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The human mind shows extraordinary capability at recognizing patterns, while at the same
time tending to underestimate the natural scope of random processes. Taken together,
this easily misleads researchers in judging whether the observed characteristics of their
data are of significance or just the outcome of random effects. One of the best tools to
assess whether observed features fall into the scope of pure randomness is statistical
significance testing, which quantifies the probability to falsely reject a chosen null
hypothesis. The central parameter in this context is the p-value, which can be
calculated from the recorded data sets. In case of p-values smaller than the level of
significance, the null hypothesis is rejected, otherwise not. While significance testing has
found widespread application in many sciences including the life sciences, it is hardly used
in (bio-)physics. We propose here that significance testing provides an important and valid
addendum to the toolbox of quantitative (single molecule) biology. It allows to support a
quantitative judgement (the hypothesis) about the data set with a probabilistic assessment.
In this manuscript we describe ways for obtaining valid p-values in two selected
applications of single molecule microscopy: (i) Nanoclustering in single molecule
localization microscopy. Previously, we developed a method termed 2-CLASTA, which
allows to calculate a valid p-value for the null hypothesis of an underlying random
distribution of molecules of interest while circumventing overcounting issues. Here, we
present an extension to this approach, yielding a single overall p-value for data pooled from
multiple cells or experiments. (ii) Single molecule trajectories. Data from a single molecule
trajectory are inherently correlated, thus prohibiting a direct analysis via conventional
statistical tools. Here, we introduce a block permutation test, which yields a valid p-value
for the analysis and comparison of single molecule trajectory data. We exemplify the
approach based on FRET trajectories.
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testing, nanoclustering

1 INTRODUCTION

One fundamental problem behind the interpretation of biological data relates to the question
whether a specific data set agrees with a certain hypothesis or not. Typical examples include the
comparative analysis of different subgroups, or the compatibility of data with a specified model. The
basic problem arises from the fact that each reproduction of a biological experiment yields a slightly
different outcome, irrespective of the quality and precision of the experiment. The reason can be
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measurement errors or stochastic variations underlying the
physical processes. In consequence, it is the interpreter’s
problem to judge the compatibility of the data with the
hypothesis.

Significance testing has been developed to provide an exact
mathematical framework for this problem. The first step is to
formulate a null hypothesis, against which the data is to be tested;
a typical null hypothesis would be the absence of any effect or
difference. Let us introduce as an example the question whether
proteins are distributed randomly on a two-dimensional
membrane. This question has become central in many fields of
cellular biophysics (Garcia-Parajo et al., 2014; Goyette et al.,
2019). In our case, the null hypothesis would be a purely
random distribution. The idea is now to judge the validity of
this hypothesis, based on a binary classifier, which either rejects
the hypothesis or not. Naturally, one makes errors in this
judgement. One misjudgement is the false rejection of the null
hypothesis. The p-value together with significance testing is the
attempt to quantitatively assess such misjudgements. In a
nutshell, the lower the p-value, the likelier it is that the data
set disagrees with the null hypothesis. Ideally, the researcher
defines a significance level α before performing the experiment,
which is taken as threshold criterion for the decision: any p-value
below α is considered as a rejection of the null hypothesis,
whereas any p-value greater than α would count as agreement.

Significance testing can hence be considered as a powerful tool
for a quantitative assessment of a particular experimental
outcome. In this context, quantification does not relate to a
determination of the magnitude of certain biological
parameters, but to a probabilistic assessment of the likelihood
of the chosen null hypothesis or the deviation of it. Indeed, as
Figure 1A indicates, even random spatial protein distributions

contain accumulations that would be picked up as clusters by
standard clustering algorithms. Therefore, we consider it
important to first globally assess a data set via significance
testing before using more detailed analysis tools for a
quantification of the biological parameters of interest.

In this manuscript, we provide a guideline how to use p-values
for the analysis of single molecule microscopy data. In particular,
we address the following questions:

• What is the probabilistic basis of the significance level α and
the p-value?

• How can one handle situations in which the distribution of
the test statistic under the null hypothesis is not known
analytically?

• How can multiple experimental outcomes be combined into
one global p-value?

• How can one account for correlated data in significance
testing?

After a brief introduction into significance testing, we provide
the reader of this paper with instructions how to use significance
testing in two specific settings:

(i) Detection of protein nanoclusters in membranes. The spatial
organization of membrane proteins can be studied in
unprecedented detail via single molecule localization
microscopy (SMLM). In this superresolution technique,
the diffraction limit of light is circumvented by separating
the emission of individual fluorophores in time (Sigal et al.,
2018; Schermelleh et al., 2019; Lelek et al., 2021; Schütz and
Schneider, 2021). After recording and post-processing of
thousands of frames, a localization map is obtained. This
map is a list of coordinates representing the observed
molecule positions. Early studies conducting SMLM
experiments on cellular plasma membrane proteins have
consistently reported nanoclustering to different degrees
(Lillemeier et al., 2010; Rossy et al., 2013; Garcia-Parajo
et al., 2014). However, due to blinking of fluorophores the
same biomolecule of interest can be detected multiple times
during the image acquisition. In combination with
localization errors, this leads to localization clusters in the
localization maps, which can be easily mistaken for true
molecular nanoclustering. Here, we want to address the
question of biomolecular nanoclustering in the framework
of significance testing.

(ii) Comparative analysis of single molecule trajectories. In
SMLM, the high spatial resolution is traded for temporal
resolution. To complement this approach, cellular dynamics
can be investigated based on the recording of single particle
trajectories (Wieser and Schütz, 2008). Similar to SMLM, the
density of fluorescent molecules needs to be low enough to
distinguish individual molecules. A single molecule is then
imaged and tracked over a certain time span, yielding the
evolution of a recorded parameter over time. As observed
quantity, we considered here the Förster Resonance Energy
Transfer (FRET) (Roy et al., 2008). The FRET efficiency
corresponds to the non-radiative energy transfer between a

FIGURE 1 | Cluster analysis with DBSCAN. (A) Map of molecule
positions. Positions were generated by a spatial Poisson point process with a
density of 80 points per μm2. The point pattern was analyzed by DBSCAN
(Ester et al., 1996). Analysis parameters were set to r = 50 nm for the
search radius and n = 3 for the minimum number of points constituting a
cluster. The color code represents the cluster assignment. Unclustered points
are shown in gray. Although the molecule point pattern represents complete
spatial randomness, 22 clusters were identified by DBSCAN. (B) SMLM
localization map simulated based on the molecule positions from panel (A),
including overcounting according to the blinking statistics of SNAP-AF647
(Arnold et al., 2020). The localization map was analyzed by DBSCAN as
described in panel (A), yielding 116 clusters. Scale bars: 200 nm.
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donor and acceptor fluorophore, which is directly related to
the distance between the two fluorophores. Thus, distances
between molecules can be determined at a length scale of a
few nanometers. When performing a comparative analysis of
recorded samples, one difficulty relates to the correlation
within single trajectories. Here, we show how this problem
can be solved via a block permutation testing approach.

2 STATISTICAL SIGNIFICANCE

In the following, we discuss the concept of significance testing for
the analysis of biophysical data. As guiding example we will use
hypothetical data from SMLM experiments, which shall be
analyzed by a 2-color localization microscopy and significance
testing approach (2-CLASTA), which we recently developed
(Arnold et al., 2020). 2-CLASTA is based on competitive
labeling of the same type of biomolecule with labels of two
different colors, yielding a 2-color localization map. As the
method does not analyze the distribution of localizations
directly, but possible correlations between the two color
channels, it is independent of the blinking behavior and, in
particular, is compatible with any SMLM technique, including
PALM, STORM and PAINT [see Supplementary Figure S3 in
(Arnold et al., 2020)].

Let us start by considering a pattern generated by a spatial
Poisson point process, i.e., complete spatial randomness
(Figure 1A), which could correspond to the 2D positions of
single protein molecules in a cell membrane. As is apparent from
the image, several points will be in close spatial proximity due to
random chance alone. This can be easily seen when analyzing the

point pattern with clustering methods such as DBSCAN (Ester
et al., 1996). Although the point pattern is purely random,
multiple clusters were detected by the method.

The situation becomes more severe when considering SMLM-
inherent overcounts which arise from repetitive detections due to
the blinking kinetics of single dye molecules. Figure 1B shows the
same underlying biomolecular distribution as Figure 1A, but now
including overcounting which was simulated using typical
experimental blinking data. Obviously, more apparent
localization clusters arise and are detected by the DBSCAN
approach. Thus, a mere analysis of clustering without
considering its statistical significance in the context of the
global point pattern distribution may yield misleading results.

In a statistical analysis, the characteristics of a whole
population are estimated based on the analysis of a subsample
(Figure 2A); for example, the overall spatial distribution of
biomolecules is investigated based on the localization map
obtained from a subregion of a cell. The population follows an
underlying unknown spatial distribution, which shall be
characterized by the statistical test. The sample is a data subset
which should be representative of the population. For our
example of 2-color SMLM data, Figure 2A shows two samples
simulated with different sizes of the selected region of interest.
The key step now is to identify a sample summary statistic, which
will be used to infer information about the whole population. In
our previous publication, we analyzed the cross-nearest neighbor
distances between the two color channels (Arnold et al., 2020).
Figure 2C shows the empirical cumulative density function
(CDF) for a number of 10 000 different subsamples. In
principle, if an analytical and parameterized model of the
underlying spatial distribution was available, the empirical

FIGURE 2 | Sampling distribution and influence of sample size. Representative localization maps of an underlying random (A) and clustered (B) distribution of
biomolecules. The simulated regions comprise a number of N = 75 underlying molecules (top row) or N = 7500 molecules (bottom row). For the clustered scenario, we
simulated dimers. The degree of labeling was set to 100%. Scale bars: 100 nm (top row), 1 μm (bottom row). (C) Cumulative distribution functions (CDFs) of cross-
nearest neighbor distances between localizations of the red and blue color channel. Gray lines show the CDFs for 10 000 simulations of random biomolecular
distributions. The green line indicates the CDF for the clustered scenario from panel (B). (D) Probability distribution of the summary statistic, i.e. the sampling distribution.
As a summary statistic the integral of the CDF from 0 nm to 200 nm was calculated. The sampling distribution is shown for sample sizes corresponding to a number of
molecules from N = 75 (light gray line) to N = 7500 (black line). The larger the sample size, the narrower is the sampling distribution.
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CDFs could be fitted and the parameters determined. However, in
practice such a model is difficult to establish, making statistical
tools a valid choice for approaching this problem. What is
apparent at first glance is the rather large spread between the
different curves, which is particularly pronounced for smaller
subsample sizes. The large spread reflects random effects which
lead to variations between subsamples, also if they are drawn
from the same underlying population. In the following, we did
not use the empirical CDFs directly, but reduced them to the
integral over the curve, which was taken as a summary statistics
for the subsequent analysis. The sample summary statistics is a
random variable that follows a probability distribution
(Figure 2D). This probability distribution of the sample
summary statistic over all possible random samples of given
size n is called the sampling distribution ρ(s). The shape of the
sampling distribution depends both on the underlying population
and the sample size. For increasing sample sizes, the distribution
becomes narrower.

Let us apply the analysis via summary statistics to characterize
a simple model, which becomes the basis for the null hypothesis.
The null hypothesis H0 assumes the validity of this model, for
example a purely random spatial distribution of all biomolecules.
The central idea of significance testing is to quantify the
probability for obtaining a certain summary statistics. More
precisely, the p-value quantifies the probability that drawing
from the sampling distribution under the null hypothesis
yields a value which is as extreme or more extreme than a
given value s0 (Figure 3A). The p-value hence is given by the
integral p � ∫∞

s0
ρ(s)ds. Typically, s0 is the value of the summary

statistics obtained from an actual experimental observation.
Per definition, the p-value is a random variable in the interval

[0, 1]. A p-value is valid if it fulfills P(p≤a | H0)≤ a for every 0 ≤
a ≤ 1 under the null hypothesis; if equality holds true for all values

of a, the p-value is exact. This definition implies that—under the
null hypothesis—the p-value shows a uniform distribution. In
return, if the p-value is not distributed uniformly under the null
hypothesis, the null hypothesis does not follow the assumed
distribution and thus, the p-value is not valid. If the employed
test statistic is discrete, the distribution of p-values will also be
discrete. Hence, the p-value cannot be uniformly distributed over
the whole interval [0, 1], but can take on discrete values only.
Nevertheless, the p-value will be distributed uniformly in the
sense that P(p≤ a | H0) � a, if a is a value that can be taken on by
the p-value, and P(p≤ a | H0)< a otherwise. Hence, the p-value
is valid.

As the p-value is based on the sampling distribution, it not
only depends on the population but also the sample size
(Figure 3E). Hence, the same outcome for a summary
statistics may yield different p-values dependent on the sample
size as the width of the sampling distribution varies.

The p-value allows to assess statistical significance,
i.e., whether a result for a test statistic is more extreme than
what can be expected from random chance. It describes how
incompatible the observed data are with the statistical model
specified by the null hypothesis. Thus, the p-value can be used to
conduct a hypothesis test, in which the null hypothesis H0 is
tested against the alternative hypothesis H1. Of note, the two
hypotheses H0 and H1 should be mutually exclusive and their
union should cover the whole range of possible outcomes. The
test decision, i.e., whether the null hypothesis is rejected or kept, is
based on the p-value and a chosen threshold termed the level of
significance α. The null hypothesis is rejected if the obtained
p-value is lower than or equal to α. If the p-value is larger than α,
the null hypothesis is kept (Figure 3).

Let us consider three different scenarios for the application of
significance testing to the analysis of SMLM data. First, a test shall

FIGURE 3 | Calculation of the p-value. (A,B) Gray curves show the sampling distribution of the summary statistic under the null hypothesis. The value of the
summary statistic s0 obtained for one specific sample is shown as green vertical line. The p-value corresponds to the dashed green area. The gray area corresponds to
the level of significance, which was set to α = 0.05. If the p-value falls below the level of significance (i.e., s0 falls within the gray area), the null hypothesis is rejected (A).
Otherwise, the null hypothesis is kept (B). In panels (A) and (B) a right-sided test is depicted. (C) Left-sided test. (D) Two-sided test. (E) Influence of sample size.
The same value s0 of the summary statistics yields a different p-value dependent on the sample size (top to bottom). For a small sample size, the sampling distribution is
broad and the null hypothesis is kept (top). For a large sample size, the sampling distribution is narrow and the null hypothesis is rejected (bottom).
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be performed for the null hypothesis of a random distribution of
biomolecules against the alternative hypothesis of (nano-)
clustering. As indicated in Figures 2B,C, spatial clustering
leads to a steeper increase in the empirical CDFs concomitant
with a higher value of the determined summary statistics s0. In
this case, it is hence recommendable to use the right-sided p-value
(Figure 3A) and only reject the null hypothesis in case of
extremely high values of s0. Second, we assume as alternative
hypothesis a repulsion of the molecular positions. In this case,
molecules would be dispersed across the field of view,
concomitant with a smaller value of the determined summary
statistics s0. Consequentially, the left-sided p-value would be used
for the test (Figure 3C). Third, it may be the case that any
deviation from a random distribution is of interest to the
experimentalist. In this case, one would opt for choosing the
two-sided p-value, and reject the null hypothesis both in case of
extremely high and low values of s0 (Figure 3D).

For a valid analysis, the value of the significance level α needs
to be specified a priori, i.e., before calculating the p-value for a
particular experiment (Shine, 1980). Only in this case the level of
significance corresponds to the false positive rate of the test. If the
level of significance is selected a posteriori, the researcher may be
biased in the choice of α dependent on the obtained p-value.
Thus, the probability for an incorrect rejection of the null
hypothesis will be affected.

For the interpretation of results it should be kept in mind that
the outcome of a test decision, i.e. the rejection or acceptance of
the null hypothesis, may be incorrect. The type I and type II error
quantify the probability of a false decision. The type I error
corresponds to false positives: The null hypothesis is

erroneously rejected, i.e. an observed effect is assumed to be
real although it is due to random chance alone. Interestingly, the
probability of a type I error—i.e. the false positive rate—is directly
determined by the chosen level of significance. For a valid p-value
it holds that P(p≤ α | H0)≤ α for all α ∈ [0, 1]. In other words,
the probability of falsely rejecting the null hypothesis is smaller
than or equal to α. For an exact p-value the false positive rate is
exactly α. A type II error occurs in case of false negatives: the null
hypothesis is kept, although the alternative hypothesis is true. Of
note, the probability of a type II error depends on the sample size;
with increasing sample size the sampling variation decreases and
even small differences in the summary statistics can be attributed
to truly existing effects instead of random noise.

The outcome of the test decision always depends on the
chosen level of significance α, which usually affects the
probabilities for a type I and type II error. Notably, lowering
the chance for one error increases the other. The trade-off
between the two errors is best visualized by a ROC (receiver
operating characteristic) curve (Figure 4). In a ROC curve, the
true positive rate (= 1 − false negative rate = sensitivity) of a test is
plotted against the false positive rate (= 1 − true negative rate =
1 − specificity). A perfect binary classifier would yield a point in
the top left corner (0, 1) of the ROC plot, corresponding to 100%
sensitivity and 100% specificity. In general, however, a certain
probability for either of the two types of errors in the classification
remains. A classifier based on random guesses would yield a ROC
curve given by the diagonal (line of no discrimination, indicated
by the dashed line in Figure 4).

3 2-CLASTA

Often, the sampling distribution of the summary statistics under
the null hypothesis is not known analytically. In our 2-CLASTA
method, we create estimations of the summary statistics under the
null hypothesis of a random biomolecular distribution directly
from the recorded localization maps. For this, a toroidal shift is
applied to one of the color channels (Figures 5A,B): All
localizations are shifted by a random vector �v and moved back
into the regions of interest according to periodic boundary
conditions. The toroidal shift breaks possible correlations
between the two color channels while conserving the
characteristics of the localization map of each individual
channel. By repeating this procedure for randomly chosen
shift vectors, a set of random control images can be generated
on the computer which allows to calculate the corresponding
CDFs of cross-nearest neighbor distances (Figure 5C). Each
integral of these CDFs gives an estimate of the summary
statistics. Typically, we calculated n = 99 toroidal shifts,
yielding a good approximation of the sampling distribution of
our summary statistics (Figure 5D).

Finally, the obtained value s0 of the summary statistics for the
original data is compared with the values si obtained for the
sampling distribution under the null hypothesis. For the
calculation of a p-value, all values of the set S ≔ {si | i �
0, . . . , n} are sorted in descending order and a rank is assigned
to each value according to its position in the ordered sequence: A

FIGURE 4 | Receiver operating characteristic (ROC). The ROC curve
illustrates the trade-off between sensitivity and specificity for a binary classifier.
The true positive rate (sensitivity) is plotted against the false positive rate (1-
specificity). Note that for a hypothesis test the false positive rate
corresponds to the chosen level of significance α. The white dot in the top left
corner indicates the point of perfect discrimination, the dashed line indicates
the line of no discrimination. The solid lines indicate two scenarios for a binary
classifier with low discrimination (light gray) and better discrimination (dark
gray).
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value si has the rank j if it is the jth largest element; consequently,
the largest value of the set has rank 1. Since we want to test the
null hypothesis of a random distribution against the alternative
hypothesis of nanoclustering, we are interested whether the
original data shows a tendency towards shorter nearest
neighbor distances. Deviations towards larger distances are not
considered of importance here. Hence, we calculate

p � rank(s0,S)
n + 1

, (1)

where rank(s0,S) denotes the descending rank of s0 within the set
S. Under the null hypothesis the calculated values p show the
expected uniform distribution in the interval [0, 1] (Figure 6A)
and, hence, can be interpreted as right-sided p-values.

In order to perform the significance testing it is important now
to select a significance level α. In the following, we chose α = 0.05,
equivalent to a 5% false rejection rate of the null hypothesis of a
random biomolecular distribution. In our approach, the
obtainable p-values are constraint to discrete values in the set
{ i
n+1 | i � 1, . . . , n + 1}. It is hence important to ensure that α> 1

n+1.

FIGURE 5 | 2-CLASTA method. Analysis of localization maps with 2-CLASTA. (A) Simulated two-color localization maps for a random (top) and a clustered
(bottom) distribution of biomolecules. Images show a 2 × 2 μm2 region. For the simulation of blinking we used experimental data obtained for SNAP-AF488 (blue channel)
and SNAP-AF647 (red channel). (B) Shifting all localizations of the blue color channel by the shift vector �v breaks correlations between the two color channels. (C) The
CDF of cross-nearest neighbor distances, r, between the two color channels is plotted in green for the localization data shown in panel (A). The functions cdfrand(r) of
n = 99 control curves, generated with randomly chosen toroidal shifts, are depicted in light gray. (D) As a summary statistics, the integral of the CDFs was calculated.
Based on the rank of the summary statistics s0 for the original data (green line), we calculated a p-value p = 0.52 for the random case, and p = 0.01 for the clustered case.
Panels (A–C) adapted from (Arnold et al., 2020), CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

FIGURE 6 | Specificity and sensitivity of 2-CLASTA. (A) Specificity. The histogram of p-values shows a uniform distribution under the null hypothesis of a random
biomolecular distribution. (B) Sensitivity for a varying number of observed molecules. Results are shown for simulations of dimers (+), trimers (▲) and tetramers (■). The
sensitivity increases with a increasing number of observedmolecules. (C) Sensitivity for varying degree of labeling. Results are shown for simulations of dimers (+), trimers
(▲) and tetramers (■). For a degree of labeling above 30%, maximum sensitivity can be achieved. (D)ROC curves are plotted for simulations of dimers with a degree
of labeling varying from 10% (light gray) to 40% (black). With increasing degree of labeling the discrimination power of the test increases, i.e., the ROC curve approaches
the point of perfect classification in the top left corner. The gray dashed line indicates the line of no discrimination. The sensitivity for each parameter set was determined
based on 100 independent simulations. Panels (A–C) adapted from (Arnold et al., 2020), CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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In the example shown in Figure 5, we obtained a p-value of 0.52
for the random biomolecular distribution (top row) and a p-value
of 0.01 for the clustered scenario (bottom row). Our test hence
yielded a correct test decision in both cases.

While the validity of a p-value is described by the correct
rejection rate of the null hypothesis, its power is linked to the
sensitivity for detecting aberrant scenarios. In the following,
we give examples of the sensitivity of 2-CLASTA to detect
biomolecular oligomers from dimers up to tetramers. As
expected, the sensitivity strongly depends on the number of
analyzed molecules within the region of interest (Figure 6B).
This reflects the larger spread of the sampling distribution for
small data sets (cf. Figure 2). For data sets containing more
than 3000 molecules, the identification even of dimers works
robustly with a sensitivity above 80%. In a biological
experiment, it is difficult to achieve a degree of labeling of
100%. With decreasing degree of labeling, two-color
colocalization will be out-diluted by apparent monomeric
signals, which arise from underlabeled oligomers.
Figure 6C shows that a degree of labeling of 30% is
sufficient to reliable detect all analyzed cluster scenarios.
The improved sensitivity for high degree of labeling is also
apparent in the ROC plot (Figure 6D). While for 10% degree
of labeling we obtained results close to the line of no
discrimination, 40% degree of labeling approaches the
point of perfect discrimination extremely well. Of note, we
showed previously that minor chromatic aberrations hardly

affect the analysis, as they do not break correlations between
the two color channels [see Supplementary Figure S4 in
(Arnold et al., 2020)]. If one desires to use a single dye
only (e.g. due to its superior photophysical properties), one
can perform an Exchange-PAINT experiment (Jungmann
et al., 2014) with two different docking strands, which
would then be taken as the two different channels in the 2-
CLASTA analysis.

For a validation experiment, we previously generated
concatamers of SNAP-tags fused to a GPI-anchor, which
are located in the cellular plasma membrane (Arnold et al.,
2020). The fusion-constructs were labeled with mixtures of
blue and red substrates so that similar degrees of labeling were
achieved for both colors (Figure 7A). For each construct, we
recorded 2-color SMLM experiments on at least 25 cells,
analyzed them according to the 2-CLASTA method and
determined a p-value for each image (Figure 7B). The
resulting histograms in the case of monomeric constructs
yielded a rather uniform distribution, whereas all other
constructs showed a substantial deviation from this
uniform distribution, with an increased fraction of small
p-values with increasing oligomer degree. Importantly, the
rather small region of interest and suboptimal degree of
labeling generally compromise sensitive identification of
the presence of oligomers from a single experiment,
yielding multiple experiments with an outcome above the
significance threshold.

FIGURE 7 | Experimental validation of 2-CLASTA. (A) Illustrations and representative localization maps recorded for SNAP-monomers, -dimers, -trimers and
-tetramers (left to right). Scale bars: 250 nm (inset) and 2 μm. (B)Histograms of p-values obtained for multiple recorded cells, which were analyzed individually with the 2-
CLASTA method. For each SNAP construct, we also calculated the joint p-value p* according to Eq. 2, with the threshold p0 = 0.05. Panels (B) and (C) adapted from
(Arnold et al., 2020), CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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4 ACCOUNTING FOR MULTIPLE
EXPERIMENTS

In order to assess the overall outcome of multiple experiments in a
single joint statistical analysis, one straightforward option seems to
be taking the minimum of all observed p-values as overall p-value
and reject the null hypothesis if this minimum p-value is significant.
However, this procedure is not valid as it drastically increases type I
errors, i.e. the false positive rate. This can be seen from a simple
example: Form independent experiments, the probability that none
of the obtained p-values is significant under the null hypothesis can
be calculated as (1 − α)m. Form = 10 experiments and a significance
level of α = 0.05, the probability to incorrectly obtain a significant
result would be 1 − (1 − 0.05)10 = 0.4, which is much higher than the
significance level. This is also evident from the probability
distribution of the minimum p-value. In case of a continuous
p-value, the distribution of the minimum of m uniformly
distributed values pmin = min(p1,. . .,pm) is not uniform but
follows the probability density function m(1 − pmin)m−1.

In order to adjust the overall p-value for m experiments, Wieser
et al. (Wieser et al., 2008) suggested to apply the transformation
function p* � 1 − (1 − pmin)m, yielding a uniform distribution of p*
on the interval [0, 1]. However, in case of bootstrapping and Monte
Carlo approaches the p-value is not continuously distributed, but can
only take on discrete values i

n+1 for i = 1, . . ., n + 1, where n is the
number of bootstrapped or simulated control samples. Therefore,
the lower bound of p* is 1 − ( n

n+1)m, which approaches 1 for m
approaching infinity. Hence, for a large number of experiments m
the null hypothesis would never be rejected.

In case of discrete p-values we propose here a different method to
adjust the p-value for multiple experiments. The p-values for single
experiments then show a discrete uniform distribution under the
null hypothesis given by P(p � i

n+1) � 1
n+1 for i = 1, . . ., n + 1, where

n is the number of simulated controls. In order to combine the
p-values obtained from multiple experiments, we can determine
whether the number of observed p-values below a user-defined
threshold p0 agrees with a discrete uniform distribution. Under the
null hypothesis, the probability to obtain a p-value below or equal to
the threshold p0 in exactly k out of m experiments is given by a
Binomial distribution B(k | p0, m).

Therefore, we can perform a Binomial test in order to
determine whether the p-values obtained from m independent
experiments agree with the null hypothesis. In general, one is
interested in identifying significant results characterized by a high
proportion of low p-values. Hence, a right-sided Binomial test of
the null hypothesis is appropriate. The overall p-value p* for
multiple experiments is calculated as

p* � P(X≥ k) � ∑m
i�k

B(i |p0, m) � ∑m
i�k
(m

i
)pi

0(1 − p0)m−i

� 1 −∑k−1
i�0
(m

i
)pi

0(1 − p0)m−i, (2)

where k is the number of observed p-values below the chosen
threshold p0, and m the number of performed experiments. If p*

is smaller than the chosen level of significance α* for the joint
analysis of experiments, the null hypothesis is rejected.

The increase in sensitivity for the joint analysis of multiple 2-
CLASTA analyses compared to a single experiment is shown in
Figure 8A. For this, dimers were simulated with varying labeling
efficiency, assuming a 1 : 1 label ratio between the two colors. A
joint analysis of 25 or 50 simulated experiments yielded a drastic
increase of the sensitivity compared to the analysis of a single
experiment only. Interestingly, the method is very robust with
regard to the chosen threshold p0 (Figure 8B). As expected, the
higher the number of analyzed experiments, the higher is the
sensitivity of the method. Also in the ROC plot we observed a
strongly improved performance that approaches the ideal test
(Figure 8C). The proposed joint analysis of all performed
experiments was also applied to the experimental results
obtained on the SNAP constructs from our previous paper
(Arnold et al., 2020). The calculated overall p-values for
multiple experiments are indicated as p* in Figure 7B. As
anticipated, the null hypothesis of a random protein
distribution was not rejected for the monomeric 1-SNAP
construct. For all the oligomeric constructs representing
dimers, trimers and tetramers, the null hypothesis was rejected
and the biomolecular distribution was correctly identified as
clustered.

5 SINGLE PARTICLE TRAJECTORIES

As a final example, we will discuss here the application of
significance tests to the analysis of single particle trajectories.
In practice, such trajectories suffer from a limited observation
time due to restrictions in the overall imaging experiments,
diffusion of the molecule out of the region of interest, or
photobleaching of the fluorescence marker molecules. In the
following, we present a guideline how to compare sets of
single particle trajectories recorded under two different
conditions A and B via permutation tests (Good, 2000).

Figure 9 shows the typical workflow of such a test approach.
All data points recorded under condition A and B are combined,
yielding the average values μA for sample A and μB for sample B,
respectively. We choose here as summary statistics the difference
s0 = μA − μB. One may use as a realization of the null hypothesis,
i.e., no difference between the sample A and B, a random splitting
of the combined data sets in two new subsamples Ai and Bi each
containing the same amount of data points as the original samples
A and B. For each permutation, a new sample statistics si � μAi

−
μBi

is calculated. Finally, s0 is compared with the sampling
distribution of all obtained values of si. The p-value is
obtained via the rank of s0 as described in Section 3, Eq. 1.

To evaluate this approach, we simulated representative single
molecule trajectories, consisting of a time series of a recorded
parameter E(t). This could be the FRET efficiency in a single
molecule FRET experiment, the size of displacement steps in a
single particle tracking experiment, the excited state lifetime in a
spectroscopic experiment, to name a few. Representative
trajectories for this evaluation are shown in Figure 9A.
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To verify the validity of this approach for calculating a correct
p-value, we plotted the distribution of obtained p-values under
the null hypothesis for thousand repetitions of this hypothetical
experiment. As discussed in Figure 6A, a valid p-value has to
show a uniform distribution under the null hypothesis.
Interestingly, in our case we observed massive deviations from
such a uniform distribution, with a strong peak for small p-values
(Figure 10D). When applied to a significance test, the
experimenter would hence incorrectly reject the null
hypothesis too often.

To understand the reason for this incorrect judgement, let us
have a closer look on the single molecule trajectories. In our case,
we did not assign binary values to a time series randomly, but
instead we considered states with a specific duration
characterized by transition rate constants. In consequence, the
data used for the sampling distribution are not independent,
thereby violating a basic assumptions of most significance testing
approaches.

To solve this problem, we used a block permutation test
approach. In this approach, the trajectories recorded in the
samples A and B are not split, but instead kept together for
the permutations performed in step C in Figure 9. This approach
correctly accounts for the correlations in the trajectories when
generating the permuted samplesAi and Bi. Indeed, application of
this approach leads to uniform distribution of the p-value under
the null hypothesis (Figure 10E).

We applied the new method to experimental data recorded
previously in our lab, which shows the analysis of single
molecule FRET trajectories of a molecular force sensor
(Göhring et al., 2021). Briefly, T-cells were seeded on a
glass supported lipid bilayer, which was functionalized by
specific proteins to activate the T-cells. One of these
proteins was a force sensor, carrying a spider silk spring
element, which connected a membrane anchoring motive
with a specific ligand to the T-cell receptor on the T-cell
surface. A donor and an acceptor fluorophore were
conjugated to the spider silk region and used for reading
out the elongation of this spring element via single

molecule FRET, which was eventually used to calculate
forces. For each experimental run, two different conditions
were recorded: Condition A (orange) corresponding to the
FRET signal of the force sensor without T-cells, and condition
B (blue) corresponding to the FRET signal recorded in the
synapse between the T-cell and the supported lipid bilayer
(Figure 11).

When using a gel-phase lipid bilayer, we observed a clear
difference between the two conditions corroborated by a highly
significant p-value. In contrast, fluid-phase bilayers yielded
similar results when comparing the two conditions. The block
permutation test yielded p = 0.205, and hence, no significant
deviation from the null hypothesis for a chosen significance level
of α = 0.01. Of note, the simple permutation test not accounting
for correlations would have yielded a p-value of p = 0.004, and
hence, would have indicated a significant difference between the
two samples.

6 DISCUSSION

Calculating a p-value can be very useful for researchers in order
not to be fooled by random chance. Random variations often lead
to outcomes that can easily be misinterpreted as interesting
patterns. The p-value allows to quantitatively assess whether
an observed effect likely occurred due to random chance alone
or whether it is worth to study the effect in more detail. As an
example, SMLM experiments on cellular proteins often revealed
notable deviations from a random distribution of localizations
(Lillemeier et al., 2010; Rossy et al., 2013). When analyzed via
cluster detection methods such as Ripley’s K function, DBSCAN
or modified versions of it (Ripley, 1977; Ester et al., 1996; Rubin-
Delanchy et al., 2015), one would arrive at the conclusion of
biomolecular clustering in the sample of interest. More elaborate
analysis allowed to include the aspect of overcounting due to the
inherent blinking processes in SMLM (Annibale et al., 2011;
Sengupta et al., 2011; Baumgart et al., 2016; Rossboth et al., 2018;
Bohrer et al., 2021), putting some of these clusters into question.

FIGURE 8 | Sensitivity for joint analysis of multiple experiments. (A) Sensitivity for varying degree of labeling. Dimers were simulated and analyzed with 2-CLASTA.
The sensitivity for analysis of a single experiment is shown by the dotted line. The sensitivity in case of joint analysis of 25 and 50 cells is shown by the dashed and solid
lines, respectively; a threshold of p0 = 0.05 was chosen. (B) Influence of the threshold p0 and the number of experiments on the sensitivity. The obtained sensitivity is
indicated by color. (C) ROC plot for joint analysis of multiple experiments. For the simulations in panels B and D, the degree of labeling was set to 10%. Sensitivity
was calculated from 100 simulation runs; the level of significance was set to α* = 0.05.
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But also the application of these refined methods is not straight
forward as it requires either the adjustment of user-defined
parameters, or the recording of single molecule blinking traces.

In this paper, we proposed a different approach towards such
problems. Our idea is not a direct quantitative interpretation of
the data, but a statistical assessment of hypotheses (Baddeley and
Bewersdorf, 2018). If one opts for such an approach, two issues
need to be considered:

(i) Which hypothesis describes the problemmost appropriately?
In an SMLM experiment a typical example for the null
hypothesis would be: The spatial distribution of detected
localizations agrees with a random point pattern. Due to
overcounting this hypothesis will likely be rejected in most
data sets. A modified hypothesis may thus be: The spatial
biomolecular distribution agrees with a random point pattern.

We addressed this hypothesis in Section 3 of this paper. If
also this hypothesis is rejected, one may opt for coming up
with more precise hypotheses about the lateral extension of
the biomolecular clusters and the degree of clustering. The
result of such an approach will hence be rather similar to the
classical quantitative approaches; its advantage is that it
additionally provides a p-value. We previously used such a
strategy to test experimental results against thousands of
quantitatively well-defined hypotheses to analyze single
molecule tracking data (Wieser et al., 2008; Axmann et al.,
2012) and FRET recordings (Schrangl et al., 2018).

(ii) How can we derive a p-value to test the null hypothesis? Here,
the major limitation comes from the fact that the underlying
sampling distribution of the summary statistics is typically
unknown. In principle, one could derive such a sampling
distribution analytically or generate it on the computer. The

FIGURE 9 | Principle of permutation test. In the permutation test, the group A (left column, blue) is compared to the group B (right column, orange). Step (A):
Individual single molecule trajectories are recorded for both groups A and B. Step (B): The data obtained from all trajectories in each group is pooled. The summary
statistics s0 is calculated in order to compare the two groups. Step (C,D): Random permutations of the data in the two groups are generated, yielding new samples Ai

and Bi. For each permutation, the summary statistics si is calculated. Step (E): The p-value is obtained by comparing the value s0 (green line) to the values si
obtained for 1000 permutations.
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drawback of it is that additional experiments are required to
obtain the molecular parameters describing the behavior of
the single fluorophores (Platzer et al., 2020). We opted here
for a different approach, which makes use of the
experimental data themselves: In case of 2-CLASTA
(Section 3), a toroidal shift was used for reassigning
molecular positions in one of the two color channels,
which allowed to calculate a set of computer-generated
control samples representing the null hypothesis of the
absence of correlations between the two color channels. In

case of the single particle tracking experiments (Section 5),
the problem was different: Now, correlations present in the
data had to be correctly accounted for also in the computer-
generated control samples. We achieved this using a block
permutation strategy.

It should be noted that the p-value and significance testing
have recently become an issue of dispute. A variety of articles and
comments have been published, both arguing for and against the
validity of p-values (Halsey et al., 2015; Lazzeroni et al., 2016;

FIGURE 10 | Comparison of permutation test and block permutation test. (A) Representative simulated FRET efficiencies for 10 simulated trajectories of group A
(left, blue) and B (right, orange). Both groups were simulated using the same parameters (see Section 7). (B) Representative random permutation of the data from panel
(A). (C) Representative block permutation of the data from panel (A). Here, data from individual trajectories is kept together. (D,E) Histogram of p-values obtained for the
standard permutation test panel (D) and the block permutation test panel (E). As a test summary statistics the difference between the means of the groups A and B
was taken. As both groups were simulated using the same parameters, the null hypothesis of no difference between the groups was fulfilled. Importantly, only the block
permutation test provides a uniform distribution and hence a valid p-value.

FIGURE 11 | FRET data from T-cell experiments. (A) Sketch of a T-cell and the force sensor. If no force is applied, the sensor shows a high FRET signal (left). In the
presence of forces, a low FRET signal is detected (right). (B) FRET efficiencies for a gel-phase bilayer (left) and a fluid-phase bilayer (right). The two histograms show data
inside the T-cell synapse (blue) and in the absence of T-cells (orange). The p-values indicated in the figure are the results of the block permutation test. The standard
permutation test would yield a p-value of 0.001 and 0.004 for the gel- and fluid-phase bilayer, respectively. Figure adapted from (Göhring et al., 2021), CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).
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Altman and Krzywinski, 2017; Amrhein et al., 2019; Lakens,
2021). This is mainly due to misinterpretations of how to
correctly interpret p-values. In 2016, the American Statistical
Association released a statement addressing several
misconceptions about the p-value (Wasserstein and Lazar, 2016).

Importantly, the p-value is not the probability that the null
hypothesis is true, but rather indicates how compatible the
observed data are with the null hypothesis. In other words, a
rejection of the null hypothesis does not prove that the null
hypothesis is false: The null hypothesis could still be true, but
instead a very unlikely event occurred. Vice versa, not
rejecting the null hypothesis does not prove its truth.
Strictly speaking, a non-significant test result has no
relevance at all.

The test decision always depends on the chosen level of
significance, which usually affects the probabilities for a type I
and type II error. Notably, lowering the chance for one error
increases the other, and a certain probability for either error
always remains. Hence, an outcome of a test should never be
taken as a proof for proving a hypothesis.

One major issue is known as fishing for p-values. In case of
a true null hypothesis, there is still a certain probability to
obtain a significant p-value. For one single hypothesis test,
this probability corresponds to the level of significance α. If
one conducts multiple experiments and performs a
hypothesis test for each, the probability to obtain a
significant p-value is given by 1 − (1 − α)m, where m
denotes the number of experiments. Evidently, 1 − (1 − α)
m approaches 1 for large values of m, i.e. for a large number of
experiments, one will obtain by chance a significant p-value
with high probability.

As p-values have been controversial, the use of alternatives
such as estimation statistics and confidence intervals have been
encouraged (Claridge-Chang and Assam, 2016). A confidence
interval is an interval estimate for an unknown parameter. It is
always associated with a certain confidence level, which
corresponds to the percentage of confidence intervals
containing the true parameter. Nevertheless, both p-values and
confidence intervals are based on the same statistical theories.
Inferences about statistical significance based on either are
directly linked: If a p-value is smaller than the level of
significance α, the 1 − α confidence interval will not include
the null hypothesis value. Vice versa, if the 1 − α confidence
interval does not include the null hypothesis value, the p-value
will be smaller than α.

In conclusion, as long as random variability is involved, no
effect can be strictly proven merely based on a (small) sample
of observations alone. Scientific conclusions must not merely
be based on whether a p-value passes a user-set threshold
without any other supporting evidence or reasoning.
Moreover, also a true but possibly small difference might
be of no essential practical importance. In general, it is
necessary that researchers are aware of what statistical
significance testing really means in order not to misuse it.
Merely replacing the p-value with other methods will not solve
the problem, but rather only shift it (Verhulst, 2016; Lakens,
2021). Particularly, completely abolishing any assessment of

statistical significance poses the risk of researchers being
fooled by random chance.

7 METHODS

7.1 2-CLASTA
7.1.1 Simulations
Simulations were performed as described previously (Arnold
et al., 2020). In short, the underlying distribution of
biomolecules was simulated on a region of interest of 10 ×
10μm2. For the simulation of dimers, two biomolecules were
assigned to each dimer position. Subsequently, two different
types of labels were assigned randomly and competitively to the
simulated molecules according to the specified label ratio. For
simulation of blinking, a random number of detections was
assigned to each label according to blinking statistics
determined previously for SNAP-AF647 and SNAP-AF488
(Arnold et al., 2020). Next, the localization coordinates were
displaced by random localization errors, which were distributed
normally with mean 0 and standard deviation according to the
localization precision of 30 nm. Further, to account for
experimental errors we included 5 unspecifically bound labels
per μm2 in each color channel. In addition, we added a
background of 1 and 2 signals per μm2 for the red and blue
color channel, respectively. Background signals were simulated
with blinking statistics obtained previously from unlabeled cells
(Arnold et al., 2020). If not mentioned otherwise, we used the
following parameters: 75molecules per μm2, 40% degree of labeling
and 1:1 label ratio. All simulations were carried out in MATLAB
(R2019b, The MathWorks Inc., Natick, MA) on a standard
personal computer.

7.1.2 Calculation of p-Value for Multiple Experiment
The overall p-value p* for multiple experiments was calculated as

p* � 1 − ∑k−1
i�1 (mi )pi

0(1 − p0)m−i, where m is the number of
performed experiments, k the number of observed p-values
smaller or equal to the threshold p0, and (mi ) denotes the
Binomial coefficient. If not stated otherwise, the level of
significance for the joint analysis of p-values was set to α* =
0.05. As input for the calculation we used the p-values derived in
(Arnold et al., 2020).

7.2 Single Particle Trajectories
7.2.1 Simulation of FRET Trajectories
Simulations were performed as described previously (Schrangl
et al., 2018). In short, we first simulated a ground truth state
transition trajectory. Here, a two-state model was simulated,
characterized by the FRET efficiencies E1 = 0.2 and E2 = 0.8
for the two states. Stochastic transitions between the two states
were simulated based on the lifetimes τ1 = 2 and τ2 = 4 for state 1
and 2, respectively. Subsequently, the state transition trajectory
was sampled with finite time resolution according to the exposure
time tex = 0.1 and a delay time tdel = 0.2. All times are given in
arbitrary units. For simulation of the fluorescence signal, the
donor brightness d(ti) and acceptor brightness a(ti) at each time
point ti were randomly drawn from a lognormal distribution with
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mean values mdon(ti) = nphot(1 − e(ti)) and macc(ti) = nphote(ti),
respectively, where e(ti) = (∑itiEi)/tex denotes the apparent FRET
efficiency and nphot = 200 the average number of emitted photons
(sum of donor and acceptor fluorophores). The standard
deviation σ of the lognormal distribution was calculated via σ
= 0.3 m − 13.61 for the donor, and σ = 0.3 m − 1.92 for the
acceptor, following values determined previously for the
fluorophores AF555 and AF647 (Schrangl et al., 2018). The
final FRET efficiency was calculated as E � a

d+a. For each
simulation run, we simulated 100 trajectories for each group.
The lengths of the trajectories was distributed randomly
according to a lognormal distribution with a mean of 27.1 and
a standard deviation of 35.5. All simulations were carried out in
Python on a standard personal computer.

7.2.2 Permutation Test
We compared two groups A and B and assessed whether they
originated from the same distribution, i.e. the null hypothesis.
First, the summary statistics s0 was calculated for the original
samples A0 and B0 with sample size nA and nB, respectively. As
a summary statistics, we used the difference between the mean
of the two samples, i.e. s0 � μA0

− μB0
. Second, the data from

the two samples was pooled to form the set M≔A ∪ B. Next,
permutations of the data were created, i.e. the set M was split

into new samples Ai and Bi. For the standard permutation test,
all data points were assigned randomly to one of the two
groups. The size of the new samples was nA and nB,
respectively. For the block permutation test, data from
individual trajectories were kept together, but each
trajectory was randomly assigned to one of the new groups
Ai or Bi. Both groups contained 100 trajectories. For each
random permutation i = 1, . . ., 1000 of the data, the summary
statistics si � μAi

− μBi
was calculated. Finally, The two sided

p-value was calculated as the proportion of generated
permutations for which the absolute difference |si| was
greater than the value |s0| observed for the original data.
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