univariate and multivariate Cox regression studies (hazard ratio (HR) = 1.059, 95% confidence interval (CI): 1.134-1.084,
Figure 6G) (HR = 1.058, 95% CI: 1.033-1.063, Figure 6H). Furthermore, patient age and stage were also independent prognostic
factors for poor CC outcomes.

Molecular Characterization of Different IPGs-Risk Groups

The TME differed between the high-risk and low-risk groups. The high-risk and low-risk groups had significantly different
StromalScore, ImmuneScore, and ESTIMATEScore scores, with the high-risk group having lower scores than the low-risk group.
Furthermore, as risk scores increased, the majority of immune cell infiltration decreased (Figures 7A and B). In the radar plot, the
number of immune cells in the high-risk group was significantly lower than in the low-risk group (Figure 7C). Based on these
findings, it is speculated that the prognostic value of the IPGs risk score may be due to poorer immunosuppression or the
promotion of invasive tumor growth. The distribution of somatic mutations in the high-risk and low-risk groups differed, and the
top 20 genes with the highest mutation frequency were presented (Figures 7D and E).
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Potential Role of IPGs Score in Treatment
Based on TIDE, MDSC, and CAF scores, to assess the probable immunotherapy response of CC patients in various IPGs
risk categories. TIDE scores were lower in the high-risk group than in the low-risk TIDE group, while MDSC and CAF
scores were higher in the high-risk group (Figures 8A—C).

To predict the value of chemotherapy efficacy based on risk scores, we compared the differences in sensitivity to common
chemotherapeutic agents for CESC between the two groups, and the median IC50 values for gefitinib (Figure 8D) and palbociclib
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Figure 7 Comprehensive analysis of the immunogenic cell death prognostic gene scores in cervical cancer. (A) Tumor microenvironment differences between the high-risk
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(Figure 8E) were significantly higher in the high-risk group than in the low-risk group (p <0.01), indicating that CESC patients in
the high-risk group were more sensitive to these agents. However, the median IC50 values of pyrimethamine (Figure 8F),
rapamycin (Figure 8G), and sorafenib (Figure 8H) were all significantly lower in the high-risk group than in the low-risk group
(p <0.01), indicating that CESC patients in the low-risk group were more sensitive to these drugs.

Identification of PDIA3 as a Prognostic Key Gene
At the single-cell level, we examined the levels of IPGs expression in the microenvironment of cervical cancer, which included
immune cells, stromal cells, malignant cells, and functional cells. The findings also revealed that PDIA3 was more likely to be
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Figure 8 Role of immunogenic cell-death-related prognostic genes (IPGs) score in anti-tumor therapy. (A—C) TIDE, MDSC, and CAF scores among different IPGs’ risk
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expressed in malignant cells (Figures 9A and B). Additionally, in another dataset, IPGs between HPV16 and HPV18-positive
cervical cancer patients and normal subjects were discovered to differ (Figure 9C). Cox survival analysis showed that high PDIA3
expression was the most significant adverse prognostic factor for ICD in patients with CC (HR = 1.867; Figure 9D), and PDIA3
expression was increased in cancerous tissue samples (Figure 9E). High PDIA3 expression was significantly negatively correlated
with overall and progression-free survival (p < 0.01) (Figures 9F and G). The expression of PDIA3 in cervical squamous
carcinoma and adenocarcinoma was significantly higher than in normal cervical tissues in an immunohistochemical analysis of
the Human Protein Atlas. Overall, the PDIA3 gene may act as a risk factor and marker for CC patients’ prognosis (Figures 9H-J).

PDIA3 is Upregulated in CC Tissues and is a Promising Diagnostic and Prognostic
Biomarker

The PDIA3 expression level was examined using Western blot on CC cell lines and found to be expressed in all four cell
lines at the protein level, with Hela cells being the most abundant and ME180 cells being the least abundant (Figures 10A
and B). Immunofluorescence and immunohistochemistry analysis revealed that the PDIA3 protein was primarily
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expressed in the cytoplasm and, to a lesser extent, in the nucleus of CC cells. However, the expression was lower in
normal cervical tissues, which was consistent with the results verified by the HPA database (Figures 10C and D). This
suggests that PDIA3 may be a promising prognostic indicator for patients with CC. The expression levels of PDIA3,
CASPS, and LY96 were significantly higher in cervical cancer samples than in normal tissue samples, but the expression
levels of IL1 were not significantly different between the two groups (Figure 10E).

Discussion

Immunotherapy has emerged as a novel therapeutic pathway that benefits many cancer patients”®>° The therapeutic
efficacy of immunotherapy is determined by the synergistic action of immune cells on the tumor to control tumor growth
and the modulatory effects of innate and adaptive immune cells.’’ The therapeutic impact of immunotherapy is
dependent on the function of innate and adaptive immune cell control. The mode of ICD triggers not only adaptive
immunity but also activates innate immunity, the process by which tumor cells are transformed from non-immunogenic
to immunogenic to mediate the body’s anti-tumor immune response while dying from external stimuli.** These
substances are known as damage-associated molecular patterns (DAMPs). DAMPs generated during ICD can bind to
pattern recognition receptors on the surface of DCs, causing a sequence of cytological reactions that eventually lead to
the activation of innate and adaptive immune responses.* The immune responses triggered by anti-cancer-targeted drugs
developed to study the ICD pathway of CC are expected to result in the desired therapeutic outcome.>** However, the
mechanism of action of ICD in CC remains unclear, so an in-depth study of its molecular mechanism will be necessary to
guide CC patients’ anti-cancer treatment.

This study identified three distinct patterns of ICD (IRG clustering groups A—C) based on 49 ICD-associated genes.
Patients in groups A and B had more advanced immune infiltration and a worse prognosis than patients in group
C. Different cellular ICD subtype features were enriched in “T cell activation”, “leukocyte cell-cell adhesion”,
“immune receptor activity”, “MHC protein complex binding”, and other immune activations and are significantly
associated with immune-related biological pathways. In comparison to normal cells, the surface of tumor cells,
apoptotic cells, and some cells that have been treated with drugs (such as anthracyclines) produce more calreticulin.
These cells’ calreticulin can attach to the CD91/LRP1 receptor on the surface of various intrinsic immune cells,
including macrophages, dendritic cells, and other immune cells, increasing the immune system’s reaction to these
cells.** The highly infiltrative tumor immune microenvironment and various regulatory factors have been reported to
influence patient disease progression and treatment effectiveness.>> For example, group B regulatory T cells (Tregs) are
heavily infiltrated and are associated with immune-related biological pathways. High infiltration of group B Treg is
associated with a poor patient prognosis.*® Macrophages suppress the organism’s immune response and remodel the
stroma.’” The JAK/STAT signaling pathway is differentially enriched between groups and is believed to be one of the
most critical pathways mediating cell development and function in innate and adaptive immunity. The pathway’s
activation is inextricably linked to tumor development, and STAT overactivity can drive classical oncogenic signals
(eg, BCR-ABL, Ras, and Src) to promote tumor growth.>®**° The findings suggest that IRG can be used to predict
clinical prognosis and immune efficacy in patients with CC. For the diagnosis and treatment of the condition, CC
screening and risk assessment are crucial. Therefore, we constructed a reliable and valid risk score for the IPGs model
and validated its predictive power. According to survival curves, patients with higher risk scores have significantly
worse clinical outcomes, whereas patients with lower IPGs have a better prognosis. In addition, univariate and
multivariate Cox regression studies showed that the IPGs model was an independent predictive variable for CC.
The analysis of expression in HPV16- and HPV18-positive patients also revealed that IPGs differed between normal
and cervical cancer patients, suggesting that bivalent HPV vaccination may have a preventive effect. In conclusion, it
has been well demonstrated through investigation using various databases and clinical samples that the IPGs signature
of CC has good predictive and independent prognostic significance.

ICD groups A and B, which have immunosuppressive effects, were associated with higher risk scores for IPGs,
whereas ICD group C, which has immune-activating effects, was associated with lower risk scores for IPGs. Group
C was associated with lower risk scores, indicating that higher infiltration of B memory cells, CD8+ T cells, and gamma-
delta T cells play a crucial role in immune defense. The immune system’s protection relies heavily on gamma-delta
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T cells. Gamma-delta T cells can function as a functional link between these two important immune systems to influence
tumor Kkilling since they exhibit innate and adaptive immune systems. They are particularly important in cervical
carcinogenesis and early persistent HPV infection.*' B cells were able to stimulate B cell maturation and activation
with anti-PD-L1 immunotherapy, and they predicted a significant survival advantage for HPV-infected patients.*? This
suggests that patients with low scores can benefit from the anti-tumor immune defense. The high-risk group activated
considerably more mast cells than the low-risk score group. One of the primary characteristics of tumors is a chronic
low-level inflammatory response, and mast cells play a very broad function as regulators of acquired immunity and
innate immunity monitors.*> Mast cells are among the first immune cells to be recruited to tumor tissue and to generate
an immune response to the tumor.** Mast cells play a role in the expression and release of the immunosuppressive mast
cells are immunosuppressive because they express and release the immunosuppressive factor IL-10, and they also affect
the function of regulatory T cells (Treg) and contribute to the development of immune tolerance.*> We found that the
high-risk group had lower TIDE scores but higher MDSC and CAF scores. Higher TIDE scores indicate a greater
likelihood of tumor immune escape, which is detrimental to patient prognosis.*® According to earlier research, myeloid-
derived suppressor cells (MDSCs) can severely suppress the immune cell response, and they play a crucial role in the
development and spread of tumors.”’” The MDSCs can significantly suppress the immune cell response. Cancer-
associated fibroblasts (CAFs) in tumor tissues promote tumor development and act as a barrier to drug and immune
cell infiltration.*® It indicates that patients in the risk group are more sensitive to immunotherapy and more likely to
evade the body’s immune surveillance to promote tumor development. This may be related to the property of
immunogenicity, which can activate adaptive immune responses and trigger immune memory via cytotoxic
T lymphocytes when malignant tumor cells appear to die.>* Besides, somatic mutations can produce neoantigens,
activate immune recognition, and kill tumor cells.**>* Common genes such as TTN, PIK3CA, KMT2C, and MUCI16
are more frequently mutated in low-risk groups. According to the study, patients with CC who have PIK3CA mutations
as a target for combination therapy can benefit from existing ERBB2/PIK3CA/AKT/mTOR targeting drugs.’’ In
conclusion, the ICD prognostic risk score predicts the prognosis of CC patients and identifies patients sensitive to
chemotherapeutic and immunotherapeutic agents.

We screened for PDIA3, a key poor prognostic regulator of ICD that binds to calreticulin and translocates to the
cell surface, where calreticulin sends phagocytic signals to professional antigen-presenting cells, but CD47 strongly
inhibits phagocytosis.’* Furthermore, PDIA3 promotes transcriptional activator 3 (STAT3) to drive tumor development
and immune escape.” In addition, STAT3 is involved in our enriched pathway results: the JAK/STAT signaling
pathway, which is highly expressed in various malignancies.®® STAT3 is strongly associated with poor patients’
prognosis.”> Blocking STAT3 signaling improved tumor immune escape and enhanced anti-tumor immunity.’® These
findings suggest that PDIA3 may be a potential therapeutic pathway for CC tumor treatment and a prognostic
biomarker for patients.

However, there are still limitations to this study. First, the data were analyzed retrospectively in a public database, and
the inclusion or exclusion of individual cases may have affected the accuracy of the results. In addition, we need to
validate the model’s accuracy and consistency in prognosis using more well-developed data sets. Second, additional ex
vivo studies are needed to demonstrate the mechanism of IRG action in CC.

Conclusions

In conclusion, this study explored the relationship between CC prognosis and ICD using four IPGs. By exploring their
biobehavioral characteristics and clinical factors, IPGs’ risk scores can be used as biomarkers of prognosis and immune
efficacy in CC patients. The key gene PDIA3 also has significant prognostic and diagnostic value. The potent role of ICD
on tumor immunomodulation provides the foundation and new ideas for CC immunotherapy and early tumor screening
strategies.
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