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A B S T R A C T   

This study presents an innovative cloud-based approach, using Pixian Douban, a well-known Chinese fermented 
seasoning, as a case study, to improve the identification of umami peptides and explore their interactions with 
the T1R1/T1R3 receptor. A feature-based molecular networking method was utilized to rapidly identify a total of 
eighteen peptides, including seven previously unrecorded ones. Notably, the umami threshold of QIVK in an 
aqueous solution was determined to be 0.3215 mmol/L, surpassing the majority of peptides reported in the past 
three years. Molecular docking analysis further revealed the strong binding of QIVK to T1R3 receptor residues 
through hydrogen bonds, as well as interactions via salt bridges and electrostatic attractions. As a result, this 
research significantly contributes to the efficient screening of umami peptides and the elucidation of the mo-
lecular basis of umami sensory perception in complex food systems.   

1. Introduction 

The term umami, derived from the Japanese language, refers to a 
“delicious savory taste”. It was officially recognized as the fifth primary 
taste in 2002 (Nakamura, 2011), and has since been identified in various 
food sources, including fish, meat, and numerous fermented products 
(Anand Singh et al., 2023). Recently, umami peptides have gained sig-
nificant attention due to their multifaceted properties, such as 
enhancing taste, reducing salt consumption, and offering nutritional 
benefits (L. Zhang et al., 2023a). The perception of umami taste is 
initiated by specific chemical structures that activate umami receptor 
proteins located within taste buds. Among these receptors, the T1R1/ 
T1R3 heterodimer is widely acknowledged as the primary receptor 
responsible for umami taste perception (Wang et al., 2020). 

Pixian Douban (PXDB) is a renowned seasoning widely used in 
Sichuan-style cuisine in China, particularly in dishes such as hotpot. It is 
produced through the fermentation of broad beans and chili peppers, 
during which the proteins in the raw ingredients undergo various pep-
tide transformations under the action of microbial enzymes, contrib-
uting to its unique flavor profile (Li, Wang, et al., 2023). However, 
despite its popularity, the structure and taste mechanism of the umami 
peptides in PXDB remain largely unknown. This lack of understanding is 

partly attributed to the significant limitations associated with the con-
ventional approach to identifying umami peptides. The method heavily 
relies on the capacity of mass spectrometry databases and can only 
detect peptides included in the database, thereby restricting the range of 
identified peptides. Furthermore, conducting direct sensory evaluations 
for numerous candidate peptides raises potential food safety concerns. 
Consequently, the need to establish a high-throughput approach for 
efficiently identifying and assessing potential umami peptides is urgent. 

Cloud-based computational approaches play a crucial role in 
advancing scientific research in food chemistry (Li, Mei, et al., 2023). A 
notable instance in this field is the utilization of Feature-Based Molec-
ular Networking (FBMN), an analytical tool seamlessly integrated into 
the Global Natural Products Social Molecular Networking (GNPS) plat-
form(Aron et al., 2020; Li, Wu, et al., 2023). By harnessing the 
computational prowess of cloud platforms, FBMN efficiently consoli-
dates essential data, encompassing liquid chromatography retention 
time, MS1, and MS2 information, to create molecular families, enabling 
the elucidation of chemical structures for previously unidentified com-
ponents (Nothias et al., 2020). Moreover, Umami-MRNN tool introduces 
a novel machine learning model specifically designed for the rapid and 
accurate screening of umami peptides (Qi et al., 2023). Moreover, pre-
dicting the interactions between umami peptides and T1R1/T1R3 
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receptors aids in comprehending why certain substances are perceived 
as having an umami taste. CB-Dock2, an advanced network-based pro-
tein–ligand blind docking platform, has been intricately crafted to 
significantly improve the precision of identifying binding sites and 
predicting binding poses. In previous test datasets, CB-Dock2 achieved 
an impressive 85.9 % prediction success rate, marking it as the top 
performer among similar methods (Y. Liu et al., 2022). 

This study presents an innovative approach for efficient umami 
peptide screening, using PXDB as an illustrative example. We initiated 
the process by employing liquid chromatography-mass spectrometry 
(UHPLC-Q-TOFMS) to detect peptides in PXDB. Specifically, in 
conjunction with FBMN, we explored previously undiscovered peptides 
within PXDB. These identified peptides then underwent a high- 
throughput umami threshold assessment using the umami-MRNN tool. 
Additionally, molecular docking studies were conducted using the CB- 
Dock2 tool to gain insights into ligand–protein interactions. This 
cloud-based computational strategy offers a more comprehensive and 
efficient method for screening umami peptides in PXDB, with potential 
implications for advancing our understanding of umami taste. 

2. Material and methods 

2.1. Materials and reagents 

The PXDB samples were sourced from Sichuan Pixian Douban Co., 
Ltd., located in Chengdu, China. Two batches of PXDB with fermentation 
periods of 1 year and 2 years were employed. Methanol and acetonitrile 
of chromatographic grade (purity ≥ 99.00 %) were obtained from Sigma 
Aldrich (St. Louis, MO, USA). Gln-Ile-Val-Lys (5 mg × 5), with a purity 
of ≥ 95.00 %, was synthesized by Dan Gang Biological Technology Co., 
Ltd. (Wuhan, Hubei, China). Oasis MCX (30 mg, 3 cc) solid-phase 
extraction (SPE) cartridges were provided by Waters Corporation (Mil-
ford, MA, USA). All reagents utilized in this study, unless otherwise 
specified, were of analytical grade (purity of ≥ 98.00 %) from Shanghai 
Yien Chemical Technology Co., Ltd. (Shanghai, China). 

2.2. Sample preparation 

The sample extraction method followed a previously established 
procedure (Li, Mei, et al., 2023). Initially, 0.5 g of PXDB samples were 
accurately weighed and mixed with 10 mL of a 40 % methanol solution. 
Subsequently, the samples were homogenized using an automatic ho-
mogenizer (IKA, Staufen, Switzerland) at 10,000 rpm for 3 min. Ultra-
sonic extraction was conducted at 25 ◦C for 30 min using equipment 
from NingBo Scientz Biotechnology (Ningbo, Zhejiang, China). 
Following ultrasonic extraction, the PXDB extracts underwent centri-
fugation (Shuke Instrument, Chengdu, China) at 4,000 g for 15 min. The 
upper extract was then collected and filtered through a 0.22 μm nylon 
membrane for further purification. 

Sample purification was achieved using an MCX solid-phase extrac-
tion (SPE) cartridge (3 cc, 60 mg, 60 μm, Waters, Milford, MA, USA), 
following a previously protocol (Chen et al., 2022). In brief, 2.0 mL of 
the PXDB sample extracts were loaded onto the cartridges and subjected 
to sequential washing with 1.5 mL of a 2 % formic acid solution, fol-
lowed by 1.5 mL of MeOH. The desired peptides were eluted using 2.0 
mL of a 2 % ammonium hydroxide solution in MeOH, followed by ni-
trogen drying at room temperature. The resulting dry components were 
dissolved in 200 μL of a 50 % methanol solution and then transferred 
into a vial for subsequent UHPLC-Q-TOF analysis. 

2.3. UHPLC-Q-TOF conditions 

The UHPLC analysis was conducted utilizing an LC30 system (Shi-
madzu Co., Tokyo, Japan) equipped with an HSS T3 C18 (100 mm × 2.1 
mm × 1.8 μm) column sourced from Waters Co. (Milford, MA, USA). The 
mobile phases consisted of solvent A (0.1 % formic acid in water) and 

solvent B (acetonitrile). The elution program was optimized based on a 
previous protocol (Chen et al., 2021): 0–2 min, 5.0 % B; 2–5 min, 5 %-10 
% B; 5–14 min, 10 %-40 % B; 14–24 min, 40 %-100 % B; 24–26.5 min, 
100 %-100 % B; 26.5–27 min, 100 %-5% B. A re-equilibration step was 
carried out for three minutes at 5 % B. The system operated at a flow rate 
of 0.3 mL/min, with an injection volume of 5 µL and a column tem-
perature of 40 ◦C. 

Mass spectrometry (SCIEX Co., Framingham, MA, USA) was per-
formed in positive ion mode, with a mass range of 50–1000 m/z. The 
following settings were used for data collection: declustering potential at 
50 V, collision energy at 10 V, and a temperature of 450 ◦C, curtain gas 
35 psi, nebulizer gas (nitrogen) pressure at 2 bar, capillary voltage at 
4,200 V (L. Zhang et al., 2023b). The MS/MS data collection was carried 
out in IDA mode, where the top 10 ions of each spectrum were frag-
mented using collision-induced dissociative energy of 35 ± 10 eV (Li, 
Zhou, et al., 2023). 

2.4. FBMN analysis 

The raw data obtained from UHPLC-Q-TOF analysis were processed 
using MSDIAL 4.9 software to convert them into formats compatible 
with FBMN. The converted files were subsequently uploaded to the 
GNPS webserver. For the Molecular Network analysis, the parameter-
ized configuration was set to the default values of the system. In FBMN, 
feature finding processes MS/MS data by accessing their respective 
chromatographic retention times, resulting in a yield of each chro-
matographic peak abundance. Furthermore, a single representative MS/ 
MS spectrum is chosen per feature (Oak & Jha, 2019). The resulting 
molecular networks can be accessed at (https://gnps.ucsd.edu/ProteoS 
AFe/status.jsp?task = e72ab67f0687432e93d4cbb4e34ebdb6). The 
analysis results were visualized using Cytoscape 3.9.1 (Ramabulana 
et al., 2021). 

2.5. Umami activity prediction of the identified peptides 

The Umami-MRNN web-based tool, which integrates the Multi-layer 
Perceptron and Recurrent Neural Network models, was employed to 
predict the umami activity of the identified peptides (Qi et al., 2023). 

2.6. Electronic tongue and sensory evaluation 

The electronic tongue (Baosheng Co., Ltd., Shanghai, China) used in 
this study consists of a sensor array with six interaction-sensitive elec-
trodes: platinum (1), gold (2), palladium (3), titanium (4), tungsten (5), 
and silver (6). In the sensor array, each individual interaction-sensing 
electrode functions akin to taste buds on the tongue. Subsequently, a 
specialized algorithm on the workstation is employed to assess the taste 
components of food. The testing protocol was conducted following the 
previously established method (Dang et al., 2019). The peptide samples 
are formulated at a concentration of 0.2058 mmol/L and subsequently 
transferred into a designated beaker for electronic tongue analysis, 
employing a sampling time of 180 s. The detection process is repeated 
five times for each sample. 

The sensory evaluation in this study was conducted following the 
method described by Shan et al (Shan et al., 2022). The panel comprised 
5 males and 5 females, aged between 22 and 25 years, selected from 
Xihua University. Before the assessment, the panelists underwent 
training in sensory evaluation, adhering to the International Standard 
Method for Training and Monitoring of Assessors (ISO-8586–1, 2012). 
The sensory experiments took place at a controlled temperature of 24 ±
1 ◦C and a humidity of 60 %. To determine the umami threshold of 
QIVK, we initially prepared peptide solutions at a concentration of 
10.2881 mmol/L. These solutions were subsequently diluted into a 
range of different concentrations. The sensory evaluation experiment 
employed the three-point discrimination test, which entails the simul-
taneous presentation of three coded samples. Among these samples, two 
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Fig. 1. Five Peptide molecular families obtained from the feature-based molecular networking workflow (the large circles represent the small peptides identified).  

Fig. 2. The chemical structural relationships within the MN1-MN5 peptide families were determined through manual analysis of the fragmentation patterns.  
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are identical, and the third differs. Assessors are required to identify the 
distinct sample in each trial (S. Zhao et al., 2024). 

2.7. Molecular docking of T1R1/T1R3 

This receptor’s binding region forms a “ Venus Flytrap Domain 
(VFD)” structure, which serves as the primary site for ligand-receptor 
interactions (Nuemket et al., 2017). The ligand-binding region of the 
umami receptor was analyzed using the metabotropic glutamate re-
ceptor as a template with PDB ID 1EWK (Dang et al., 2019). The plau-
sibility of the model was assessed using the Laplace diagram. For 
protein–ligand blind docking, the CB-Dock2 server was utilized. The 
protein file (.pdb) and the structure file of the homology model (.mol2) 
were uploaded to the CB-Dock server. 

The evaluation of docking energy is conducted based on the work of 
Chen et al.(Chen et al., 2021). Water molecules were removed, and 
hydrogen atoms were added. The active center coordinates for T1R1 
were x  = 32.328758, y = -3.792158, and z = 33.820896, while for 
T1R3, the coordinates were x  = 17.070000, y = 1.132591, and z =
20.321409. The active cavity had a radius of 10 Å. 

2.8. Statistical analysis 

All analytical experiments were performed with five replicates in 
duplicate (n = 5), and the results were presented as the mean ± standard 
deviation (SD) using Origin software (version 2021, Northampton, 

USA). The statistical analysis in our sensory study initially employs 
ANOVA. Upon detecting significance, we further analyze using Tukey’s 
test method via SPSS software (version 25.0; SPSS Inc., Chicago, IL, 
USA). 

3. Results and discussion 

3.1. Construction of peptide molecular families through FBMN 

The composition of Pixian Douban (PXDB), which includes lipids, 
polyphenols, and various other components (Yang et al., 2021), presents 
a significant challenge for peptide identification in these samples. To 
address this challenge, MCX solid-phase columns were utilized to enrich 
peptides and reduce impurities, as previously described (Cheng et al., 
2023). Furthermore, FBMN employs advanced algorithms to swiftly 
filter and process large datasets obtained from multidimensional high- 
resolution mass spectrometry. This rapid data filtering is essential for 
isolating peptide-related signals amidst the complex background 
(Mannochio-Russo et al., 2022). This integration enhances the precision 
and depth of our peptide identification efforts. 

Consequently, molecular networks were established, comprising a 
total of 22,571 mass spectral nodes. Fig. 1 visually represents the dis-
tribution of these nodes across various PXDB samples, presenting the 
data in a pie chart format. Each node within this network corresponds to 
a unique feature molecule, and these nodes were subsequently catego-
rized into 885 molecular families (nodes ≥ 2). The larger circles 

Fig. 3. Inference of Peptides Not Present in the Database.  
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represented the small peptides identified, and the green and purple 
segments in the chart specifically denote samples that underwent one- 
year and two-year fermentation, respectively. Through a search using 
the GNPS database, we have successfully identified 11 peptides 
(Table S2), each belonging to one of five distinct peptide molecular 
families: MN1 (Ile-Ile-Arg, Ile-Arg, Phe-Arg); MN2 (Pro-Phe, His-Pro, Ile- 
His, Leu-His); MN3 (Ile-Ile-Arg); MN4 (Phe-Phe, Phe-Leu); MN5 (Tyr- 
Phe). 

Peptides with similar MS2 fragmentation patterns tend to form 
peptide molecular families. Consequently, we unveiled the chemical 
structural relationships within the MN1-MN5 peptide families by 
manually analyzing the fragmentation patterns of the 11 aforemen-
tioned peptides (Fig. 2). This forms the basis for the rapid inference of 
peptides that are not present in the GNPS database. 

Within the MN1 family (Fig. 2A), three peptides with m/z values of 
401.1286, 288.2018, and 322.1865 were identified as Ile-Ile-Arg, Ile- 
Arg, and Phe-Arg, respectively. As shown in the figure, all three peptides 
exhibited a shared m/z loss of 175, which corresponds to the removal of 
the arginine residue. Additionally, m/z 113.0829 was attributed to an 
isoleucine residue, while m/z 147.0662 corresponded to a phenylala-
nine residue. 

In the MN2 molecular family (Fig. 2B), three peptides were found to 
possess m/z 156.0771, m/z 156.0773 and m/z 156.0740, indicating the 
presence of a histidine (His) residue. Notably, within the peptide 
network of MN2, a pair of isomeric peptides was identified: m/z 
269.1600 (Leu-His) and m/z 269.1597 (Ile-His). 

In the MN3 molecular family, a tripeptide Lys-Ile-Ile was identified, 
with m/z 147.1134 assigned to a lysine residue and m/z 113.0839 cor-
responding to an isoleucine residue (Fig. 2C). Regarding the MN4 and 
MN5 molecular families (Fig. 2DE), their networks mainly consist of 
peptides that contain m/z 166.0863, representing a phenylalanine 
residue. 

The integration of FBMN and UHPLC-Q-TOF represents an advanced 
and robust methodology for conducting a comprehensive analysis of 
peptides within PXDB. FBMN sorts and organizes peptides with struc-
tural or functional similarities by leveraging the similarities and corre-
lations identified within the mass spectrometry data. This organization 
enables the creation of networks or clusters, providing an intuitive and 
informative platform by visually representing complex data sets. For 
instance, the application of FBMN resulted in the rapid identification 

and characterization of twenty-five novel peptides derived from cultures 
of three distinct bifidobacterial strains (Chen et al., 2022), demon-
strating the potency of this approach in swiftly identifying structurally 
and functionally related peptides within complex biological samples. 

3.2. Inference of peptides not present in the database 

The principle of FBMN revolves around clustering molecules with 
comparable MS2 fragmentation patterns into molecular families 
(Nothias et al., 2020). Applying this principle, peptides with known 
structures can act as “seeds” to infer the structures of unknown peptides 
within the same molecular family, utilizing the fragmentation patterns 
illustrated in Fig. 2. As a result, we have successfully derived seven 
peptides that have not been previously reported (Fig. 3). 

In MN1, the characteristic feature is the presence of an arginine 
residue. Collision-induced dissociation (CID) of peptide fragments gen-
erates b and y series ions, which exhibit complementary fragmentation 
patterns, facilitating accurate peptide identification (Jiang et al., 2022). 
Isomeric peptides containing Leu/Ile residues can be differentiated 
based on the N-terminal Leu or Ile and the characteristic fragmentation 
patterns resulting in the loss of C3H7 (-43 Da) or C2H5 (-29 Da) fragments 
(Samgina et al., 2023; Xiao et al., 2016). 

At m/z 261.1600, an ion at m/z 233.1642 was observed due to the 
neutral loss of C2H5 (-29 Da), indicating the presence of an Ile residue. 
Consequently, peptide A was identified as Phe-Ile-Arg (Fig. 3A). Simi-
larly, peptide C at m/z 387.2649 was provisionally identified as Leu/Ile- 
Val-Arg. The presence of m/z 345.2521 was attributed to the loss of C3H7 
(-43 Da) from the precursor ion, suggesting the possibility of peptide C 
being Leu-Val-Arg. Peptide B at m/z 421.2542 was identified as Val-Phe- 
Arg (Fig. 3B). 

In MN2, peptide D (m/z 366.2138) was identified as Ile-Pro-His 
based on the analysis shown in Fig. 3D. The y-series peptide ions pro-
vided insights into the peptide composition, with y1 (m/z 155.0772) 
corresponding to the His residue, y2 (m/z 97.0542) representing Proline, 
and y3 (m/z 113.0824) suggesting the presence of Leu/Ile. In the b-series 
peptide ions, an examination of the N-terminal end of Leu/Ile-Pro 
revealed a neutral loss of C2H5 (-29 Da), resulting in the formation of 
the fragment ion at m/z 183.1492, which confirmed the presence of an 
Ile residue. 

In the MN3 peptide molecular family, peptides E (Val-Ile-Val-Lys), F 

Table 1 
Identification Data for Pixian Douban Peptides and Umami Threshold Prediction with Umami-MRNN.  

No Peptide m/z (Da) MS2 main fragments 1 Sample 
2 

Similarity 
3 

Confidence level 
4 

Umami 
Threshold 5 

1 His-Pro  235.1171 154.0740/235.1171 1 0.82 2 non-umami 
2 Pro-Phe  245.1284 115.0550/245.1284 2 0.82 2 non-umami 
3 Ile-His  269.1597 156.077/269.1597 1, 2 0.90 2 35.14 mmol/L 
4 Leu-His  269.1600 156.077/269.1600 2 0.79 2 25.48 mmol/L 
5 Phe-Leu  279.1698 132.104/279.1698 1 0.72 2 non-umami 
6 Ile-Arg  288.2018 175.1190/288.2020 2 0.75 2 non-umami 
7 Phe-Arg  322.1865 175.1180/322.1870 1 0.77 2 non-umami 
8 Tyr-Phe  329.1500 166.0860/329.1500 1, 2 0.79 2 non-umami 
9 Phe-Phe  331.1639 166.0861/331.1639 2 0.96 2 non-umami 
10 Ile-Pro-His  366.2138 b:211.1400/348.1992 y:156.0771/253.1312/366.1634 1 – 2 27.96 mmol/L 
11 Ile-Ile-Lys  373.2820 147.113/260.197/373.2820 1, 2 0.73 2 non-umami 
12 Leu-Val-Arg  387.2649 b:114.1032/213.1600/370.2453 y:175.1171/247.1862/387.2000 2 – 2 non-umami 
13 Ile-Ile-Arg  401.1286 175.1210/288.206/401.1286 2 0.74 2 non-umami 
14 Val-Phe-Arg  421.2542 b:247.1432/404.2274 y:175.1190/322.1892/421.3215 2 – 2 non-umami 
15 Phe-Ile-Arg  435.2718 b:130.0965/261.1600/418.2470 y:175.1190/288.2042/435.1571 2 – 2 non-umami 
16 Val-Ile-Val-Lys  458.3337 b:213.1600/321.2293/458.2953 y:147.1135/246.1700/359.2644/ 

458.2953 
2 – 2 31.41 mmol/L 

17 Gln-Ile-Val-Lys  487.3224 b:129.1031/242.1494/341.2193/477.2982 y:147.1142/246.1831/ 
359.2643/487.2982 

2 – 1 21.38 mmol/L 

18 Asn-Val-Ile-Val- 
Lys  

572.3792 b:214.1214/327.2023/426.2731/555.3442 y:147.1134/246.1811/ 
359.2664/572.2751 

1, 2 – 2 36.71 mmol/L 

Note:1. The b and y ions are obtained through the molecular networking approach; 2. “1″ represents samples fermented for 1 year, while ”2″ represents samples 
fermented for 2 years; 3. The similarity between mass spectrometry data is represented by cosine values; 4. Level 1 involves standard sample comparative identifi-
cation, while Level 2 is based on compound fragment characteristics. 5. Umami Threshold Prediction with Umami-MRNN. 
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(Gln-Ile-Val-Lys), and G (Asn-Val-Ile-Val-Lys) exhibited a common 
fragment at m/z 359 (Leu/Ile-Val-Lys). Further analysis of the b-series 
ions for these peptides revealed additional fragments resulting from the 
neutral loss of C2H5 (-29 Da) at m/z 185.1634, m/z 214.1573, and m/z 
299.2100, indicating the presence of an Ile residue. Peptide ions at m/z 
487.3224 and m/z 572.3792 both contained the fragment ion m/z 359 
(-Ile-Val-Lys), supporting their identification, as illustrated in Fig. 3F 
and Fig. 3G, respectively. 

In recent years, umami peptides have become a focal point in umami 
studies due to their enriched nutritional value and flavor-enhancing 
properties. However, current screening methods for these peptides 
heavily rely on database searches (Qi et al., 2022), resulting in a sig-
nificant oversight of peptides that are not included in these databases. 
This study presents an innovative approach by proposing a new strategy 
for the rapid screening of umami peptides. Utilizing this pioneering 
method, researchers successfully identified seven peptides that were 
previously undocumented in existing databases. Of particular note, the 
study uncovered six novel peptides associated with PXDB. 

3.3. Prediction of umami threshold of peptides 

Traditional methods for identifying umami peptides often involve 
time-consuming and labor-intensive procedures. To address this chal-
lenge, we employed Umami-MRNN (Qi et al., 2023), a deep machine 
learning-based tool, to evaluate candidate umami peptides. The assess-
ment of the 18 identified peptides, as shown in Table 1, led to the suc-
cessful selection of six novel peptides with umami properties. These 
peptides, ranked in ascending order of umami threshold, include Gln-Ile- 
Val-Lys, Leu-His, Ile-Pro-His, Val-Ile-Val-Lys, Ile-His, and Asn-Val-Ile- 
Val-Lys. Notably, Gln-Ile-Val-Lys (QIVK) exhibited the most pro-
nounced umami taste with a threshold of 21.38 mmol/L. 

3.4. Electronic tongue analysis and sensory characterization 

Human sensory evaluation can be influenced by various environ-
mental and individual physiological factors. To enhance the consistency 
and objectivity of taste assessment, the electronic tongue technique was 
initially employed to determine the umami threshold of QIVK. This 
technique utilizes an array of six inert metal electrodes designed to 
simulate human taste perception (Guo et al., 2023). The response profile 
of QIVK was acquired by measuring its interaction with the six sensors of 
the electronic tongue (Fig. 4A). Indeed, sensors 1 and 4 demonstrated 
significant responses, while sensors 2, 3, 5, and 6 exhibited weaker re-
sponses (Table S3). The sensory profile of QIVK distinctly showcased 
pronounced umami and thickness tastes (Fig. 4B). Additionally, the 
electronic tongue analysis models predicted the umami threshold for 
QIVK to be 1.1630 ± 0.068 mmol/L. 

To ensure the accuracy and reliability of umami threshold, human 
sensory evaluations were conducted in parallel with electronic tongue 
analysis (Table S4). The umami threshold of QIVK in an aqueous solu-
tion was determined to be 0.3215 ± 0.1607 mmol/L, significantly lower 
than that of monosodium glutamate (1.56 mmol/L), a commonly used 
flavor enhancer. These results confirm the pronounced umami taste of 
QIVK, consistent with the assessment conducted using the electronic 
tongue. Importantly, the umami threshold of QIVK surpasses that of 
most umami peptides reported in the past 3 years with a range of 
0.07–10.04 mmol/L (Chang et al., 2023; Fu et al., 2024). In the future, 
synthetic biology techniques could be employed for targeted production 
of QIVK, creating opportunities for its application in the food industry. 

The significant discovery of QIVK exclusively in PXDB fermented for 
two years, at a concentration of 0.9248 mg/g, marks a milestone in our 
understanding of the umami components in PXDB (Table S6). Interest-
ingly, the near absence of QIVK in PXDB fermented for one year cor-
roborates these findings, highlighting a direct correlation between 
peptide presence and fermentation duration. This observed correlation 
aligns with empirical sensory evaluations, which consistently emphasize 
the notion that the depth and richness of umami flavor in PXDB are 
heightened with extended fermentation periods. These findings signifi-
cantly contribute to our comprehension of the molecular constituents 
responsible for umami sensation, indicating the potential to influence 
and optimize the production processes of PXDB in order to tailor its 
umami characteristics to meet diverse preferences or industrial re-
quirements. Further exploration into the dynamic interplay between 
fermentation duration and peptide composition promises to deepen our 
understanding of umami enhancement in PXDB, potentially unveiling 
novel avenues for optimizing its flavor profile in the future. This 
research has the potential to significantly impact the food industry by 
informing the development of improved umami-enhanced products. 

3.5. Constructing and evaluating the T1R1/T1R3 homology model 

For an in-depth investigation into the activation mechanisms of 
QIVK, we employed the SWISS-MODEL (Waterhouse et al., 2018), to 
construct the T1R1/T1R3 homology model, as illustrated in Fig. S1A. To 
assess the model’s reliability, we utilized established techniques, 

Fig. 4. Electronic tongue analysis (A) and sensory characterization (B) of QIVK.  
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including Raman plotting and Verify-3D analysis. Fig. S1B illustrates 
that the majority of amino acid residues (98.9 %) fall within acceptable 
ranges, with 94.95 % residing in the Ramachandran favored region. 
Only 1.37 % and 1.46 % were identified as Ramachandran outliers and 
rotamer outliers, respectively. Furthermore, Verify-3D analysis results 
(Fig. S1C) indicated that approximately 82.0 %±0.05 of the residues 
achieved a 3D/1D average score of ≥ 0.2, with a significant proportion 
exhibiting an average score of ≥ 0.6. In line with established standards 
(J. Zhao et al., 2023), a homology model meeting the 90 % critical 
evaluation criteria and featuring over 80 % of residues with a Verify 
score ≥ 0.2 demonstrates a reasonable distribution of dihedral angles 
and three-dimensional collisions, ensuring a high level of model 
reliability. 

3.6. Molecular docking of QIVK into T1R1/T1R3 receptors 

In the investigation of QIVK’s binding regions with T1R1/T1R3, the 
CB-Dock2 network server was employed for virtual docking. This 

advanced tool seamlessly integrates cavity detection, docking, and ho-
mologous template fitting, significantly enhancing precision in identi-
fying the binding pocket. Based on the docking scores, the most likely 
docking site for QIVK with the T1R3 receptor has been confirmed 
(Fig. 5A). QIVK interacts with a total of 71 active residues within the 
T1R3 receptor, including SER20, TYR42, ARG46, TRP78, GLY129, 
PRO130, GLY131, SER132, SER133, ALA136, ALA152, TYR153, 
SER154, ALA155, THR156, SER157, ASP176, GLN179, TYR204, 
CYS259, GLU260, SER285, ASP286, GLY287, ALA289, ARG291, 
ILE308, LYS309, LEU310, ASP375, and LYS377 etal.—approximately 
twice the number found in the T1R1 receptor (Fig. S2). 

Fig. 5B illustrates the various interaction modes between QIVK and 
the surrounding amino acid residues. QIVK’s docking energies with 
T1R1 and T1R3 were computed as − 88.3638 kcal/mol and − 105.0730 
kcal/mol, respectively (Table S1). The lower docking energy values 
observed for QIVK binding to T1R3 indicate a higher likelihood of 
peptide binding, resulting in the formation of stable conformations, re-
ceptor activation, and umami taste perception (Bu et al., 2021). To 

Fig. 5. Prediction of QIVK Binding Pockets and Sites on T1R3 Receptors Using CB-Dock2 (A); Molecular docking of QIVK and T1R3 by DS19 (B); different interaction 
modes between QIVK and T1R3 receptors: 3D Interaction Plot of Hydrogen Bond Surface Map (C) and 2D Interaction Plot (D). 
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further support this, three-dimensional hydrogen bond surface maps 
reveal the affinity of umami peptides for the binding pocket of T1R3 
(Fig. 5C). This affinity is influenced by the closed conformation of T1R1 
(Fig. S2B), which results in a less accessible binding cavity (Cheng et al., 
2023; Dang et al., 2019; López Cascales et al., 2010). 

Analysis of interaction forces and modes reveals that QIVK forms 
hydrogen bonds with specific amino acid residues within the T1R3 
subunit, including SER263, SER166, SER112, ASN235, LYS260, 
TYR262, and GLY234. Additionally, QIVK establishes salt bridges and 
electrostatic attractions with Glu292, His111, Glu233, and Glu238 at the 
binding sites (Fig. 5D). Remarkably, the average distance of these strong 
hydrogen bonds formed between QIVK and the active sites of T1R3 is 
2.2 Å, significantly shorter than the standard hydrogen bond length of 
3.5 Å (W. Liu et al., 2021). 

The relationship between umami peptides and their structur-
e–function is a current focal point in umami exploration. QIVK contains 
a glutaminyl moiety in its structure. Previous research has established 
the significant impact of glutaminyl on the umami taste. For instance, 
glutathione (GSH) represents the archetypal γ-glutamyl tripeptide, 
demonstrating diverse biological roles like antioxidative properties, 
immune enhancement, and remarkable abilities to enhance taste and 
extend flavors in food (Rae & Williams, 2017). Suzuki et al. developed a 
method for synthesizing γ-glutamyl compounds and discovered that 
γ-glutamylation can mitigate the bitterness of phenylalanine, valine, 
leucine, and histidine, while imparting acidity and enhancing the 
palatability of food (Suzuki et al., 2003). Furthermore, previous analyses 
have revealed that among the 98 cataloged umami peptides, those 
conveying umami taste often encompass glutamic acid, aspartic acid, 
and other hydrophilic amino acids. For lengthy peptides, their umami 
properties are not solely determined by amino acid composition; 
instead, their umami taste relies on their spatial structure, presence of 
umami, hydrophilic, and hydrophobic amino acids (J. Zhang et al., 
2019). The heightened activity of QIVK is intrinsically tied to its unique 
structural features, which could prompt different conformations or 
functionally relevant arrangements upon receptor binding, potentially 
impacting its stereochemical properties (J. Zhang et al., 2019). This 
implies that QIVK’s structural attributes and receptor binding mode 
significantly influence its high activity. Importantly, the way QIVK binds 
to receptors may vary from other umami peptides. Molecular docking 
analyses suggest QIVK might display stronger affinity or specificity to-
wards residues such as Ser, Gln, Asn, Glu, Gly, and Asp within T1R3, 
which could affect its efficiency or intensity in receptor activation. Thus, 
a thorough understanding of QIVK’s structural characteristics and re-
ceptor binding mode sheds light on why QIVK exhibits heightened ac-
tivity. These receptor interactions could be tailored in the future to 
modify mouthfeel and flavor, addressing diverse consumer taste pref-
erences. This offers substantial potential applications within the food 
industry. 

4. Conclusion 

In summary, this research underscores the innovative utilization of a 
cloud-based computational approach, employing PXDB as the research 
model. The successful combination of database matching and FBMN- 
assisted identification revealed 18 previously undiscovered peptides 
within PXDB. Following this, subsequent virtual screening and sensory 
evaluation conclusively verified the strong umami taste associated with 
the QIVK peptide. Molecular docking analysis further elucidated QIVK’s 
enhanced binding affinity for the VTFD pocket in the T1R3 receptor in 
contrast to the T1R1 receptor. Additionally, specific residues within 
T1R3, such as Ser, Gln, Asn, Glu, Gly, and Asp, were identified as po-
tential contributors to umami perception. This coherent amalgamation 
of molecular networks, molecular docking, and advanced computational 
tools has unveiled significant potential in deciphering the intricate 
complexities inherent in food metabolomes. As future investigations 
continue, the strategic application of this approach to explore umami 

peptides across various food sources holds promise for advancing our 
understanding of umami taste perception. 
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