
Evolutionarily Conserved Linkage between Enzyme Fold,
Flexibility, and Catalysis
Arvind Ramanathan1,2, Pratul K. Agarwal2*

1 Joint CMU–Pitt Program in Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America, 2 Computational Biology Institute,

and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America

Abstract

Proteins are intrinsically flexible molecules. The role of internal motions in a protein’s designated function is widely debated.
The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital
clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations:
the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein
function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features
can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of
enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been
examined using detailed computational modeling. For each class, the identification and characterization of the internal
protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme
conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (.10 Å away)
are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible
surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of
reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the
same biochemical reaction shows motions that induce remarkably similar changes in the enzyme–substrate interactions
during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular
architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes
in the active-site enzyme–substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results
have implications for understanding the mechanism of allostery, and for protein engineering and drug design.
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Introduction

Proteins are not static but rather are intrinsically flexible

molecules. The relevance of conformational flexibility or multiple

conformations of protein with small deviations from the native

state to a protein’s designated function is the subject of ongoing

debate [1–7]. The role of protein structure in function such as

enzyme catalysis is well established [8]. Techniques including X-

ray crystallography and nuclear magnetic resonance (NMR) have

been widely used to obtain information about the protein

structure, thereby providing insights into the mechanism of

function. The information obtained from these techniques reveals

that the functioning protein is present in slightly different but

related conformations, with some areas of the protein being more

flexible than others. Given the success of structural effects in

explaining many aspects of function, the observed fluctuations in

structure have largely been ignored. More recently, however, it

has been proposed that the protein function may involve multiple

conformations, and that the observed deviations are not just

inconsequential random thermodynamic fluctuations; rather,

flexibility may be closely linked to protein function, including

the catalytic efficiency of enzymes [2–3,5–6,9–15].

Internal protein motions span a wide range of length- and time-

scales. The dynamical landscape of a protein and the associated

energy landscape have been challenging to characterize, as the

internal motions and the associated structural deviations occur

over a broad range of time-scales [5,16]. The fastest motions are

harmonic vibrations of bonds and angles at femtoseconds (10215 s)

that have been linked to inducing changes in the crucial enzyme–

substrate interactions [17–18]. The slower protein movements

occurring at microseconds (and longer; .1026 s) include global

conformational fluctuations of large domains or of the entire

protein, which include large displacements in surface loops as well

as coordinated movement of b-strands and a-helices. There are

also other movements that occur between these two extremes of

time-scales. Experimental techniques including, but not limited to,
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NMR [3] and single-molecule experiments [19] have provided

insights into the protein motions, at longer time-scales, in several

enzyme systems including enzymes cyclophilin A (CypA) [5,20–

21] and dihydrofolate reductase (DHFR) [22–24]. The time-scales

for the slow conformational changes and the chemical step

catalyzed by these enzymes are similar, thus raising the question of

whether they are interrelated [15].

Preliminary evidence has suggested the possibility that protein

flexibility plays a promoting role in the biophysical mechanism of

enzymes. Conformational flexibility of enzymes has been associ-

ated with substrate (and cofactor) binding and product release for

some time now; however, the connection between flexibility and

the chemical step still remains the subject of debate [2,4]. In the

enzyme human CypA, Kern and coworkers detected motions of

several surface loop residues only in the presence of substrate

[5,20–21]. Agarwal and coworkers performed computational

studies of CypA and identified a network of protein residues that

influenced the reactive trajectories in the active-site [25–26]. For

the hydride transfer catalyzed by DHFR, the groups of Benkovic,

Wright, and Hammes, among others, have indicated the

movement of surface loops Met20 and bF-bG in association with

hydride transfer [23,27–28]. Using computational methods,

Hammes-Schiffer and coworkers have identified a network of

coupled protein motions linked to enzyme function in DHFR

[12,29]. These networks formed by conserved residues both in and

distal to the active-site have been implicated in promoting the

catalytic step. The CypA and DHFR networks extend from

flexible surface loop regions, which display high conformational

flexibility, all the way to the active-site residues that directly

participate in the catalysis. A number of other groups have also

reported on the link between enzyme motions and catalysis

[17,30–33].

Several hypotheses have been proposed to explain the possible

role of internal protein motions in enzyme catalysis. Pioneering

work by Benkovic, Hammes-Schiffer, and coworkers has discov-

ered that distal motions through a network of coupled motions

assist hydride transfer catalyzed by DHFR [2,34]. Wright and

coworkers have characterized in detail the dynamic landscape of

DHFR, where the ability of the enzyme to sample various

conformations was shown to be closely linked to the progress along

the enzyme cycle [3,27,35]. Kern and coworkers have proposed

that the catalysis promoting dynamics is an intrinsic property of

enzymes [20,36]. Collectively, an integrated view of enzyme

structure, flexibility, and function is emerging based on the

hypothesized role of protein motions in enzyme mechanisms [15].

Along with the structural interactions, internal motions at fast

time-scales control the chemical environment of the active-site

favoring the catalytic step to proceed to the product state [26]. It

has been hypothesized that the solvent is thermodynamically and

energetically coupled to the flexible surface loops, which

eventually transfer the kinetic energy to the active-site through

the conserved network interactions [15]. Evidence from compu-

tational studies as well as from Mössbauer and neutron scattering

studies supports the hypothesis that thermodynamical fluctuations

in the hydration-shell and bulk solvent control the behavior of

reactive trajectories [26,37]. The thermodynamical conformation-

al fluctuations in the networks alter the enzyme–substrate

interactions so that more reaction trajectories cross the transition

state barrier to reach the product state successfully. Overall, the

role of protein motions in promoting the substrate turnover step

lies in facilitating the attainment of the transition state and by

enabling more successful reactive trajectories.

Factors others than protein flexibility also play an important

role in enzyme catalysis. Warshel and coworkers have proposed

that the electrostatic effect and the effect of solvent reorganization

make important contributions to many enzyme mechanisms [38–

39]. Further, Bruice and coworkers have proposed the near-attack-

conformation theory, which suggests that enzyme active-sites are set

up to preferentially bind to the substrate conformations that are in

the vicinity of TS [40]. The extent to which these different factors,

including flexibility, impact enzyme catalysis still remains an

unsolved mystery.

Conservation of structural features across species has provided

vital clues to their role in protein function. For example,

information using sequence profiles of several enzyme super-

families including dehydrogenases, enolases, and amidohydro-

lases/phospotriesterases has led to the identification of conserved

structural features associated with targeted chemistry [41–42]. In

particular, it has been argued that the enzyme active-site residues

are optimally arranged to provide a complementary environment

to the transition state to allow for its stabilization [43–44]. (Some

residues are also conserved for their role in folding and protein

stability.) The overall enzyme shape or the enzyme fold has been

suggested as a scaffold that serves to correctly position the

conserved active-site residues. This notion has led to the structure

encodes function paradigm, with a number of theories strongly

emphasizing the structural interactions between the enzyme and

the substrate.

We hypothesize that the argument of conservation of important

structural features can also be extended to identification of protein

flexibility in connection with enzyme catalysis. Similar to

individual residues and motifs that are conserved in enzymes, for

their structural role, we suggest that the chemistry promoting

flexible regions of enzymes and their motions are also conserved as

a part of the enzyme fold. Previous studies have already reported a

connection between substrate (and cofactor) binding/release and

the intrinsic dynamics of the enzyme fold [45–46] and conserva-

tion of dynamics across enzyme families and super-families [47–

48]; in this study the focus is on how the protein flexibility is linked

to the chemical step during the enzyme cycle (after substrate/

cofactor binding and before the removal of the product). It is

important to note that for the enzyme systems selected for this

study, the investigated chemical step is the rate-limiting step. Therefore, the

Author Summary

Enzymes are nature’s molecular machines that catalyze
biochemical reactions with remarkable efficiency. Recent
evidence suggests that enzyme function may involve not
only direct structural interactions between the enzyme
and its substrate, but also internal motions of the enzyme
itself. Here, we describe a computational investigation of
three classes of enzymes that catalyze completely different
biochemical reactions. Remarkably, the mobile enzyme
regions and the nature of these motions are the same
across species ranging from single-celled organisms to
complex life-forms. Also surprisingly, non-homologous
enzymes that catalyze the same chemical reaction but
do not share sequence or structural similarity reveal a
similar impact of enzyme motions on their reaction
mechanisms. Flexible enzyme regions are found to be
connected by conserved networks of coupled interactions
that connect surface regions to active-site residues. These
networks may provide a mechanism for the solvent on an
enzyme’s surface to couple to the reaction catalyzed by
the enzyme. These results have implications for under-
standing the mechanism of allostery (long-range effects),
and for protein engineering and drug design.

Conserved Enzyme Fold, Flexibility, and Catalysis
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focus of our investigations is to identify the enzyme conformational

fluctuations that are correlated with the critical step involving the

mechanism that limits the overall rate of enzyme function. This

approach for identification of enzyme flexibility closely coupled to

the rate-limiting step provides vital insights into the connection

between enzyme motions and function.

In this report, we describe our computational investigations of

protein flexibility linked to enzyme catalysis to test the connection

between the enzyme’s fold, conformational flexibility, and

function, as well as its conservation over evolution. Three well-

characterized enzymes catalyzing different types of chemical

reactions with distinct folds and reaction mechanisms are

investigated: CypA, a member of the peptidyl-prolyl isomerase

family, which catalyzes cis/trans isomerization of peptide bonds;

DHFR, a member of oxidoreductase family, catalyzing hydride

transfer; and ribonuclease A (RNaseA), a member of nuclease

family that catalyzes hydrolysis of single-stranded RNA. For each

enzyme fold, computational investigations of enzyme structures

from several species with different sequences have been per-

formed. Slow conformational fluctuations at the time-scale of the

reaction and spanning the entire enzyme structure have been

characterized.

A critical test for our hypothesis is provided by comparison of

reaction-coupled enzyme flexibility in non-homologous enzymes.

Identification of motions and flexibility linked to mechanism in

enzymes that catalyze the same chemistry, but have little or no

similarity in sequence and have different molecular architectures

or structure, provides vital insights into the connection between

enzyme structure, flexibility, and function. The isomerization of

peptide bonds by non-homologous peptidyl-prolyl enzymes CypA

and Pin1 has been characterized and compared. Similarly hydride

transfer catalyzed by two non-homologous DHFRs (the well-

known chromosomally encoded DHFR and a plasmid encoded

type II DHFR) have also been compared. Further, an example of

the negative consequence of truncation of a catalytically relevant

flexible surface loop in RNaseA is also discussed. The results

indicate the presence of protein motions in distal areas of the

dissimilar enzyme folds that mediate similar changes in the active-

site enzyme–substrate interactions, thereby impacting reaction

mechanisms. Our studies have led to the discovery that in

homologous as well as non-homologous enzyme systems the

protein motions coupled to the reaction mechanisms are conserved

features of the enzyme fold. Similar to the insights provided by

conserved residues and structural motifs, future investigations of

the identified dynamical regions will provide a more detailed

understanding of the role of internal protein motions in enzyme

catalysis.

Results

Peptidyl-Prolyl Isomerase
CypA is a peptidyl-prolyl isomerase (PPIase) catalyzing the cis/

trans isomerization of peptide bonds in small peptides and proteins

[49]. The molecular architecture of human CypA consists of an

eight-strand anti-parallel b-barrel with the active-site located on

one face. The active-site consists of a hydrophobic pocket with

conserved residue F113, where the target proline residue is held

fixed during the reaction [25,50]. There are also conserved

residues that form hydrogen bonds with the substrate backbone,

with R55 playing an important catalytic role [51]. The enzyme

structure shows the presence of several flexible surface loop regions

distal to the active-site, with conserved residues located over 15 Å

from the active-site. NMR spin-relaxation studies performed by

Kern and coworkers indicated a link between the motions of

several residues and the substrate turnover step, and also indicated

that the rate of enzyme conformational changes coincides with the

rate-limiting step of substrate turnover (about a hundred

microseconds) [20,36]. In particular, motions in loop regions

neighboring the active-site residues R55, N102, and A103, as well

as in distal residues L82 and S110, were observed only in the

presence of substrate. Additionally, regions away from the active-

site with residues T68 and G72 indicated enhanced motions in the

presence of substrate.

Previous computational modeling of human CypA performed

by our group has led to the discovery of a network of protein

vibrations promoting the catalytic step [25]. Slow conformational

fluctuations spanning the entire enzyme and coupled to the

isomerization reaction were identified. In particular, three slow

conformational modes coupled to the reaction were characterized

for their connection with the biophysical mechanism. The

coupling to the reaction is defined as the degree of variation in

the amide bond dihedral angle (see Materials and Methods section

for details). A network of coupled vibrations was discovered, which

is formed by the connection of flexible surface loop regions to the

active-site, and includes residues R55, N102, A103, G104, T107,

N108, and G109. It was hypothesized that the movement in

flexible surface loops is driven by solvent thermodynamical

fluctuations, which in turn through the network linkages makes

an impact on the reaction by regulating the crucial active-site

interactions so that more trajectories become productive [26].

NMR studies had confirmed the presence and dynamical

movements of critical parts of the network coupled to the substrate

turnover [36].

Quantitative comparison of reaction-coupled CypA flexi-

bility across multiple species. Characterization of the

reaction-coupled conformational flexibility in CypA from humans,

Bos taurus, and Plasmodeum yoelii has revealed remarkably identical

flexibility (see Figure 1). To obtain quantitative understanding of

reaction-coupled enzyme flexibility across species, we characterized

the top 10 modes coupled to the PPIase reaction (see Tables 1–2). As

Table 1 depicts, the degree of coupling to the reaction is

quantitatively similar in these different species. Note that these

three modes are not the slowest modes of the enzyme, but the slowest

modes that show the largest coupling to the reaction. The slowest modes were

ranked by coupling to the reaction and only the top three modes

were characterized in detail. As the associated number ln (ranking

by eigenvalue) indicates, the slowest mode of the entire enzyme

complex does not always correspond to the slowest mode with

largest coupling to the reaction. For quantitative estimates of

similarity between these modes, the sub-space overlap metric

developed by Hess was used [52]. As Table 2 shows, the top 10

reaction-coupled modes in CypA show 66%–69% similarity across

species even though they share only an average of 58% sequence

similarity.

Further, not only the collective sub-space overlap from the top

10 modes but the top three slowest protein vibrational modes

coupled to the cis/trans isomerization are individually conserved

over evolution (see Figure 1a). These three reaction-promoting

modes show identical flexibility in the distant areas of the enzyme,

even though the protein structures are from different species (see

Figure 1b and Movies S1–S3). The correlation of the atomic

fluctuations in these three reaction-coupled modes is more than

75%, indicating that the protein regions showing large displace-

ments within these reaction-coupled modes, as well as their

direction and amplitudes, are identical (highlighted in Figure 1b as

regions a–e). To rule out the possibility of biasing the active-site

dynamics, three different substrates were used for these simula-

tions. The protein regions showing large displacements within

Conserved Enzyme Fold, Flexibility, and Catalysis
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these modes have also indicated large fluctuations as measured by

N15 spin-relaxation experiments, in the presence of substrate

[20,36].

Overall, the characterization of intrinsic CypA flexibility in the

structures from three species shows the presence of regions of

similar dynamical fluctuations, as indicated by a dynamic

clustering analysis of protein regions (see Figure S1). The protein

residues separate into six clusters based on their characteristic

flexibility over the course of isomerization; these include the b-

sheet separating into two rigid clusters, two helices and associated

loops forming two additional clusters, and the surface loop regions

forming two flexible clusters. Dynamical cross-correlation and

structural analyses of the PPIase fold (Figures S2–S3) indicate the

regions showing reaction-coupled flexibility are connected by a

network of hydrogen bonds.

Networks of coupled interactions promoting catalysis in

CypA. The characterization of CypA fold provides mechanistic

insights into the role of conserved flexibility in promoting the

isomerization reaction. During the course of the reaction, the

target substrate proline ring is held fixed in the rigid active-site.

The motions of the enzyme residues A101–N102–A103 and

nearby loop 105–108, as well as R55 in human CypA, alter the

crucial enzyme–substrate interactions during the reaction.

Additionally, motions of F60 in the active-site and the associated

loop region 57–60 also make important contributions to the

reaction mechanism. In B. taurus, the equivalent residues A121–

Figure 1. Conservation of reaction-coupled flexibility in enzyme CypA across three different species. (a) Top three slowest modes
coupled to the cis/trans isomerization reaction show large fluctuations in identical regions (near and away from the active-site). Multiple snapshots
are shown to indicate movements along the modes, and the regions with high flexibility are shown in color. The depicted modes are the ones
showing largest coupling to the reaction and are ranked differently from the slowest modes for the entire enzyme–substrate complex (lN indicates
the rank of each mode based on the eigenvalue provided by quasi-harmonic analysis, with l1 corresponding to slowest mode). (b) Enzyme backbone
flexibility depicted as root mean square fluctuations (RMSF); computed by aggregating the Ca displacement magnitude in the top 10 modes coupled
to the reaction. For comparison, consensus sequence has been used and RMSF has been normalized by dividing by the average Ca flexibility of all
residues in the enzyme (see Text S2 for the consensus sequences). Also, the regions marked as ‘‘a–e’’ correspond to the colored regions in panel (a)
that show the largest displacements in the modes. (c) Conservation of the network interactions connecting the flexible regions as a part of the CypA
fold (only human CypA is shown; however, these interactions are conserved in human cyclophilin B, CypA from Brugia malayi, B. taurus, and E. coli as
well). See Text S1 and Movies M1-M9 for more details.
doi:10.1371/journal.pbio.1001193.g001

Table 1. Degree of coupling of the slow conformational
modes to the cis/trans isomerization catalyzed by CypA.

Species Mode A Mode B Mode C

H. sapiens 2.545 2.083 2.028

B. Taurus 2.261 2.082 1.454

P. falciparum 2.121 1.936 1.863

See text and Figure 8 for the methodology used for coupling calculations. To
allow comparison of the coupling between species, values were normalized by
the average coupling in slowest 50 modes computed from quasi-harmonic
analysis (QHA).
doi:10.1371/journal.pbio.1001193.t001

Table 2. Similarity of reaction-coupled modes in CypA.

Species H. sapiens P. falciparum

B. taurus 0.691 0.665

P. falciparum 0.660

The subspace overlap was computed using Hess’ metric for the top 10 modes
coupled to the cis/trans isomerization reaction catalyzed by CypA.
doi:10.1371/journal.pbio.1001193.t002

Conserved Enzyme Fold, Flexibility, and Catalysis
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N122–A123 and the loop 125–127 also show large movement

during enzyme catalysis, with conserved active-site residues R75

and F80 also displaying similar motions. In P. yoelii, the residues

A143–N144–S145 and the loop 147–149 also display large

movements during the course of the reaction, with active-site

residues R97 and F102 controlling the crucial enzyme–substrate

interactions. More interestingly, several regions distal to the active-

site also display a similar type of dynamical motions in the slowest

modes coupled to the isomerization reaction. These regions

highlighted in Figure 1 include the highly flexible surface loops

(e.g., the region 82–88 in human CypA).

Note, the residues and interactions forming these networks as

well as their motions are conserved over evolution (Figure 1c).

These interactions originate in the highly flexible surface loop

regions on opposite sides of the protein (F83N–N108O, N35Nd2–

G109O, and D13N–K155O in human CypA) and pass through

internal regions (A101N–Q111O and I56N–G156O) to eventually

connect to the residues involved in structural contacts with the

substrate (R55, F60, N102, and A103). It is interesting to note that

even though the exact residues are not conserved, the linkage at

the particular location is preserved to keep the network intact. The

presence of regions with similar dynamical characteristics in distal

areas of the protein (away from the active-site), the similarity of

clusters of residues showing coupled motions, and the conservation

of linkages connecting the flexible surface loop regions all the way

to the active-site regions form important features of the PPIase

(CypA) enzyme fold. Preliminary indications are that these

networks are pathways of energy connectivity between the

active-site residues and the surface regions (therefore, the

surrounding solvent) [26].

Non-homologous PPIase Pin1. Pin1 is also a PPIase that

catalyzes the isomerization of the peptidyl-prolyl bonds [49,53].

Although Pin1 catalyzes the same reaction as CypA, a difference

between the two enzymes is that Pin1 is preferential to the

isomerization of phosphorylated substrates (pSer–Pro or pThr–Pro

motifs). The Pin1 structural fold shows no similarity to CypA; it

consists of an N-terminal WW domain (residues 1–39) and a C-

terminal PPIase domain (residues 45–163). NMR studies indicate

that the intrinsic flexibility of CypA and the PPIase domain of Pin1

are ‘‘primed’’ for catalysis, indicating that the free enzyme samples

the motions that impact enzyme mechanisms [54]. The intrinsic

dynamics of these enzymes show correlated motions (between

different enzyme residues) at the microsecond-to-millisecond time-

scale.

The structural dissimilarity between CypA and Pin1 folds poses

a challenge for a direct comparison of the impact of reaction-

coupled flexibility linked to PPIase mechanism. Hence, an

alternate strategy was used to gain insights into the similarity

between the flexibility linked to the reaction mechanisms in two

folds. A view of Pin1 and CypA active-site environment indicates

that the substrate prolyl ring is held in a hydrophobic pocket

(surrounded by F113 in human CypA and L122 in Pin1) and the

loops in proximity to the active-site show significant flexibility

coupled to the reaction pathway. In particular, the Pin1 active-site

residue R68 is connected to surface regions of large flexibility (63–

82), similar to R55 in CypA. Note our past investigations of the

CypA fold have revealed that several residues (both proximal and

distal to the active-site) play an important role in altering the

active-site environment through a series of coordinated interac-

tions [25]. Therefore, we examined if any flexible loops and

interaction in Pin1 induce similar effects on the PPIase

mechanism.

Computational modeling of the Pin1 PPIase reaction provides

atomic-level insights into the reaction-coupled flexibility (see

Figure S4 and Text S1 for details). The active-site residues that

form direct contacts with the bound substrate are interconnected

to flexible surface loop regions (see Figure 2), in a manner similar

to the case of CypA. The location and the role of reaction-coupled

flexibility in mediating enzyme–substrate interactions in active-site

of CypA and in Pin1 are remarkably similar, even though there is

no sequence or structural similarity. A network of hydrogen bond

interactions (formed by E76O-S71Oc and S71O-K63Nf) extends

from the surface region and connects this flexible surface loop into

the more rigid active-site residues, eventually interacting with the

substrate. Further, to stabilize the hydrophobic pocket in the

active-site for the substrate proline, M130 and L122 provide

important interactions, similar to the roles of F60 and F113 in

CypA. Note that this Pin1 hydrophobic pocket is also surrounded

by flexible regions 52–56 and 117–132 that show large

displacements and are interconnected through hydrogen bond

V56N–F125O, similar to the case of CypA where the flexible

region 101–108 and 82–88 are connected by hydrogen bond

F83N-N108O. A comparison of these active-site and distal

network interactions over the course of catalyzed isomerization

reaction reveals a remarkably similar behavior.

Quantitative comparison of these interactions in the two

enzyme shows correlation coefficients ranging from 0.40–0.67

(see Figure 2c) even though different types of residues are involved,

and they are located far away from the active-site in dissimilar

enzyme folds. The motions in Pin1 network residues mediate

changes in the active-site chemical environment to facilitate the

isomerization of the peptide bond, very similar to changes

mediated by the CypA network residues [25].

Pin1 residues K63, R68, and S71 in the substrate-binding loop

(63–82) as well as L122 and M130 in the flexible loop 117–132,

which form part of the network, are conserved across multiple

species [55]. Further, directed evolution experiments indicate that

several of the residues located in these two loops (63–82 and 117–

132) are known to significantly affect the catalytic process in this

enzyme [55]. The surface loops that form part of the network (and

show the presence of residues with long side-chains) undergo

significant conformational exchange during the Pin1 catalytic

cycle, as evidenced by NMR experiments [54].

Oxidoreductase
DHFR catalyzes the reduction of 7,8-dihydrofolate (DHF) to

5,6,7,8-tetrahydrofolate using nicotinamide adenine dinucleotide

phosphate (NADPH) as a cofactor. Chromosomally encoded

DHFR belongs to a family of proteins sharing the nucleotide

binding Rossmann fold [56], characterized by a central core

formed b-sheet surrounded by a-helices. Previously, a network of

coupled motions promoting hydride transfer in DHFR had been

identified using detailed theoretical and computational modeling

[12]. Similar to the network in CypA, this network is also formed

by surface residues present on the flexible loop regions

(particularly the bF–bG and the Met20 loop) interacting with

other conserved residues all the way to the active-site. The detailed

characterization of correlated motions of various residues and this

network has led to the identification of a chain of residues as

dynamical contributors to hydride transfer reaction [11–12,57–

58]. Long time-scale fluctuations (around milliseconds) in these

loop areas have been linked to the mechanism of the hydride

transfer. This is particularly intriguing because at pH .8.4, hydride

transfer is the rate-limiting step in the entire catalytic cycle [59].

Quantitative comparison of reaction-coupled DHFR flexi-

bility across multiple species. Conformational flexibility

linked to the hydride transfer catalyzed by DHFR from

Escherichia coli, Mycobacterium tuberculosis, Candida albicans, and

Conserved Enzyme Fold, Flexibility, and Catalysis
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humans shows considerable movements in the surface loop

regions. Table 3 shows quantitative similarity in the degree of

coupling to the hydride transfer for the top most reaction-coupled

modes across the four species. The coupling to the reaction is

defined as the dot product between displacement vector of hydride

and the vector between donor and acceptor carbon atoms (see

Materials and Methods section for details). Similar to CypA,

DHFR from different species also shows a complete similarity of

motions in the equivalent regions (see Figure 3). Note these

motions correspond to the time-scale of hydride transfer. Top 10

modes reaction-coupled show similar flexibility in equivalent

regions (highlighted as regions in a–d in Figure 3). A quantitative

comparison of the top 10 reaction-coupled modes shows 53%–

61% similarity even when the sequences are only 30% similar on

average (see Table 4). In addition to the sub-space overlap, the

individual vibrational modes coupled to the hydride transfer

reaction are also conserved across species (see Figure 3, and

Movies S4–S6).

Overall, the characterization of the reaction-coupled flexibility

shows strong correlated motions in DHFR fold in spite of sharing

low sequence similarity (see Figures S5–S6). The dynamic

clustering method indicates that over the course of hydride

transfer reaction the dynamical motions of the b-strands separate

into two clusters (see Figure S5). Three additional clusters are

formed by helices and the loops. The most flexible cluster is

formed by the Met20 and bF–bG loops near the cofactor

nicotinamide ring, the substrate binding pocket, and the adenosine

binding domain. This clustering was the same across all of the four

species investigated, implying that the dynamical coupling

between different parts of the DHFR fold is conserved.

Networks of coupled interactions promoting catalysis in

DHFR. The most characteristic feature of the slowest vibrational

modes is the high degree of activity in the surface loop Met20 and

bF–bG loops as well as the substrate binding pocket, which is close

to the substrate DHF’s para-aminobenzoylglutamate (p-ABG) tail.

These regions have an impact on the reaction by positioning the

nicotinamide ring of the cofactor in close proximity to the

substrate ring, and by decreasing the distance between donor–

acceptor carbons (CD–CA) for hydride transfer. These regions

contain the residues that form the network of coupled protein

motions including the Y100, I14, and F31 in E. coli DHFR.

Additionally, residue R57 shows concerted movement with the

DHF tail. Structural analysis indicated that these residues and the

interactions are also conserved over evolution and display identical

motions along the reaction pathway in M. tuberculosis (Y100, I14,

F31, R60), C. albicans (Y118, I19, F36, R72), and the human

(Y121, I16, F34, R70) enzyme.

The link between the DHFR fold and the reaction-coupled

flexibility is similar to that in CypA. The clusters of flexible surface

loops are connected to the active-site residues through the

preserved linkages (see Figure 3c and Figures S6–S7). Particularly,

the surface hydrogen bond D122–G15 in E. coli, D126–G15 in

Figure 2. Comparison of reaction-coupled flexibility in non-homologous PPIases. PPIases CypA and Pin1 with dissimilar structural folds
catalyze the isomerization of peptidyl-prolyl peptide bonds. (a) In CypA, the flexible surface regions 82–88 and 102–108, connected by F83N–N108O,
impact the residue substrate preceding the target proline (F113 as well as N102 and A103) and region flexible region 57–60 is connected to substrate
network residue R55. (b) In Pin1 flexible surface regions 52–56 and 117–132 are interconnected by V56N–F125O relay motions into the active-site
through hydrophobic residues L122 and M130. On the other face of Pin1 the flexible surface regions 63–82 are also connected by network hydrogen
bond to R68 that forms hydrophilic interactions with substrate similar to R55 of CypA. (c) Similarity in the behavior of distal (I56N-G150O/K63Nf-S71O
and F83N-N108O/V55N-F125O) as well as active-site interactions (F60Cf-P(S)Cd/M130Ce-P(S)Cd and F113Cf-P(S)Cd/L122Cd1-P(S)Cd) for CypA and Pin1.
Equivalent network surface network hydrogen bonds impact the enzyme–substrate interactions in the active-site. Note, cc values indicate correlation
coefficients between CypA (AWQ) and Pin1 interactions calculated over the course of reaction profile. See ref. [25] for further details.
doi:10.1371/journal.pbio.1001193.g002
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M. tuberculosis, D146–G20 in C. albicans, and D145–G15 in the

human enzyme is conserved. Therefore, these regions also form a

characteristic feature of the enzyme fold with implications for

catalysis. Note that the importance of network and nearby residues

to the enzyme mechanism has been confirmed by mutation studies

[58]. Further, the Met20 loop of E. coli DHFR, in particular, is

known to exist in two conformations, occluded and closed, and has

been implicated in the catalytic step. Single-molecule experiments

have also suggested the concerted movement of this loop with the

hydride transfer [28].

Non-homologous R67 DHFR. This plasmid-encoded type II

DHFR also catalyzes the transfer of hydride from cofactor

NADPH to substrate DHF; however, it shows neither sequence

nor structural homology with the chromosomal DHFRs [60–61].

This plasmid encoded R67 DHFR was discovered due to its ability

to confer trimethoprim resistance upon host bacteria. The

structure of chromosomally encoded DHFRs (discussed above)

displays the Rossmann fold [56], which is a characteristic feature

of many dinucleotide binding proteins. The structure of R67

DHFR shows an SH3-like domain and consists of a homo-

tetramer (each subunit 78 amino acids in length) with the active-

site located in the middle of a pore that is mostly accessible by bulk

water [61]. R67 DHFR shows a number of characteristics of a

primitive enzyme including promiscuity in binding of substrate/

cofactor, formation of non-productive complexes, and the absence

of a conserved acid in its active-site [60]. Even though the

structures of DHFR and R67 DHFR show no similarity,

computational and experimental investigations have revealed

interesting similarities in the reaction-coupled flexibility for the

two enzyme folds (see Figure 4) [62]. The active-sites show

stacking between the nicotinamide (of cofactor NADPH) and

pteridine (of the substrate DHF) rings enabled by a number of

enzyme residues.

More interestingly, there are similarities with regards to the

relative motions—both in the active-site and in distal regions of the

enzyme— that alter the chemical environment, making it suitable

for catalysis to occur (see Figure 4c). In particular, puckering of the

NADPH ring and a change in the DHF-tail angle coupled with the

hydride transfer are observed in both enzyme systems. In E. coli

DHFR, it is suggested that the nicotinamide ring puckering

Figure 3. Conservation of reaction-coupled flexibility in enzyme DHFR across four species. (a) Slowest mode coupled to the hydride
transfer catalyzed by these chromosomally encoded DHFRs shows large fluctuations in the same regions (near and away from the active-site) of the
enzyme from four species. (b) Enzyme backbone flexibility depicted as normalized RMSF. (c) Conservation of the network interactions (black arrows)
connecting the flexible regions as a part of the DHFR fold (only E. coli DHFR is shown). The red arrow indicates the catalyzed hydride transfer between
CD and CA. The modes are depicted/colored and the RMSF is normalized similarly to the CypA results. See legend of Figure 1 for further details.
doi:10.1371/journal.pbio.1001193.g003

Table 3. Degree of coupling of the slow conformational
modes to the hydride transfer catalyzed by DHFR.

Species Mode A Mode B Mode C

E. coli 4.634 3.458 2.520

M. tuberculosis 4.329 3.328 3.007

C. albicans 3.699 3.291 2.673

H. sapiens 3.816 3.472 2.443

See text and Figure 8 for the methodology used for coupling calculations. To
allow comparison of the coupling between species, values were normalized by
the average coupling in slowest 50 modes computed from QHA.
doi:10.1371/journal.pbio.1001193.t003
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motion has been suggested to be induced by a network of coupled

motions originating from D122 on the surface and terminating in

Y100 in the active-site, positioned behind the CD. In R67 DHFR,

the Q67 side-chain appears to provide similar motions to the CD,

also positioned behind the cofactor ring. Puckering of the

nicotinamide ring has been suggested as a contributor to the

reaction coordinate in the dinucleotide (NADPH/NADH) binding

enzyme [63]. The correlation coefficients for the measured

quantities range between 0.55 and 0.99 (see Figure 4c), indicating

a remarkably similar impact of protein flexibility on the

mechanism in the two DHFRs.

The most interesting difference in the enzyme mechanism

appears to impact the chemical environment at the CA. In E. coli

DHFR, it has been suggested that the motions of the F31 side

chain provide promoting motions that alter the DHF-tail angle,

thereby making the CA more suitable for the incoming hydride. In

R67 DHFR, computational studies predict that the same change

in the chemical environment results from the substrate’s p-ABG

tail movements [62]. Sampling of the DHF-tail angle is made

Figure 4. Comparison of reaction-coupled flexibility in non-homologous DHFRs. (a) Hydride transfer between cofactor NADPH and
substrate DHF catalyzed by E. coli DHFR and R67 DHFR with dissimilar enzyme folds. In E. coli DHFR residues D122, G15, I14, and Y100 provide
promoting motion to the cofactor nicotinamide ring and F31 motions alters the chemical environment on the reactant [12]. In R67 DHFR the Q67
provides the promoting motion to the nicotinamide ring and the movement of substrate tail in open pore, controlled by hydrophilic interactions
between residues K32 from two different sub-units (labeled as K232 and K332) and a/c carboxylate groups of the substrate p-ABG tail. Note the four
monomers in R67 DHFR are colored differently and the hydrophilic interaction between the cofactor tail and the K232 and K332 are shown. (b) The
network residue Y100 in E. coli DHFR and Q67 in R67DHFR are positioned behind the nicotinamide ring and provide similar promoting motions to CD.
The puckering of the pteridine ring of the DHF substrate at the CA is also a contributor to the reaction coordinate. The change in DHF-tail angle (y,
CA–C9–N10) from sp2 (,120u) to sp3 (,109u) state of hybridization is induced by different features of the enzyme folds. The overall effect on the
reaction center chemical environment is the same as indicated by the state of hybridization of the CD and CA. Note, cc values indicate correlation
coefficients between the quantities from the two folds calculated over the course of reaction profile. See ref. [62] for further details.
doi:10.1371/journal.pbio.1001193.g004

Table 4. Similarity of reaction-coupled modes in DHFR.

Species C. elegans M. tuberculosis H. sapiens

E. coli 0.534 0.543 0.613

C. elegans 0.531 0.541

M. tuberculosis 0.549

The subspace overlap was computed using Hess’ metric for the top 10 modes
coupled to the hydride transfer catalyzed by DHFR.
doi:10.1371/journal.pbio.1001193.t004
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possible by the high degree of flexibility in the tail located at the

edge of the pore surrounded by bulk solvent. The two extreme

states for the conformations are ion-pairs between the a/c-

carboxylate groups of DHF interacting with symmetry-related

K32 residues from two different subunits (labeled as K232 and

K332). A loss of these ion-pair interactions (located .13 Å from

the center of the pore) in K32M mutants leads to altered enzyme

kinetics. The tail movement at the edge of the active-site, coupled

with the fixed position of the pteridine ring in the center of the

pore, leads to puckering of the pteridine ring and promotes

transition state formation. Overall, a comparison of the reaction-

coupled flexibility in the two DHFR enzyme folds indicates that

motion induces changes in the chemical environment in the active-

site, particularly at the CD and CA to facilitate the hydride transfer.

Nuclease
RNaseA is secreted by the pancreas and catalyzes the hydrolysis

of single-stranded RNA. The characteristic shape of RNaseA is

formed by a b-sheet in the core, surrounded by several flexible

loop regions and a-helices. The active-site is located at the bottom

of the inverted b-sheet. A distinctive feature of this fold, different

from that of CypA and DHFR, is the linkage of the flexible surface

loops through disulphide bonds. The RNaseA fold was selected for

investigations as NMR experiments by Loria and coworkers have

suggested a link between flexibility and function [10,64].

Moreover, the rate of enzyme conformational changes (,1,000–

3,000 s21) coincides with the enzyme turnover rate (2–3,000 s21)

[59].

Quantitative estimates of the top 10 reaction-coupled modes

(see Table 5) for the three species investigated (H. sapiens, B. taurus,

and Rattus norvegicus) show 67%–70% similarity. Further, the

slowest modes also show remarkably similar displacements in

surface loop areas near the active-site as well as distal to the active-

site (see Movies S7-S9). Note that these modes correspond to the

slow conformational fluctuations of the entire enzyme–substrate

complex. The dynamical clustering shows the presence of three

clusters (the b-sheet forming two clusters and the loops and a helix

forming an additional cluster; see Figure S8). Dynamical cross-

correlations between residues and enzyme flexibility are also

preserved over evolution (see Figure 5, Figures S9–S10).

A network of interactions coupled to catalysis and connecting

the regions of high flexibility also appears to be present in

RNaseA. Similar to the CypA and DHFR network, this network is

formed by the connection of the surface loop regions all the way to

the active-site. In RNaseA, the highly flexible surface regions are

linked to other loops through disulphide linkages (C26–C84, C40–

C95, C58–C110 in B. taurus) and a hydrogen bond (Y97Og–

K41O). Conserved residues in the active-site (H12 and H119)

mediate these network motions between the enzyme and the

substrate. These linkages are conserved over evolution as a part of

the enzyme fold.
Impact of missing network on enzyme catalysis. The

human angiogenin protein provides an interesting comparison

with the chemistry catalyzed by RNaseA. This protein also

catalyzes the hydrolysis of single-stranded RNA but with lower

catalytic efficiency than RNaseA (at rates 104–106 less) [65].

Angiogenin is structurally similar to RNaseA (76% similarity in

sequence); the active-site shows similar contacts with the substrate,

including residues H13, K40, and H114 located in positions

structurally equivalent to the catalytically important H12, K41,

and H119 in RNaseA [66]. However, its major difference with

RNaseA is the truncation of a surface loop located .10 Å from

the active-site region (see Figure 6). This surface loop forms an

important part of the network in RNaseA; residue K66 on this

loop interacts with another network residue, D121. Located in the

vicinity of the active-site, the dynamical motions of D121 have

been implicated in catalysis, and mutation of this residue results in

90% activity loss in RNaseA [67].

Discussion

An integrated view of protein structure, flexibility, and function

is emerging to support a better understanding of the detailed

biophysical mechanism of enzyme catalysis [15]. The role of

conserved structural interactions between active-site residues and

substrate has been understood for some time [8]; however, the role

of the overall enzyme fold remains a mystery, particularly the

conserved residues that are located far from the active-site.

Increasing evidence continues to link protein motions with

designated functions, including enzyme catalysis. The intrinsic

flexibility of a protein is related to the overall shape (fold), as well

as the local organization of dynamical regions. Does all the

emerging evidence suggest that the overall enzyme fold is

optimized for structural as well as dynamical effects to carry out

the protein function?

Careful characterization of the networks discovered in the

CypA, DHFR, and RNaseA enzyme fold displays common

features (see Figure 7). The networks discovered connect surface

loop regions to conserved active-site residues that make direct

contacts with the substrates. The surface loop regions show a high

degree of flexibility as observed in X-ray and NMR investigations

as well as computational studies. These regions are exposed to the

solvent and contain non-conserved residues with long side-chains,

possibly to increase the solvent–enzyme thermodynamical cou-

pling. Another common feature observed in these networks is the

connection of these flexible loops, through a conserved hydrogen

bond, with another region at the edge of the active-site. It has been

reported that bulk solvent fluctuations drive internal protein

dynamics, thus impacting protein function [37]. In other words,

the discovered networks could serve as a mechanism for coupling

of the hydration-shell solvent to the chemical step [26]. Previous

investigations have also suggested the existence of conserved

energy pathways as a part of protein structure [68]. NMR studies

of RNaseA have also revealed that a distant loop (residues 14–25)

modulates the active-site motions [10]. Recent computational

studies also provide insights into the hierarchy of internal motions,

spanning the entire structure, which enable enzyme to visit

conformational sub-states [69]. Further, these studies also indicate

that some of these conformational sub-states contain geometrical

features for the progress of the reaction mechanism.

Linking Protein Flexibility to Enzyme Catalysis
The detailed biophysical mechanism of how protein motions

influence enzyme catalysis remains a topic of intense debate. The

wide range of time-scales of protein motions and the narrow (but

improving) resolution windows of experimental techniques have

presented challenges [2–3,21]. Atomic-level information at

Table 5. Similarity of the slowest modes in RNaseA.

Species B. taurus R. norvegicus

H. sapiens 0.677 0.730

B. Taurus 0.666

The subspace overlap was based on the Hess’ metric for the top 10 modes in
the reactant-product ensemble.
doi:10.1371/journal.pbio.1001193.t005
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different time-scales provided by the computational methods, as

highlighted here, could be useful in guiding experimental

investigations. The conservation of distally located dynamical

regions in enzymes could be argued as coincidental; however,

mutations in these regions (located far away from the active-sites)

can have a significant impact on the enzyme mechanism and/or

kinetics. In E. coli DHFR, mutation of network residues (D122 and

nearby G121 located .10 Å from the active-site) has shown

alteration in enzyme kinetics [30,58]. Modulation of activation

energy barrier has been observed based on computational studies

of slow conformational fluctuations [70]. Single-molecule exper-

iments of wild type and G121 and/or M42 mutants have also

provided additional evidence [28]. In R67 DHFR, the enzyme

kinetics can be positively or negatively impacted based on single or

double mutation of K32 (located .13 Å from the active-site)

corresponding to different sub-units [62,71]. In CypA, fascinating

details of the conformational changes in the network residues

associated with the catalytic step have been obtained including

details of minor conformation populations [21,36]. For Pin1, a

number of residues in loop 63–82 (located .10 Å from the active-

site) have been observed to be essential for function [55]. In

RNaseA, the millisecond dynamics of network residue D121 has

been linked to catalysis [64,67]. As an interesting protein design

application, the discovery of network in DHFR has also led to

Figure 5. Conservation of reaction-coupled flexibility in enzyme RNaseA across three species. (a) Slowest mode coupled to RNA
hydrolysis shows large fluctuations in the same regions (near and away from the active-site) of the enzyme from three species. (b) Enzyme backbone
flexibility depicted as normalized RMSF. (c) Conservation of the network interactions (black arrows) connecting the flexible regions as a part of the
RNaseA fold (only B. taurus RNaseA is shown). The modes are depicted/colored and the RMSF is normalized similarly to the CypA results.
doi:10.1371/journal.pbio.1001193.g005

Figure 6. The missing RNaseA network in human angiogenin. Comparison of RNaseA (from B. taurus) and human angiogenin (based on PDB
structure 2ANG and a modeled substrate based on 1U1B, indicated by *) shows similar fold with similar active-site residues; however, angiogenin
shows a truncated network loop. This flexible surface loop in RNaseA forms a hydrogen bond with dynamically important network residue D121.
doi:10.1371/journal.pbio.1001193.g006
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designing of a channel of allosteric communications in protein

complexes [72]. All the above-mentioned regions are dynamically

important parts of the conserved networks described in this article.

Note, investigations have confirmed that the observed impact of

distal mutations is not due to changes in the enzyme structure but

due to changes in protein motions [21,36,73–74]. Collectively,

these previous observations and our findings possibly explain why

there can be a drastic impact on enzyme activity when these

crucial network interactions, even when located far from the

active-site, are altered.

Quantitative estimates of the impact of protein motions on

enzyme mechanism have been difficult to obtain. Computational

investigations of hydride transfer catalyzed by E. coli DHFR

indicate 1–3 kcal/mol contributions of individual collective

motions on the activation energy barrier, which is <13.4 kcal/

mol [75–76]. Further, enzyme motions also indicate impact on the

transition state barrier recrossings in E. coli DHFR (transmission

coefficient calculated to be 0.80) [29]. A frequently raised concern

is that the observed motions could be caused by catalysis. With the

information available at present, it is difficult to completely isolate

the cause and effect; however, NMR and X-ray studies indicate

that some of the enzyme motions are present intrinsically, even in

the absence of substrate or non-productive complexes [20,62].

The emerging evidence leads us to ask the question, what

features of the enzyme fold are optimized for the targeted

reaction? The evidence presented in this study suggests that in

addition to an enzyme fold serving as a scaffold to orient the

active-site residues, the conformational flexibility of distal regions

also impacts the protein function. Similar to the conservation of

structurally important residues, the movements of important

regions are also conserved across species ranging from single-cell

organisms to complex life forms. Enzyme structures with similar

sequences are expected to show similar intrinsic flexibility due to

similar molecular architecture [45–48]. Therefore, it could

potentially be argued that the conservation of flexibility across

different species could purely be a coincidence due to the similarity

in shape. Note that the conserved flexibility discussed in this article

focuses not on the global conformational fluctuations associated

with the overall structure but specifically on the slow conformational

motions coupled to the rate-limiting enzyme catalysis step (which are not

necessarily the same as intrinsic slowest movements of the enzyme

folds). Moreover, the reaction-coupled slow conformational

fluctuations are conserved across multiple species for three entirely

different folds catalyzing diverse types of chemical reactions. Note,

the results reported in this study are consistent with previous

discoveries of network of promoting motions [12] and that

reaction-promoting motions are intrinsic properties of enzymes

[36].

Enzymes that catalyze the same chemistry but have no sequence

or structural similarity also show a remarkably similar impact of

distal motions on the enzyme mechanisms. This indicates that the

conservation of flexibility may be designed into the molecular

architecture of enzymes, similar to conservation of structural

elements. Therefore, the results presented here provide a

counterpoint that the reaction-coupled flexibility may not be a

coincidence but poses an additional constraint on conservation of

the enzyme fold. For homologous enzymes, the conservation of

enzyme fold (or the overall shape) may possibly be also due to the

conservation of flexibility of distal areas linked to the enzyme

mechanism. Even if it may appear obvious that homologous

enzyme folds have similar dynamics, the findings reported here

may explain why modifications to the overall molecular shape may

not be tolerated (for example, the truncation of a distal surface

loop in human angiogenin). Therefore, the identification of distal

areas with reaction-coupled flexibility has implications for allostery

and protein engineering.

To summarize, the interconnection between enzyme fold,

flexibility, and function presented here suggests that the conven-

tional emphasis that structure encodes function may need to be

expanded to better understand the fundamental mechanisms of

how enzymes work. Conservation of reaction-coupled conforma-

tional flexibility as an important characteristic of the enzyme fold

suggests that structure encodes dynamics and together structure–dynamics

encode function. It is entirely possible that specific enzymes have

evolved to utilize the structural interactions with flexibility making

only minor contributions [4,7]. In other systems such as CypA,

DHFR, and RNaseA, the contributions of flexibility could be

closely related to the enzyme mechanism. This emerging view of

Figure 7. Common features of the network of promoting motions/vibrations across enzyme folds. The three enzyme folds investigated
show the presence of highly flexible surface loop regions, which are connected to another flexible region in close proximity to the active-site (flexible
regions are shown as tubes and colored to indicate degree of flexibility). These surface loops show high flexibility in X-ray structure (temperature
factors) and show the presence of residues with long side-chains and are interconnected to the active-site through preserved hydrogen bonds.
doi:10.1371/journal.pbio.1001193.g007
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proteins provides some basis for understanding allosteric and

cooperative effects and has wide implications for drug design, as

well as protein engineering.

Materials and Methods

Enzyme–substrate complexes were modeled using molecular

mechanics under explicit solvent conditions, as previously

described [25]. The AMBER simulation package was used for

model building and simulations [77]. AMBER’s parm98 force-field

and SPC/E water model were used. Note, in the previous work,

we have verified the suitability of the parm98 force-field for enzyme

dynamics modeling in comparison with other popular force-fields

[25]. The starting structures for the enzymes were obtained from

the protein data bank. Table 6 summarizes the sequence identity

and the structural similarity for the enzyme structures used in this

study. After the model preparation of enzyme–substrate in explicit

water, the system was equilibrated based on the protocol described

previously. To briefly summarize, the model was minimized to

remove bad contacts and slowly heated to 300 K. All production

runs were performed at 300 K under constant volume and energy

(NVE) conditions.

PPIase
The human cyclophilin was modeled as previously described

with the peptide substrate His–Ala–Gly–Pro–Ile–Ala [25]. For the B.

taurus cyclophilin 40 (PDB code: 1IHG), only the residues 2–185

(corresponding to the CypA fold) in the PDB file were used for the

model; a substrate peptide Ala–Gly–Pro–Phe was modeled on

alignment of active-site residues from human CypA. For P. yoelii

cyclophilin (PDB code: 1Z81), only the residues 40–210 in the

PDB file were used for the model; a substrate peptide His–Val–Gly–

Pro–Ile–Ala was modeled on alignment of active-site residues from

human CypA. The reaction pathway was modeled with the amide

bond dihedral angle (v) as reaction coordinate; 37 windows (in 5u
decrements) were used to map the reaction from the reactant state

(v = 180u) to the product state (v = 0u). Each window was

simulated for 200 ps, and 500 structures from each molecular

dynamics (MD) simulation were collected for the identification of

the reaction-coupled flexibility and correlated motion analysis.

Therefore, a total of 18,500 conformations were used for

clustering analysis, motion analysis, and computations of the

reaction-coupled modes. A similar protocol was used for the

modeling of Pin1. Pin1 was modeled based on human Pin1 X-ray

crystal structure (PDB code: 1PIN). Only the PPIase domain,

residues 45–163, was used for model building. Model substrate

pSer–Pro was modeled based on the position of the peptide Ala–

Pro present in the X-ray structure. Note that the free energy

profiles for the cis/trans isomerization catalyzed by CypA were

previously characterized by our group and published elsewhere

[25,78].

Oxidoreductase
The E. coli DHFR (PDB code: 1RX2) was modeled as described

previously [29]. The cofactor NADPH present in the PDB file was

included in the model, and the substrate DHF was modeled based

on the folate molecule present in the PDB file. For M. tuberculosis,

C. albicans, and H. sapiens DHFR, the models were prepared based

on the PDB coordinates (PDB codes: 1DG5, 1AI9 (chain A only)

and 1KMV, respectively), the cofactor was taken from PDB files,

and the substrate was modeled based on E. coli DHFR. For

modeling the hydride transfer step, we used protonated substrate

and the empirical valence bond (EVB) method, which was

developed by Warshel and coworkers [79–80]. The modeled

enzyme reaction is the hydride transfer from NADPH (cofactor) to

protonated DHF to produce NADP+ and THF. The present study

involves the modeling of the hydride transfer from the C4N

carbon on the cofactor (CD) to the C6 carbon on the protonated

substrate DHF (CA). The EVB method, in combination with

classical molecular mechanics, was used for sampling of the

conformations along the hydride transfer reaction. A total of

21,000 conformations were collected representing the enzyme–

substrate conformations sampled along the reaction pathway.

These conformations were used for clustering analysis, motion

analysis, and computations of the reaction-coupled modes. A

similar protocol was used for R67 DHFR. The protocol used for

simulation of hydride transfer using EVB method was the same as

described in [62].

Nuclease
For B. taurus RNaseA, using the coordinates from PDB (PDB

code: 1U1B chain A) and substrate RNA with sequence UA was

modeled based on the ligand molecule present in the PDB file as

well in another related PDB structure (1RCN). The product state

was modeled with the hydrolyzed bond based on the above

procedure. For R. norvegicus RNaseA and H. sapiens pancreatic

ribonuclease, we used coordinates from PDB (PDB codes: 1RRA

and 2K11 (NMR model 10), respectively). The substrate UA was

Table 6. Sequence and structural comparison of the enzymes investigated.

CypA CypA (1IHG) CypA (1Z81) DHFR DHFR (1DG5) DHFR (1AI9) DHFR (1KMV) RNaseA RNaseA (2K11) RNaseA (1RRA)

1AWQ 63a 54 1RX2 36 31 30 1U1B 69 67

29.5b 28.1 23.6 20.2 21.1 18.5 22.2

1.1c 1.1 1.5 2.2 1.8 1.9 1.1

1IHG 58 1DG5 28 31 2K11 65

29.1 18.9 21.2 18.3

1.4 2.6 1.7 2.2

1AI9 35

22.1

2.3

Alignments performed with DaliLite pair wise comparison web tool: http://www.ebi.ac.uk/DaliLite/. See text for the PDB accession codes. a sequence identity(%), b Z-
score, c RMSD in the reference PDB structures (Å).
doi:10.1371/journal.pbio.1001193.t006
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modeled based on B. taurus substrate coordinates. After equilibra-

tion, 5 ns of MD runs were performed for only the reactant and

the product states; 10,000 structures from each state were used for

structural and dynamical motion analysis. The 20,000 conforma-

tions were used for clustering analysis, motion analysis, and

computations of the reaction-coupled modes.

Reaction-Coupled Flexibility
Protein flexibility at long time-scales or the slow conformational

fluctuations in enzyme-substrate complexes were identified using

quasi-harmonic analysis (QHA) [25,81]. QHA captures the large-

scale conformational fluctuations within a collection of conforma-

tions by diagonalizing the mass-weighted covariance matrix

known as the atomic fluctuation matrix (Fab). For a system with

N atoms, Fab is a 3N 6 3N symmetric matrix, defined as shown

below:

Fab~Sm
1=2
a xa{SxaTð Þm1=2

b xb{SxbT
� �

T, ð1Þ

where a and b represent the 3N degrees of freedom in Cartesian

space; ma is the mass of the atom and the quantity within ST
denotes an average over the ensemble of structures in MD

simulation. The inverse square root of the eigenvalues determined

by diagonalizing Fab represent the frequencies associated with

protein eigenmodes (l). The eigenvectors represent the displace-

ment vectors of the individual atoms. The lowest frequencies

correspond to large-scale cooperative motions in the protein; the

higher frequencies represent localized motions.

For the enzyme–substrate complexes used in this study, F is

constructed from system snapshots traversing the entire reaction

pathway (or combination of the reactant and product state in case

of RNaseA). To focus on the enzyme–substrate motions, the water

molecules were excluded from the QHA calculations. QHA of the

entire set of enzyme-complex conformations sampled along the

reaction pathway allows identification of conformational fluctua-

tions occurring at the time-scale of the reaction. The slowest

modes of QHA (lN, ranked by eigenvalues) correspond to the

conformational fluctuations observed in protein at long time-

scales. Note that Figures 1, 3, and 5 provide a list of lN

corresponding to the modes showing the largest coupling to the

catalyzed reaction. Protein regions showing similar motions over

the course of the reaction pathway were identified using a

clustering methodology [82]. See Figure S11 and Text S1 for

details of methodology for dynamical clustering and cross-

correlations.

For analysis of motions and conformational fluctuations 18,500

CypA conformations and 21,000 DHFR conformations collected

along the entire reaction profile were used. The slowest 50 (top 50

eigenmodes based on smallest eigenvalues) QHA modes were

analyzed for coupling with the reaction; as previous studies

indicated, the slowest 10 QHA modes can capture most of the

protein motions at microsecond time-scales (,78%) [83]. Note

that the analysis of the larger sub-set of the eigenmodes indicated

that modes with higher eigenvalues show motions that are

localized in specific regions of the protein. Only the eigenmodes

corresponding to global conformational changes with the largest

coupling to the reaction pathway were characterized in detail. For

RNaseA only the reactant and product states were used, with a

total of 20,000 conformations, and only the slowest modes were

analyzed. The use of end-states only (as in the case of RNaseA)

provides a qualitative estimation of the reaction-coupled flexibility,

as discussed in a recent study [83].

A quantitative measure of similarity of reaction-coupled

flexibility for homologous enzymes across different species was

obtained by computing the sub-space overlap for top 10 reaction-

coupled modes, based on the Hess’ metric [52], defined as:

c~
1

10

X10

i~1

X10

j~1

vA
i
:vB

j

� �2

, ð2Þ

where c is the overlap in the sub-space spanned by the eigenvectors

vA
i and vB

j coupled to the reaction. The super-scripts on the

eigenvectors represent the individual species A and B, respectively.

Note only the top 10 eigenvectors that are coupled to the reaction

were used in this computation. The values of c can range between 0

and 1, with the values close to 1 indicating largely similar sub-spaces

(indicating similarity in motions), whereas the values close to zero

indicate that there is no similarity in the motions.

Definition of Modes Coupled to the Reaction
See Figure 8 for the definitions. In CypA and Pin1, the degree

of coupling with the reaction was defined as the variation in amide

bond dihedral angle (v) in the mode. For each eigenmode

computed from QHA, the variation in the dihedral angle (Dv) was

computed as a measure of degree of coupling to the reaction

coordinate. In DHFRs, the coupling was defined as the dot

product of the hydride transfer displacement vector in the

eigenmodes with the CD–CA distance vector. Note that QHA

provides the displacement vectors associated with atoms (for each

eigenmode); the amplitude of displacement is determined by the

range observed in the entire conformational ensemble through

projection of the modes on the conformational snapshots. The

analyzed modes correspond to the time-scale of reaction (,0.1 ms

in CypA and ,1 ms in DHFR).

Network and Dynamic Correlations
The networks of protein vibrations/motions were identified by

characterization of enzyme regions displaying large movements in

the QHA modes, by investigating clustering of regions based on

similarity in motions as well as dynamic cross-correlation maps,

and by monitoring the distances of correlated regions over the

course of a reaction, as reported previously [25]. In particular, the

large dynamical cross-correlation between different residue pairs

followed by structural analysis was used to identify the chain of

interactions in the networks. Additionally, as described in Text S1,

a new methodology for dynamic clustering was used to identify

enzyme regions that exhibit similar dynamical characteristics over

the enzyme pathway [82]. Genomic analysis was performed using

Figure 8. Definition of reaction coupling. (a) Coupling to the cis/
trans isomerization catalyzed by CypA, with v indicating the amide
bond dihedral angle. For mode i, the coupling Dv is defined as: Dvi =
vi

+ 2 vi
2, where v+ and v2 are the two extreme ends of the

displacement, computed by projecting the eigenmodes on the entire
conformational ensemble. (b) Coupling to hydride transfer catalyzed by
DHFR. r(CD–CA) represents the position vector to acceptor carbon from
donor carbon, and dH is the displacement vector associated with
hydride in the eigenmode.
doi:10.1371/journal.pbio.1001193.g008
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Clustal-W [84], and the structural analysis was aided by the

PyMOL program [85].

Validation of the Models Used in This Study
The models used in this study for investigating the slow

conformational fluctuations in enzymes have been carefully

validated. The identification of the reaction-coupled modes is

based on the use of QHA of the enzyme–substrate conformations

collected over the reaction pathway. As the identification of the

slow conformational fluctuations is an important part of our

investigations, we have verified the ability of QHA to reproduce

experimentally observed protein conformational fluctuations at

long time-scales. In previous work, we have verified the ability of

QHA analysis to identify the experimentally observed correlated

protein motions at microsecond-millisecond time-scales [83]. The

slow conformational fluctuations obtained using QHA show

.75% similarity with deviations observed in an ensemble of

NMR conformations. Figure S12 provides a comparison of

computationally obtained enzyme flexibility with the temperature

factors (b-factors) from X-ray crystal structures of CypA, DHFR,

and RNaseA. The computationally obtained enzyme flexibility

(root mean square fluctuations) reproduces the experimentally

observed temperature factors. Further, significant agreement

between the correlation matrices for enzymes from different

species is observed (Figures S2, S6, and S9). This observation

indicates convergence of the computational simulations and is

consistent with previously reported observations [86–87].

Further, previous work on CypA also indicated that the reaction-

coupled conformation fluctuations are reproduced in human CypA

with three different peptide substrates and a biologically relevant

protein substrate [25,78]. Moreover, the network regions showing

large flexibility identified by using our models have also been

validated by NMR investigations [36]. Similarly, for DHFR the

regions of high conformational flexibility (including Met 20 loop

and bF-bG loops) have also been proposed as a part of coupled

network of protein motions and validated using NMR and enzyme

mutation/kinetics experiments [35,58,88]. For RNaseA, the regions

of high flexibility also coincide with the observations made from

NMR investigations [10].

Supporting Information

Figure S1 Dynamical clusters in enzyme CypA. Six clusters

were identified (shown in different colors), which were observed to

be identical across the three species investigated. The red cluster

consisting of the substrate and the b-hairpin formed by residues

13–16 (H. sapiens sequence number) exhibit large-scale fluctua-

tions. The hydrophobic core of the protein (dark blue) and the

active site regions (cyan) and the flexible surface loops along the

outer edge of the active site (orange) are similarly clustered across

all the three species. The flexible loops behind (yellow) and

adjacent (green) to the active site region exhibit coupled motions

that are also conserved features of this enzyme fold. Note, regions

that are insertions in the other two species (B. taurus and P. yeolii)

are shown in dark gray color. Regions of similar dynamical

fluctuations are conserved, indicating that dynamics coupled to the

catalytic mechanism are conserved across multiple species

regardless of sequence homology.

(TIF)

Figure S2 Cross-correlations observed along the reaction profile

for CypA. B1–B8 correspond to the correlations along the b-sheet

of the enzyme. H1–H3 correspond to the three a-helices. Regions

marked I1–I4 correspond to distal correlations observed along

loop structures. I1: residues 29–33 with 85–86, I2: 34–36 with 77–

78, I3: 56–57 with 142–150 and I4: residues 82–85 with 104–108.

Note, residue numbers mentioned above refer to H. sapiens as the

reference species; corresponding residue numbers for the two

species are available in Table S1.

(TIF)

Figure S3 Conservation of the network interactions as a part of

PPIase fold: human CypA (I) PDB code: 1RMH; human cyclophilin

B (II) PDB code: 1CYN; B. Malayi (III) PDB code: 1A33; B. Taurus

(IV) PDB code: 1IHG; E. coli (V) PDB code: 2NUL. The equivalent

hydrogen bonds are listed in Table S2. Substrate is shown in orange

ball-and-stick model for human CypA.

(TIF)

Figure S4 Reaction-coupled flexibility in Pin1 PPIase. (a) Top 2

reaction-coupled modes are shown. The regions indicating high

flexibility are colored and marked and the substrate pSer–Pro is

shown as red sticks. (b) The RMSF for top 10 reaction-coupled

modes are shown; the regions corresponding to large displace-

ments in (a) are marked. (c) The dynamical cross-correlation plot

computed based on conformations collected over the reaction

pathway. There are several regions showing large correlation;

however, only the correlations between five regions of enzyme

showing large flexibility during reaction are marked. (d) Network

of promoting motions coupled to the PPIase reaction in Pin1. Note

that only the PPIase domain (residues 45–163) is shown.

(TIF)

Figure S5 Dynamical clusters of residues in enzyme DHFR.

Five dynamical clusters were identified across the four species

investigated, indicating an identical behavior of flexibility coupled

to hydride transfer. The Met20, bF–bG, bG–bH, and the

substrate binding loops (cluster shown in orange) exhibit large-

scale fluctuations. The central b-sheet is split into two clusters

(cyan and dark blue), which is consistent with the observation by

Sawaya and Kraut regarding the intrinsic twist in the b-sheet [23].

Further, loops shown in yellow are coupled to the substrate-

binding region. The flexibility of these clustered regions is a

conserved feature of this enzyme fold as it is similar across species.

Regions shown in dark gray (in M. tuberculosis and H. sapiens) are

additional inserts not found in the other species.

(TIF)

Figure S6 Cross-correlations in enzyme DHFR along the

hydride-transfer. Regions marked S1–S2, H1–H4 represent the

correlated dynamics of the secondary structural elements in

DHFR. Regions I1–I3 however correspond to distal correlations

observed from the reaction profile. I1: residues 15–22 correlated

with 116–125 (Met20 and bF–bG loops), I2: 31–36 (a-helix A)

correlated with 142–150 (bG–bH). I3: residues 64–72 (bG–bH)

negatively correlated with residues 142–150 (bG–bH). Note, we

have used the reference structure as E. coli (1RX2) for the residue

numbers mentioned above. Corresponding regions from other

species are shown in Table S3.

(TIF)

Figure S7 Details of the conserved network of coupled motions

in enzyme DHFR. The flexible loops on the surface are connected

to the active-site through conserved residues, hydrogen bonds, and

hydrophobic interactions as listed in Table S4.

(TIF)

Figure S8 Dynamically coupled clusters in RNaseA. Three

identical clusters were identified across the species. The three a-

helices are clustered into three regions (blue, green, and cyan),

indicating that the dynamics of these helices are quite different.

The b-sheet is split into two distinct clusters (green and blue)
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depending on how these regions flank the substrate in the active

site. The opposed movements of the b-sheet regions (see movies)

and the motions of the flexible loop regions (cyan and blue regions)

are a conserved dynamical feature of the RNaseA fold.

(TIF)

Figure S9 Cross-correlations in RNaseA: Regions H1–H3 and

S1–S4 correspond to correlations observed from secondary

structural elements (a1–a3, b1–b5), respectively. Regions I1–I2

correspond to distal correlations observed. The distal correlations

observed from RNaseA are depicted in Table S5.

(TIF)

Figure S10 Details of conserved networks in RNaseA. The

flexible loops on the surface are connected to the active-site through

conserved residues and disulphide bonds as listed in Table S6.

(TIF)

Figure S11 The dynamic cluster methodology for identification

of protein regions exhibiting similar motions over the course of

MD simulation(s).

(TIF)

Figure S12 Validation of the enzyme flexibility. Comparison of

the computationally obtained flexibility of the enzyme models

(root mean square fluctuations) is compared with the temperature

factors (b-factors) from the X-ray structures. The results show

reproducible trends in high and low areas of enzyme flexibility.

(TIF)

Movie S1 Mode showing the highest coupling to cis/trans

isomerization reaction. For more information, see Text S1.

(MPG)

Movie S2 Mode showing the second highest coupling to cis/trans

isomerization reaction. For more information, see Text S1.

(MPG)

Movie S3 Mode showing the third highest coupling to cis/trans

isomerization reaction. For more information, see Text S1.

(MPG)

Movie S4 Mode showing the highest coupling hydride transfer

reaction. For more information, see Text S1.

(MPG)

Movie S5 Mode showing the second highest coupling hydride

transfer reaction. For more information, see Text S1.

(MPG)

Movie S6 Mode showing the third highest coupling hydride

transfer reaction. For more information, see Text S1.

(MPG)

Movie S7 RNaseA mode with the lowest eigenvalue. For more

information, see Text S1.

(MPG)

Movie S8 RNaseA mode with the second lowest eigenvalue. For

more information, see Text S1.

(MPG)

Movie S9 RNaseA mode with the third lowest eigenvalue. For

more information, see Text S1.

(MPG)

Table S1 CypA regions showing high correlations.

(DOC)

Table S2 Network interactions in PPIase fold.

(DOC)

Table S3 DHFR regions showing high correlations.

(DOC)

Table S4 Network interactions in DHFR fold.

(DOC)

Table S5 RNaseA regions showing high correlations.

(DOC)

Table S6 Network interactions in RNaseA fold.

(DOC)

Text S1 Detailed results of Pin1 computational modeling, details

of clustering methodology of protein regions based on conforma-

tional fluctuations, and details of the computational methodology

used for calculating the dynamical cross-correlation maps are

provided.

(DOC)

Text S2 Consensus sequences for the three types of enzymes.

(XLS)
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