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Abstract

As research in genetics has advanced, some findings have been unexpected or

shown to be inconsistent between studies or datasets. The reasons these

inconsistencies arise are complex. Results from genetic studies can be affected

by various factors including statistical power, linkage disequilibrium, quality

control, confounding and selection bias, as well as real differences from

interactions and effect modifiers, which may be informative about the

mechanisms of traits and disease. Statistical artefacts can manifest as

differences between results but they can also conceal underlying differences,

which implies that their critical examination is important for understanding

the underpinnings of traits. In this review, we examine these factors and

outline how they can be identified and conceptualised with structural causal

models. We explain the consequences they have on genetic estimates, such as

genetic associations, polygenic scores, family‐ and genome‐wide heritability,

and describe methods to address them to aid in the estimation of true effects of

genetic variation. Clarifying these factors can help researchers anticipate when

results are likely to diverge and aid researchers' understanding of causal

relationships between genes and complex traits.
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1 | INTRODUCTION

In recent years, researchers have been able to identify a
growing number of genetic variants associated with
complex traits, construct polygenic scores which explain
a larger proportion of phenotypic variance, and uncover
genetic correlations between a multitude of traits
(Visscher et al., 2017). In some cases, new findings have
been unexpected—polygenic scores have performed
poorly across different populations (Vassos et al., 2017)
and genetic correlations have been reversed in different
datasets (Pirastu et al., 2020).

Researchers may be interested in understanding the
causes of inconsistencies between results from different
studies and determining whether inconsistencies are a
sign of statistical artefacts or real differences between
populations. Similarly, they may be interested in whether
consistencies are a sign that these artefacts are unlikely
and thus may represent causal relationships between
genes and phenotypes. Yet consistent findings may also
conceal artefacts and real differences, implying that their
critical examination is necessary, particularly as these
results may be used in clinical decision‐making.

In this paper, we elucidate these concerns using
structural causal models (Pearl, 2009). According to this
approach, the predictive determinants of variables may
be described with equations (e.g., to specify how likely it
is that someone will experience symptoms given whether
they have a disease); however, it is graphical models that
specify the direction of causation—using arrows to
connect variables (to specify the assumption that diseases
cause symptoms, rather than the opposite). Causes are
conceptualised as interventions which, when they are
manipulated, can disrupt such an equation and alter the
values of downstream variables (e.g., if someone is given
medication that treats their symptoms).

In addition, it may help to think probabilistically
about causal relationships in genetics. If a genetic variant
changes the probability of the trait, it is said to have a
causal effect on the trait. The genetic variant need not be
necessary or sufficient for the trait to be seen—it may
occur regardless of the presence of the genetic variant,
and the genetic variant may not be sufficient to cause the
outcome on its own (Hitchcock, 2021). Determining
whether a causal effect is present or absent is challenging
and rests upon assumptions that can be encoded in
structural causal models based on the judgement of
researchers.

For example, researchers may be interested in
understanding whether a single‐nucleotide polymor-
phism (SNP) has an effect on traits, that is, whether a
variant at the SNP increases or decreases the risk of
developing them. They may also be interested in other

parameters, such as polygenic scores (the weighted sum
of estimated effects of multiple genetic variants associ-
ated with a trait in an individual) and heritability
estimates (the degree to which differences in a trait are
attributable to genetic variation).

If a polygenic score for a trait estimated from a
European sample predicts the trait less accurately in an
Asian sample, does that imply the genetic basis of the
trait varies between the two populations, or that the trait
difference is caused by other factors? For example, a
difference could arise because the relevant genetic
variants have not been identified precisely, or because
environmental factors, which differ in prevalence
between populations, modify the causal effects of
these genes. This leaves the question: how can these
explanations be distinguished?

Underlying these questions are assumptions of how
variables are causally related to each other. Making these
assumptions explicit can help researchers clarify why
some associations translate well in new populations
while others do not and anticipate which situations may
reduce predictive accuracy. It can also help researchers
recognise when it would be challenging to translate these
associations into clinical practice and appreciate when
differences in results might reveal important information
about the mechanisms of complex traits and disease.

This paper will review the reasons that different
genetic association studies are consistent or not—from
causal interactions and effect modifications to artefacts
such as confounding, selection bias, phenotyping, link-
age disequilibrium and statistical power. We will outline
how these factors can be identified and apply direct
acyclic graphs to visualise causal relationships between
variables. Additionally, we will explain the implications
these factors have on genetic parameters, and how they
can determine why observed consistencies or inconsis-
tencies have arisen.

1.1 | How is consistency measured in
the literature?

Various methods are used in genetics to measure the extent
of consistency between an index data set and an external
data set. Consistency is often inferred from, or defined as,
the observation that the same genetic associations exceed a
p‐value threshold for statistical significance in multiple
datasets. However, this inference is mistaken, as the
difference between a significant finding (in one data set)
and non‐significant finding (in another) may not be
significant itself (Gelman & Stern, 2006).

Other methods are also used, such as a consistent
direction of genetic associations, as measured by the sign
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test (Hannon et al., 2017), a high genetic correlation
between the traits measured in each data set and the
performance of polygenic scores created from the index
data set in the external data set.

Although different methods are used to measure
consistency, they are influenced by similar factors. In the
following sections, we elaborate on these factors, their
implications, identification and resolution.

2 | STATISTICAL POWER,
IMPUTATION AND LINKAGE
DISEQUILIBRIUM

2.1 | Statistical power

A well‐studied cause of inconsistencies between genome‐
wide association studies is low statistical power in the
index or external data set or both. The statistical power of
an analysis is determined by the true effect size to be
estimated, the alpha level (the allowable risk, decided by
researchers, of rejecting the null hypothesis when it is
true), and the variance of the estimator (which is
influenced by the sample size, the frequency of the
outcome variable, and the prevalence of the exposure
variable).

Since association tests depend on the presence of
variation in genotypes and phenotypes, the effects of
genetic variants may be undetected if they are present at
a low allele frequency in a sample. For a given effect size,
the statistical power is highest when the exposure
variable, in this case, the genotype, has the greatest
population variance, which occurs when the variant
frequency is 50% when the genotype is coded additively.
A causal variant showing significant association in a
population in which it is common may not be replicated
in a second population where it is much rarer, even if it
has the same effect size, due to the difference in power.

In the Winner's curse phenomenon, the magnitudes
of associations are attenuated in new samples, potentially
resulting in non‐significant replications (Kraft, 2008).
This phenomenon can arise when many tests, such as in
a genome‐wide association study, are performed and only
associations meeting a certain significance threshold are
retained in further analysis, which results in an enrich-
ment of signals overestimated due to chance. Therefore,
observed effects appear weaker in the external data set
than they were in the index data set due to regression to
the mean.

Similarly, this phenomenon can arise when arbitrary
significance thresholds are applied to select SNPs to
include in polygenic scores, which could influence the R2

(the proportion of variance in the trait predicted by the

polygenic score) and the area under the curve (a measure
of the ability of the polygenic score to classify a true
positive as a positive at a higher rate than a true negative)
in an external data set (Shi et al., 2016).

A number of conditions make the Winner's curse
phenomenon more likely: a large number of tested
variants, a low sample size for the index data set, low
allele frequencies of SNPs, and small effect sizes of
SNP‐trait associations (Palmer & Pe'er, 2017).

Several methods have been suggested to address the
Winner's curse phenomenon and problems with low
statistical power, such as shrinkage methods (Huang
et al., 2018) with bootstrapping (Sun & Bull, 2005; Wu
et al., 2006) or variable thresholding and weighting SNPs
by external functional knowledge (Shi et al., 2016).
Researchers can also make changes to study designs—
such as increasing the overall sample size or enriching
the sample for participants with variation in the exposure
variable—to reduce its impact.

2.2 | Genotyping error and data quality
control

Differences in the data quality control procedure and
imputation (prediction of genotypes not assayed, using
reference panels with similar haplotypes) can also affect
the consistency of genetic associations. False‐positive
associations arising from genotyping errors are unlikely
to be replicated by other studies and can contribute to
inconsistent results. These can be reduced by carrying
out careful quality control procedures to exclude
problematic SNPs and samples, and by mega‐analyses
(joint analysis of datasets at the genotype level) that use
standardised quality control measures and cut‐offs
(Begum et al., 2012). However, this remains challenging
with imputed variants because genotyping chips and
reference panels that contain a limited coverage of
SNPs (by allele frequency, or low density of SNPs)
impute missing variants with a lower confidence (Zheng
et al., 2012).

The breadth of a reference panel also affects
imputation confidence by influencing the range of
haplotypes available for matching with the index data
set. For example, reference panels limited to one
ethnicity can be inadequate to impute genotypes of a
range of ancestries (Pistis et al., 2015; Zheng et al., 2012).
Hence, missing genotypes would be imputed with low
confidence, particularly for rare variants.

The likelihood of false positives and negatives can also
be reduced with the use of reference panels of similar
ancestries as the participants in the study. Additionally,
researchers can use thresholds to exclude variants imputed
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with low accuracy using metrics such as MACH R2 and
INFO scores (Pistis et al., 2015). When biological samples
are available, imputation can be avoided by verifying
identified variants directly with sequencing, although this is
expensive (Wetterstrand, 2021).

2.3 | Linkage disequilibrium

Linkage disequilibrium (LD) is the correlation between
genetic variants that arises due to the variants being
inherited together, from parents to offspring, which is
more likely between variants located close to each other
in the genome. Variants that are associated with a
phenotype through LD with a ‘causal variant’ are called
‘linked’ or ‘proxy’ variants. The association of linked
variants with the phenotype is referred to as indirect
association.

Patterns of LD differ between populations (Shifman
et al., 2003; Teo et al., 2009). Linked variants would not
be expected to replicate in a different population where
they are not in LD with the causal variants, for example,
due to differences in population history and ancestral
recombination events that resulted in divergent LD
patterns in the genomic region (Scutari et al., 2016).
These consequences have been observed in polygenic
scores—for example, polygenic scores for various traits
constructed from GWAS data of European samples have
exhibited far lower predictive value in samples from
other populations, in part due to differences in LD
(Duncan et al., 2019; Martin et al., 2019).

To help fine‐map GWAS signals, replications in
ethnically diverse samples with methods such as trans‐
ethnic mapping can be used. In trans‐ethnic mapping,
variants associated with a trait are distinguished from
indirect associations by the consistency of their associa-
tions with the phenotype across populations with
different LD structure (Li & Keating, 2014). The relative
impact of LD can also be predicted (Wang et al., 2020),
and polygenic prediction can be improved through
the use of tools such as PRS‐CSx, which accounts for
differences in LD in cross‐population studies (Ruan
et al., 2022).

3 | INTERACTIONS AND EFFECT
MODIFICATIONS

Differences in the causal effects of a genetic variant
across populations may also result from other differ-
ences, such as epistatic or environmental factors which
interact with or modify the effect of the variant.
Understanding these factors can reveal mechanisms

underlying traits, and variables that can be manipulated
to affect outcomes.

In a causal interaction, an outcome is affected by two
variables acting together: the effect of one variable on the
outcome depends on the second variable, and conversely,
the effect of the second variable on the outcome depends
on the first variable. Each variable also has its own
independent causal effect on the outcome. Additive
interactions can be estimated by comparing the joint
effect of both the variables in combination to the sum of
the individual effects of the two variables in isolation.
Effects of interactions are greater (or smaller) than the
sum of effects of the two variables. In contrast,
multiplicative interactions can be estimated by compar-
ing the joint effect of both the variables in combination to
the product of the individual effects of the two variables
in isolation (Bours, 2021; VanderWeele, 2009).

In a causal effect modification, a second variable
modifies the effect of the first variable on the outcome.
This concept is asymmetrical because the second variable
may not have an independent causal effect on the
outcome (averaging over the possible values of the first
variable). Effect modifications can be estimated by
comparing the effect of one variable on the outcome in
the presence of the second variable versus in its absence
(Bours, 2021; VanderWeele, 2009). If the prevalence of
this second variable varies between populations, this can
result in differences in the observed effect size of an
exposure on an outcome.

3.1 | Interactions

Many studies in genetics have focused on the impact of
interactions, exploring effects such as epistasis, allelic
dominance, candidate gene‐environment interactions,
and environmental interactions with heritability. These
fall under two groups: interactions between genetic
variants and the environment (gene‐environment inter-
actions) and interactions between genetic variants and
other genetic variants (gene‐gene interactions).

Gene–environment and gene–gene interactions are
thought to consist of numerous genes and environmental
pressures each with small effect sizes (McGue &
Carey, 2017). Therefore, individual interactions can be
difficult to estimate precisely and distinguish from noise
in small samples or limited ranges of genetic or
environmental variation (Eaves & Verhulst, 2014; Rutter
& Pickles, 1991). This can result in discrepant findings
from studies in different contexts.

The Scarr‐Rowe hypothesis is one example of a
proposed gene‐environment interaction. According to
the hypothesis, a child's educational attainment is more
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likely to accord with their genetic predispositions in
conditions that are favourable to them than in depriva-
tion, where their dispositions would be suppressed. Put
alternatively, the heritability of educational attainment is
hypothesised to rise with socioeconomic status. As a
causal interaction, it is also hypothesised that both
heritability and socioeconomic status independently
cause differences in educational attainment.

Evidence for the hypothesis comes primarily from
twin studies, which find a reduction in the heritability of
educational attainment in socioeconomically‐deprived
environments (Baier & Lang, 2019; Turkheimer et al.,
2003). The estimated size of the interaction varies
between countries, which may result from a narrower
range of socioeconomic deprivation in the countries
where the effect is not found (Tucker‐Drob &
Bates, 2016). If the hypothesis were true, the ability to
detect genetic variants associated with educational
attainment would be attenuated by a limited range of
socioeconomic variation, which may explain discrepant
findings in different contexts.

3.2 | Effect modification

Effect modifications have been studied commonly in
pharmacogenetics, typically to identify subgroups for
whom treatment has a different efficacy or safety profile
than for others, and differences in the prevalence of
effect modifiers in a population may result in discrepant
findings. One example is the HLA‐B*57:01 variant, which
increases the risk of an allergic hypersensitivity reaction
from the HIV drug abacavir (Dean, 2012).

In a multi‐centre trial of HIV‐1 positive patients who
were randomised to genetic screening for the variant and
excluded from treatment with abacavir if they tested
positive, the authors find that prospective genetic
screening eliminated the risk of a hypersensitivity
reaction from abacavir (from 2.7% to 0%, p< 0.001)
(Mallal et al., 2008). A depiction of this effect can be seen
in Figure 1b, where the causal effect of abacavir on
hypersensitivity reactions is modified by the presence of
the HLA‐B*57:01 variant.

In meta‐analyses, there is no observed difference in
the magnitude of the association between abacavir and
HLA‐B*57:01 in different ethnic subgroups (Sousa‐Pinto
et al., 2015). However, the HLA‐B*57:01 variant has a
lower allele frequency in Hispanic and African popula-
tions, which means greater statistical power is needed to
detect the association. It also means other methods to test
for hypersensitivity are less sensitive in these popula-
tions, and the expected benefits of pharmacogenetic
testing is lower.

3.3 | Implications

Causal interactions and effect modifiers can influence
the magnitude and the direction of observed associations.
They can illuminate our understanding of causal
mechanisms and guide our knowledge about how
populations may react to interventions.

Importantly, this also means that some effects will be
obscured in homogeneous populations that are limited in
the ranges of variables that modify or interact with
variables that are studied. How can this be addressed? One
approach is to oversample populations that are otherwise
underrepresented with regard to those variables and
reweight them for analysis. This could ensure that there
was a greater number of participants at each stratum of
these variables, enabling us to identify heterogeneous
effects with greater power (Rothman et al., 2013).

Identifying interactions and modifiers can therefore help
us predict when and where we should expect findings to be
consistent, which helps us make sense of disparate findings
in the literature and design better‐informed power analyses
for new studies in different populations. This is exhibited by
the examples above: if the Scarr‐Rowe hypothesis is true, we
would expect that the effect would be attenuated in further
studies with less variance in socioeconomic deprivation.
Similarly, we would expect that the causal effect of abacavir
on hypersensitivity reactions would appear attenuated in
populations with a low prevalence of the HLA‐B*57:01
variant, as was found in Sousa‐Pinto et al. (2015).

Yet demonstrating that discrepancies result from
interactions or effect modifications is not straightfor-
ward. This is because greater statistical power is required
to detect interactions and modifiers than to detect main
effects (Gelman et al., 2020). Additionally, discrepancies
can also result from artefacts such as confounding,
selection bias, statistical power and measurement.

4 | CONFOUNDING

One possible reason why two variables may appear
associated is if they are both caused by a common factor,
called a confounder. This is depicted in the directed
acyclic graph (DAG) in Figure 1c.

In a DAG, an exposure refers to any factor of interest
that may affect the outcome; exposures and outcomes
relevant to the hypothesis are drawn with arrows
pointing in the direction of the hypothesised effects
(Lee & Pickard, 2013; Lipsky & Greenland, 2022).

The variables included in a DAG are chosen based on
criteria such as their importance (omitted if their effects
are small), their reducibility (collapsed into a single
variable if they can be described by a larger variable),
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their mediation (omitted if they mediate an effect but
have no other effects or inputs), and their variation
(omitted if they do not vary, because this means their
effects will not detected) (Huntington‐Klein, 2021).

As seen in the DAG, the confounder has a causal
effect (represented by a filled arc) on both exposure and
outcome variables.

A well‐known source of confounding in genetic
studies is population stratification—systematic variation
in allele frequencies between sub‐populations due to
differences in ancestry and non‐random mating
(Hellwege et al., 2017). When two sub‐populations differ

in their mean values of a phenotype, regardless of the
cause of that difference, any genetic variants that differ in
frequency between these populations will be associated
with the phenotype in the population as a whole
(Young, 2019).

One hypothetical scenario is presented by Coop
(2019), who describes how cultural differences in tea
consumption would be correlated with alleles
that varied between populations simply due to
genetic drift (Berg & Coop, 2014)—these alleles
could be mistaken for influencing preferences for
tea consumption.

FIGURE 1 (a–g) Direct acyclic graphs depicting causal relationships in genetic association analyses, in which nodes (variables) are
connected with each other by arcs. Dashed arcs represent non‐causal statistical associations, while filled arcs represent causal
statistical associations. Boxes represent variables which have been selected on, for example, by regression adjustment or inclusion/
exclusion criteria in a study. Panels (a) and (b) represent effect modification, where the magnitude or direction of a causal effect is
modified by a third variable, which acts upon a mediating mechanism. Panels (c) and (d) represent confounding, where a presumed
exposure and outcome have a shared cause. Panels (e–g) depict selection bias, in which a presumed exposure and outcome both affect a
third variable which is selected upon in the analysis. CNV, copy number variant; PRS, polygenic risk score; SNP, single nucleotide
polymorphism.
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Confounding results in the identification of SNPs that
have no direct effect on the phenotype, which reduces
their generalisability in other populations, leading to
inconsistent results.

4.1 | Implications

Confounders are factors that influence both exposure
and outcome. When confounding is present, the true
effect of the exposure on the outcome is distorted.

In genetics, confounding can arise from phenomena
such as assortative mating (Brumpton et al., 2020). In
classical twin studies, for example, assortative mating
increases the genetic relatedness of dizygotic twins,
though this is already at a maximum for monozygotic
twins. Thus, estimates of the heritability of a trait
which rely on comparisons of the genetic relatedness
and phenotypic similarity of twins become biased—
heritability is underestimated, while shared environmen-
tal influences are overestimated (Neale & Cardon, 2013).

When studies use data from different populations,
population stratification can influence the consistency of
results. Many tools have been developed to account for
this type of confounding, but residual confounding can
still remain due to subtle differences in ancestry, which
are challenging to capture precisely (Hellwege et al., 2017;
Persyn et al., 2018; Price et al., 2010).

An example comes from research comparing poly-
genic scores for height between different populations. As
described in Coop (2019), several studies (Berg & Coop,
2014; Mathieson et al., 2015; Turchin et al., 2012)
identified an enrichment of alleles associated with
increased height in Northern European populations
and concluded this was evidence of polygenic adaptation
for height. To construct polygenic scores, these studies
used summary statistics from GIANT, a meta‐analysis of
height that combined GWAS data from various European
cohorts. However, later studies that used summary
statistics from the UK Biobank, a single cohort with a
more homogeneous population, failed to replicate the
enrichment of height‐increasing alleles in Northern
European populations (Berg et al., 2019; Sohail et al.,
2019). These later studies found that the SNP associations
in GIANT were correlated with loadings on genome‐wide
principal components, which indicated the presence of
residual confounding.

Residual confounding refers to confounding that
remains in an analysis, and can result from confounders
that were unknown or unmeasured, confounders that
were not adequately controlled for, and measurement
error in the confounders that were adjusted (Kaufman
et al., 1997). Rare variant analysis is particularly prone to

residual confounding because individuals who share
ultra‐rare variants are likely to have a recent common
ancestor, and adjustment for principal components is
insufficient to control for close relatedness (Bhatia
et al., 2016; Bouaziz et al., 2021; Conomos et al., 2015;
Persyn et al., 2018; Young, 2019).

An approach to address this is the ‘within‐family’
design, where family identity is used to perform a
matched analysis or adjusted as a covariate, to reduce
confounding from population stratification and between‐
family differences in environment (Brumpton et al., 2020).
This is useful because it also adjusts for unmeasured
environmental factors that vary between families, which
would usually be difficult to account for, but may reduce
statistical power to detect associations (Ott et al., 2011;
Price et al., 2010).

The presence of confounding, as well as selection bias
(described below), can be identified using positive
(Hilgard, 2021) and negative controls (Lipsitch et al., 2010;
Rosenbaum, 2020). Examples of negative controls are
described in Table 1.

Generally, confounders can be addressed in various
ways: matching participants on their level of confounders
(which can control confounding at baseline in a cohort
study), covariate adjustment in a regression, stratification
to examine the effect of the exposure at different
levels of the confounder, restriction of the sample to a
homogeneous group where the confounder does not vary,
or adjustment for propensity scores (Pourhoseingholi
et al., 2012).

To estimate the causal effect of an exposure on the
outcome, we would need to identify and adjust for a set
of variables that block all backdoor paths from exposure
to the outcome. Knowing which variables to adjust for is
challenging, as they can arise from many sources. A
minimum set of covariates required to block all backdoor
paths may not be measured or could be imprecisely
measured or difficult to adjust (Westreich & Cole, 2010).
Adjustment can also be undesirable, particularly if those
variables are actually colliders (see the section on
selection bias below).

In principle, variables should be controlled for if they:
block all non‐causal paths leading to the exposure and
the outcome, leave mediating paths (paths incorporated
between the exposure and outcome) open, and do not
open additional spurious paths between the exposure and
outcome (Cinelli et al., 2020) Using a theorised causal
diagram, software such as dagitty (Textor et al., 2017) can
be used to identify which variables to control.

However, researchers may be concerned about whether
there remains residual confounding that was not specified
in their causal diagram. To quantify the potential effects of
residual confounding, various sensitivity analyses have
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been proposed, which are summarised in Table 2 (Cinelli
& Hazlett, 2020; Imbens, 2003; Oster, 2019). Researchers
can use these to judge the plausibility that residual
confounders may overturn an observed association.

5 | SELECTION BIAS

Associations can also be influenced by characteristics
of the sample. For example, we may be interested in
the association between an exposure and outcome
variable in the general population, but have selected
the subjects in a way that depends on both their values
of exposure and outcome. This results in a non‐
representative association between the exposure and
the outcome, which reduces the external validity of the
observed associations.

Consider a university where students are admitted if
they have high academic ability, high sporting ability, or
both (Griffith et al., 2020). In this situation, students with
low academic ability and low sporting ability are less
likely to be observed in the sample. This means that,
within the sample of students who are admitted, a
negative correlation is observed between academic ability
and sporting ability, even if no such correlation exists
among applicants or the wider population.

Here, two exposure variables (sporting ability and
academic ability) are causally related to whether a
participant is included in the sample (admitted into the
university). In the DAG in Figure 1e, the variable relating
to selection is known as a ‘collider’, where information
from two variables collides. When this collider variable is
conditioned on, the value of one exposure provides us
with information about the value of the other exposure
that collided into it; in other words, it induces an
association that does not exist between the two variables
in the wider population.

This phenomenon can be identified using a ‘negative
control’ in observational studies, which is the equivalent
of a placebo in experimental studies. It refers to a
condition which likely involves the same sources of bias
that could affect the association of interest, but where the
hypothesised effect cannot occur (Lipsitch et al., 2010).
For example, genetic variants associated with sex are
only inherited through the X and Y chromosomes in
humans. Since it is not expected that genetic variants on
autosomal chromosomes will be associated with sex, they
can be used as a control to detect whether sex affects
selection into a data set.

Participation in many studies is non‐random, such as
the UK Biobank and 23andMe. For example, participants
in the UK Biobank are older and more likely to be

TABLE 1 Approaches to identify the impact of residual confounding or selection bias with negative controls.

Approach Aim and description Methods Notes

Identification To identify the presence and
potential impact of residual
confounding or selection bias.
Researchers can use negative
controls, which are situations
in which the exposure cannot
have its hypothesised effect.
Researchers can also use
positive controls, which are
situations in which an
exposure should show a
known effect.

Negative control exposures: a
comparison to the procedure
without the presence of the
exposure (analogous to placebo
controls in randomised controlled
trials). This is used to detect
whether the procedure or analysis
would identify effects regardless of
the presence of the exposure, due
to residual confounders or
selection bias. (Lipsitch et al., 2010;
Rosenbaum, 2020)

• Requires domain knowledge of the
‘active ingredient’ of the exposure and
the potential sources of confounding:
− Leads to underestimating the effect

of the exposure if the negative
control itself has effects on the
outcome

− Leads to overestimating the effect
of the exposure if the negative
control does not adequately cover
the procedure or analysis method
used for analysing the exposure

Negative control outcomes: a
comparison to outcomes which are
not expected to be affected by the
exposure. This is used to detect
whether the analysis method
would identify outcomes that
should be unaffected by the
exposure, but may still be affected
by residual confounders or
selection bias (Dusetzina
et al., 2015; Rosenbaum, 2020).

• Requires domain knowledge of
outcomes that are unaffected by the
exposure:
− Leads to overestimating the effect

of the exposure if the negative
control outcome is
actuallyunaffected by residual
confounders

Note: Shown are the aims of these methods, approaches used to achieve these aims and notes on their usage.
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TABLE 2 Approaches to quantify or minimise the impact of residual confounding.

Approach Aim and description Methods Strengths (+) and limitations (−)

Quantification To estimate the impacts of
residual confounding in the
sample (Liu et al., 2013;
Richardson et al., 2014).

Target‐adjustment sensitivity analysis:
estimate the values of bias
parameters required to overturn
the results observed (Cinelli &
Hazlett, 2020; Lin et al., 1998;
Rosenbaum, 1987; VanderWeele &
Ding, 2017)

+ Simple and easy to implement with
statistical software, for example, tipr
(McGowan & Greevy, 2020) and
sensemakr (Cinelli, Ferwerda,
et al., 2020)

+ Some identify a range of values of
bias parameters, for example,
standardised mean difference or the
partial R2, required to overturn the
results (Cinelli & Hazlett, 2020)

+ Bias parameter values can easily be
obtained from summary statistics in
the literature, for example, in the
form of odds ratios

− Requires domain knowledge of the
confounders

− Tend to assume no effect
modification and no three‐way
interaction between exposure,
unobserved confounder and
outcome (Rosenbaum, 1987)

Fixed‐bias parameter analysis:
estimate the underlying effect size
using fixed values of bias
parameters, with confidence
intervals to show their impact
(Greenland, 1996; VanderWeele &
Arah, 2011)

+ Easy to implement and interpret
with free software in R, Stata and
Excel, for example, EValue (Mathur
& VanderWeele, 2020) and Monte
Carlo methods in R, Stata and Excel,
which provide errors based on
iterations with random noise (Iooss
& Lemaître, 2015)

+ Relaxes the assumption of no three‐
way interaction between exposure,
unobserved confounder and
outcome

Study design To ensure that the study
population is selected in
such a way that the impact
of confounders is reduced,
using exclusion or inclusion
criteria to limit the variation
in known confounders (C. Y.
Lu, 2009).

Exclusion or inclusion criteria: restrict
the study population to categories
where variation in confounders is
limited

− Requires domain knowledge of the
relevant confounders

− Residual confounding may remain
within categories that are included
in the study

− Reduces the external validity of
results

Covariate
adjustment

To minimise the statistical
impact of known
confounders, using domain
knowledge of the variables
that can lead to
confounding.

Regression: estimate and adjust for
the relationship between the
covariate, exposure and outcome

Matching: estimate and adjust for the
closest matches between the
exposure and control groups on
covariates

Stratification: analyse the data within
strata of the covariates

− Requires domain knowledge of the
relevant confounders; colliders could
be adjusted for unintentionally

− Residual confounding may remain
within strata or within covariates
that are estimated with noise

− Matching methods reduce statistical
power by retaining only
matched sets

Propensity
scoring

To minimise the statistical
impact of known
confounders, by estimating

Propensity score matching,
stratification, adjustment as
covariates: estimate the likelihood

− Requires domain knowledge of the
relevant confounders; colliders could
be added unintentionally
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female; they also have a higher income and higher
educational attainment than the general UK population
(Fry et al., 2017; Pirastu et al., 2020). Demonstrating this,
(Pirastu et al., 2020) used the negative control approach
to identify autosomal variants associated with sex in
datasets such as the UK Biobank and 23andMe, and
showed that participation in these datasets was partly
influenced by sex and autosomal variants associated with
other traits. This is shown in Figure 1f.

Selection bias can also occur in nested studies
(Tyrrell et al., 2021). For example, the Avon Longitu-
dinal Study of Parents and Children (ALSPAC, a birth
cohort representative of children born in Avon,
England during 1991–1992) also includes voluntary
follow‐up studies, including the Accessible Resource
for Integrated Epigenomic Studies (ARIES), which
studies genome‐wide DNA methylation data collected
during follow‐up visits (Relton et al., 2015). In the
ARIES subsample, a positive association is observed
between maternal education and participants' poly-
genic risk scores for smoking, while no association is
seen in the overall ALSPAC data set. This is because
participation into the ARIES subsample is influenced
by characteristics related to smoking status and
maternal education (Munafò et al., 2018).

Selection bias arises in the sample that is analysed,
not simply from the whole sample in which data is
collected. This means that methodological procedures
can also result in selection bias, for example, if some
participants are excluded based on their exposure and
outcome status. It can also arise from missing data,
information bias, healthy volunteer participation, and so
on, when this selection is influenced by exposure and
outcome. As a result, selection bias can also arise from
the adjustment of covariates in the study: if a variable
that is a collider (a variable, i.e., causally affected by two
other variables) is treated as a covariate and is stratified,
matched or adjusted for, then the relationship between
the two variables that cause the collider become
conditionally dependent on each other, resulting in a
spurious association between them (Cole et al., 2010).

For example, some studies have analysed the
relationship between polygenic scores and carrier status
for variants associated with a trait within cases alone

(Bergen et al., 2019; Lu et al., 2021). Bergen et al. (2019)
find that, within schizophrenia cases, there is a negative
correlation between carrying structural variants and
having a high polygenic risk score for schizophrenia,
while this correlation is positive within controls. As both
structural variants and polygenic risk scores are risk
factors for developing the disorder, stratifying the sample
according to case status will induce a correlation between
them even if none exists, just as it would if only cases
were ascertained into the study (Figure 1g). In genetic
studies, this can bias the effect sizes and p‐values of
variants identified as well as bias heritability estimates
and genetic correlations with other traits.

5.1 | Implications

Selection bias diminishes the external validity of findings,
resulting in associations that are non‐representative of the
population they are sampled from (Griffith et al., 2020).
When studies have different types or levels of selection
bias, it can cause discrepancies between their results. The
strength and direction of the bias induced by selection
depend on the correlation between the exposures and the
collider variable and between the exposures themselves
(Aschard et al., 2015).

For example, (Pirastu et al., 2020) found that negative
controls—autosomal variants associated with sex in the
UK Biobank and 23andMe—had different genetic
correlations. In 23andMe, there was a positive correlation
between alleles associated with educational attainment
and those associated with being female; however, this
was negatively correlated in the UK Biobank. This was
likely because the participants recruited for these studies
differed on various characteristics.

The optimal way to account for selection bias
depends on the nature of the bias. Since selection bias
diminishes external validity, one solution is at the level of
study design—to ensure that non‐random participant
withdrawals, missing data and so on, are minimised.

When changes in study design are not feasible, other
analytical methods can also be used to quantify and
address the bias (Lash et al., 2009, 2014; Nohr & Liew,
2018). These approaches are described in Table 3.

TABLE 2 (Continued)

Approach Aim and description Methods Strengths (+) and limitations (−)

the propensity for
participants to receive the
treatment and matching,
stratifying or adjusting for
this score.

that participants will receive the
exposure, and match, stratify or
adjust for these propensity scores
(Austin, 2011)

− Matching retains only matched
subsets, which reduces statistical
power
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TABLE 3 Approaches to quantify or minimise the impact of residual selection bias.

Approach Aim and description Methods Strengths (+) and limitations (−)

Quantification To estimate the impact of selection
into the study sample (Lash
et al., 2014; Nohr & Liew, 2018)

Target‐adjustment sensitivity
analysis: estimate the values of
bias parameters required to
overturn the results observed.

+ Simple to implement and interpret
− Uninformative about the range of

plausible effect sizes
− Difficult to apply when multiple

sources of bias are present

Fixed‐bias parameter analysis:
estimate the underlying effect
size using fixed values of bias
parameters, with confidence
intervals to show their impact
(Lash et al., 2009; Manski, 1990)

+ Simple to implement and interpret

Probabilistic bias analysis: estimate
the underlying effect size using a
distribution of values of bias
parameters (such as uniform,
normal or triangular
distributions) (Knox et al., 2020)

+ Can be implemented with
software such as Autobounds
(Duarte et al., 2021)

− Requires domain knowledge for
choice of probabilistic distribution

Study design To adjust the study design to
ensure the retained sample
matches the population of
interest on relevant
characteristics

Adherence: increase uptake of the
treatment or measurement in the
study

Non‐response: increase response
rates to the measurement in the
study

Dropouts: reduce dropouts and
withdrawals from the study

− Can be unfeasible or impractical
− Inapplicable to datasets that have

already been collected

Covariate
adjustment

To minimise the impact of
selection bias, by breaking the
association between exposure
and selection variables

Avoidance of adjustment for
colliders: identify potential
colliders and avoid their
adjustment (Cinelli, Forney,
et al., 2020)

− Requires domain knowledge of
causal relations to identify
colliders

Adjustment for covariates that affect
the exposure and selection into
the study: identify causes of
selection into the study and
stratify, adjust, match or exclude
data at levels of selection
(Hernán et al., 2004)

− Requires domain knowledge of
causal relations

− Can only be applied to measured
covariates that affect exposure and
selection into the study

− Inapplicable when the exposure is
also affected by other variables
that affect these covariates

Propensity score
weighting

To minimise the impact of
selection bias, by estimating the
likelihood of participants'
inclusion in the sample and
inversely weighting these
likelihoods

Inverse probability weighting (IPW):
weight participants inversely
according to their likelihood to
participate in the study (i.e.,
participants who are the least
likely to participate are upwardly
weighted) (Hernán et al., 2004)

+ More flexible than covariate
adjustment, because additional
covariates need not be measured
and effect estimates are
unconditional of them

− Requires domain knowledge and
measurement of variables
associated with selection into the
study

Multiple
imputation

To minimise the impact of
selection bias from missing
data, by modelling the
distribution of missing values
given the observed data, and

Joint modelling: impute missing
values, with the assumption that
incomplete variables follow a
multivariate normal distribution

+ Generally more efficient than IPW
to address missing data, because it
can use information from
participants with partially
missing data
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6 | PHENOTYPING

Aside from confounding and selection bias, there may be
a discrepancy between what is measured and what is
intended to be measured. Consequently, the measure-
ment of phenotypes can influence observed genetic
associations and heritability estimates, as well as affect
consistency between studies.

6.1 | Measurement Reliability

Measures have poor reliability when they are estimated
with a high degree of error by the instrument (which
refers to any tool used to measure a trait). That is, results
may be inconsistent because the instrument itself
measures the phenotype variably, increasing the rates
of false‐negative results.

Poor reliability can arise from various aspects of the
measurement process, such as the reliability across raters
(e.g., medical conditions diagnosed variably between
clinicians), time (e.g., if subjects learn to respond
differently upon repetition), items (e.g., a questionnaire
sum score where items relate to different underlying
concepts) and forms (e.g., alternate versions of the
measurement procedure) (John & Benet‐Martínez, 2014).

In psychiatric genetics, researchers often use data
from large cohorts to detect the subtle effects of genetic
variants on traits. However, this may come at the cost of
applying consistent diagnostic procedures with a large
sample, potentially increasing the rates of diagnostic
misclassification. As Wray et al. (2012) demonstrate,
under realistic frequencies, diagnostic misclassification
can distort various parameters: it can add noise to
prevalence estimates, bias estimates of heritability
downwards, and substantially inflate genetic correlations
between traits. For example, the correlation between
schizophrenia and bipolar disorder will be inflated when
patients with schizophrenia are misclassified with

bipolar disorder and vice versa. This problem remains
even when focusing on within‐family data.

Reliability is an assessment of the relationship
between measurement error and the inherent variability
in the data; measures have lower reliability when they
are less able to distinguish differences between subjects
because the degree of measurement error obscures the
true variance. Consequently, instruments have higher
reliability in samples with greater phenotypic variation,
because greater variance between participants reduces
the likelihood that measurement error obscures their
differences (Bartlett & Frost, 2008).

One example comes from a simulation study using
questionnaire data to test for genetic association (van der
Sluis et al., 2010), which showed that the sum scores
generated from only the most‐severe and least‐severe
items in the questionnaire were not very different
between cases and controls. Omitting the middle range
of severity reduced variability and made it more
challenging to resolve group differences, thereby reduc-
ing the statistical power of the genetic association study.

6.2 | Measurement Validity

Measures with poor validity are less likely to be estimating
the intended phenotype, due to systematic errors. Instead,
these measures may be estimating other traits that are only
correlated with the phenotype or inconsistently associated
with it. Therefore, differences across time, between groups
or in different contexts affect the results that are observed
when they influence what is measured.

A recent example comes from a GWAS of the alcohol
use disorder identification test (AUDIT) phenotype
(Mallard et al., 2021). Alcohol use disorder is often
measured by the self‐report AUDIT questionnaire, which
includes 10 items related to alcohol consumption and
problematic behaviour. Previously, studies observed that
the AUDIT‐consumption facet had only a weak positive

TABLE 3 (Continued)

Approach Aim and description Methods Strengths (+) and limitations (−)

predicting and filling them
(Huque et al., 2018; Seaman &
White, 2013)

Fully conditional specification:
impute missing values, with the
assumption that incomplete
variables follow a univariate
conditional distribution given
the other variables

− Only applicable when selection
bias is at the level of missing data

− Difficult and imprecise when
participants with missing data
tend to have missing values on
most variables

− Difficult to specify correct model
when there are many variables to
be imputed or if there are
interactions in the analysis model

DATTANI ET AL. | 383



correlation with alcohol dependence measured by other
questionnaires, a positive correlation with socioeconomic
status, and a negative correlation with psychopathology.
In contrast, the AUDIT‐problematic behaviour facet was
positively correlated with psychopathology, as expected.
This suggested that the AUDIT‐consumption facet had
low validity for alcohol use disorder, having a low
correlation with other measures of the same phenotype
and deviating from expected correlations with other
traits.

Therefore, Mallard et al. investigated the correlational
structure of the items in this questionnaire and found
that they were influenced by an AUDIT item relating to
consumption frequency (through a question that asked
participants how often they had a drink containing
alcohol). In a latent factor model, this item had the
lowest correlation with all the other items and a high
residual variance that correlated with socioeconomic
status, suggesting it related to sociocultural practices.

Cultural differences in alcohol consumption world-
wide (Ritchie & Roser, 2018) may cause differences
between the genetic associations between the AUDIT
sum score and other traits around the world, even
without differences in the underlying phenotype of
alcohol misuse. This suggests that excluding this item,
or focusing on the problematic behaviour facet, may
make the AUDIT questionnaire more relevant to the
alcohol misuse phenotype and more appropriate in
further studies of alcohol use disorder.

6.3 | Implications

Reliability can be measured using a variety of indices,
such as the intra‐class correlation coefficient, the
standard error of measurement and Bland and Altman
agreement tests. Some relate the variation between
respondents to the variation within them, while others
estimate the agreement between different instruments
measuring the same phenotype (Bruton et al., 2000; John
& Benet‐Martínez, 2014).

Typically, these indices rely on two major assump-
tions: that the level of measurement error is equivalent
for all respondents, and that respondents are equivalent
(they cannot distinguish between test characteristics and
respondent characteristics). This can be problematic
because the reliability of the test depends on the sample
that is tested, and a respondent's standing on a test can
vary substantially depending on which items are
included on the measure. To address this issue, some
tests use item response theory to test the likelihood that
respondents will endorse a particular item (Bech, 2012;
John & Benet‐Martínez, 2014; Reise & Waller, 2009).

Reliability can be improved through different
approaches, such as the use of more granular scales that
better discriminate between levels of the phenotype, or
by accounting for factors that affect measurement across
raters, time or forms.

In contrast to reliability, validity relates to systematic
errors affecting measurement. Different types of validity
can be tested, including convergent validity (the correla-
tion with other measures of the phenotype), criterion
validity (the correlation with other traits associated with
the phenotype) and discriminant validity (the correlation
with other traits that we would not associate with the
phenotype) (Price et al., 2014).

Approaches such as factor analysis can help test
validity, as in the example of the AUDIT questionnaire,
which distorted genetic correlations between its measure of
alcohol use disorder and related phenotypes. Researchers
may also test for measurement invariance: whether the
instrument measures the construct equivalently between
groups or over time (Finch, 2014; Moriarity et al., 2022;
Wang et al., 2018) This is relevant because groups may
differ in how they respond to items, for reasons unrelated to
the intended phenotype to be measured. These differences
may be mistaken for differences in the intended phenotype.
When measurement invariance is violated due to the factor
structure of items (configural invariance), using a sum
score model reduces the statistical power to detect genetic
variants associated with the intended phenotype (van der
Sluis et al., 2010).

Measuring phenotypes is challenging because poor
reliability and validity can affect the consistency of
genetic results: low reliability can reduce the likelihood
of replicating results by introducing noise into the
measurement. As demonstrated by Wray et al. (2012),
low reliability from diagnostic misclassification can
reduce heritability estimates and increase genetic corre-
lations between misclassified traits. Low validity can also
introduce inconsistencies between studies because differ-
ent constructs may be measured in different conditions,
rather than the intended phenotype.

7 | CONCLUSION

Genetic association studies can be highly informative
about the molecular basis of complex traits. However,
identifying these effects and mechanisms from observa-
tional studies can be challenging, as these designs
depend on assumptions about the relationships between
variables. These assumptions inform decisions about
study sampling, measurement and covariate adjustment,
and can be made explicit with structural causal models
using knowledge from other lines of evidence.
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Making these assumptions explicit is not only
important for inferences about the causal effects of
genes, but also because they influence estimates of
heritability, the accuracy of polygenic scores, and the
statistical power to detect genetic associations. Addition-
ally, when studies are affected by confounding, selection
bias or low phenotype validity, their design can also
result in the detection of genetic variants associated with
phenotypes that researchers do not intend to measure.

Identifying the underlying factors for consistent and
inconsistent findings increases our understanding of
discrepant results in the literature. True differences in
the effects of genes can arise from interactions and effect
modifiers by other genes and the environment. But these
differences can be masked by other factors, including the
selection of samples, the measurement of phenotypes,
the analytical method and adjustment of covariates, the
statistical power of an analysis, quality control measures
and population characteristics such as allele frequencies
and LD. In parallel, consistent effects can be obscured by
many of the same factors.

These factors can be identified and addressed at
various levels of research: from the design of a study and
selection of participants to the measurement of pheno-
types and the adjustment of confounders, but this can
remain challenging.

Our understanding of the causes of discrepancies
between results can illuminate the mechanisms of
complex phenotypes and disease. Recently, new software
has been developed to quantify the impacts of bias on
effect estimates. Future methods that improve our ability
to estimate the propensity of individuals to participate in
a study, identify confounders and measure phenotypes
with greater reliability and validity may aid this progress
even further.
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