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A B S T R A C T   

Spatiotemporal regulation of gene expression is controlled by transcription factor (TF) binding to regulatory 
elements, resulting in a plethora of cell types and cell states from the same genetic information. Due to the 
importance of regulatory elements, various sequencing methods have been developed to localise them in ge-
nomes, for example using ChIP-seq profiling of the histone mark H3K27ac that marks active regulatory regions. 
Moreover, multiple tools have been developed to predict TF binding to these regulatory elements based on DNA 
sequence. As altered gene expression is a hallmark of disease phenotypes, identifying TFs driving such gene 
expression programs is critical for the identification of novel drug targets. 

In this study, we curated 84 chromatin profiling experiments (H3K27ac ChIP-seq) where TFs were perturbed 
through e.g., genetic knockout or overexpression. We ran nine published tools to prioritize TFs using these real- 
world datasets and evaluated the performance of the methods in identifying the perturbed TFs. This allowed the 
nomination of three frontrunner tools, namely RcisTarget, MEIRLOP and monaLisa. Our analyses revealed op-
portunities and commonalities of tools that will help to guide further improvements and developments in the 
field.   

1. Introduction 

Spatiotemporal gene expression levels are regulated by binding of 
transcription factors (TFs) to regulatory elements [1]. TF binding is 
regulated by various factors such as DNA accessibility, epigenetic factors 
(e.g., DNA methylation) and co-factor binding [2–4]. Further, TFs link 
cellular signalling pathways to gene expression programs which in turn 
regulate specific cellular actions (e.g., differentiation, apoptosis) [5]. 
Hence, gene regulation is fundamental for the plethora of cell types in 
complex organisms, and regulatory alterations are a common denomi-
nator for various diseases [6]. 

Several high-throughput sequencing methods have been developed 
to interrogate the different layers of transcriptional regulation including 
gene expression (e.g., RNA-seq) and regulatory elements (e.g., Assay for 
Transposase-Accessible Chromatin using sequencing (ATAC-seq) or 
chromatin immunoprecipitation followed by sequencing (ChIP-seq)) 
[1]. Genome-wide mapping of the acetylation of lysin 27 in the H3 
histone (H3K27ac) is commonly used to identify active regulatory ele-
ments, such as enhancers and promoters [7]. Moreover, wide-spread 
enrichments of H3K27ac along large consecutive genomic locations 
have been used to define super-enhancers (SEs), which are postulated to 

be important regulators of cell identity genes [8]. However, it remains 
controversial if SE are different from other regulatory elements such as 
enhancer clusters or holo-enhancers [9,10]. 

Many studies have used H3K27ac to investigate differences in reg-
ulatory element activity between experimental conditions (e.g., healthy 
vs disease phenotype or control vs compound treatment) [11–15]. A 
common downstream analysis based on differential regulatory elements 
is the identification of TFs which bind to these elements and therefore 
might play an important role in the observed phenotypes. Usually, the 
top-raking TFs in such analyses are used to formulate hypotheses that 
are further validated experimentally (e.g., by RNAi knockdown, 
knockout, compound modulation). 

To this end, computational tools have been developed to perform TF 
prioritization based on different assumptions and implementations 
[16–24]. Among these, we could broadly identify two types, depending 
on their underlying reference: 1) tools leveraging DNA sequence infor-
mation using position weight matrices (PWMs) to predict TF binding 
(PWM based tools), and 2) sequence-independent tools using previously 
identified TF binding sites in the genome (ChIP-seq peak based tools). 
Independently of their reference, both types of tools are prioritizing TFs 
based on statistical methods such as Fisher’s exact test, rank based 
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enrichment, and LASSO regression, among others [16–24]. 
Although these tools play an important role for hypothesis genera-

tion in the scientific community, to our knowledge they have not been 
benchmarked for their ability to prioritize TFs. 

In this study, we set out to identify the TF prioritization tools that 
yield the most accurate results, thus helping to formulate hypotheses for 
experimental validation with a higher probability of success. For this 
purpose, we are introducing a benchmarking framework based on the 
combination of 84 published H3K27ac ChIP-seq datasets with nine 
different TF prioritization tools. All selected H3K27ac ChIP-seq datasets 
included at least one TF perturbation (e.g., overexpression (OE), 
knockdown (KD)) providing us with a ground truth for each dataset (TF 
label). We ran each tool on all selected datasets, converted the tool 
outputs into TF priority rankings, and examined the tool performance 
using these TF labels against eight performance metrics. Finally, we 
investigated the importance of experimental variables on tool perfor-
mance using random forest classifiers to model the tool results. 

In summary, we present a benchmark study of TF prioritization tools 
based on real world datasets and give recommendations about tool se-
lection highlighting potential improvements for new ones. 

2. Results 

2.1. A benchmarking framework to access the performance of TF 
prioritization tools 

We designed a benchmarking framework for TF prioritization tools 
based on 84 publicly available H3K27ac ChIP-seq experiments from 53 
different studies (Fig. 1 and Table S1). 

These datasets were selected based on the following criteria: 1) the 
raw data were available in the Gene Expression Omnibus (GEO), 2) the 
H3K27ac ChIP-seq assay was performed in human or mouse samples, 
and 3) the experimental design included at least one TF perturbation 
with a corresponding control condition. 

Using these criteria, we identified 40 mouse and 44 human 

experiments from tissues (n = 17), primary cells (n = 12), or immor-
talized cell lines (n = 55), in which a TF was perturbed either by a 
knockout (KO, n = 33), knockdown (KD, n = 15), overexpression (OE, 
n = 21) or compound treatment (either agonist or antagonist, n = 15; 
Fig. S1A). Together, these experiments covered diverse characteristics 
reflecting standard experimental settings (Fig. S1). For example, the 
underlying ChIP-seq experiments were performed using three common 
commercially available H3K27ac antibodies and were sequenced from 
one to up to five replicates (Fig. S1B, C and Table S1). 

Overall, our perturbed TF datasets cover 18 TF families out of the 66 
defined by Lambert et al. (Fig. S1D) [2]. Notably, the most prominent 
TFs profiled were nuclear receptors (e.g., NR1H2, AR, PPARA), zinc 
finger TFs (e.g., KLF4, BCL6, EGR1) and GATA factors (TRPS1, GATA3, 
GATA4). The most common experimental design was the perturbation of 
nuclear receptors in mouse profiled with the Abcam ab4729 antibody 
(Fig. S1E). 

We performed a literature search to identify candidate tools for TF 
binding prediction using the following inclusion criteria: 1) H3K27ac 
ChIP-seq data could be used as input, 2) the underlying code was 
available and useable either as command line tool, R, or Python pack-
age, 3) the code was published using a free and open-source licence. This 
led us to nine tools which can be categorized by basic principle into 
PWM- (n = 7) and ChIP-seq peak-based (n = 2). Moreover, the tools can 
be classified by the prioritization strategy into enrichment- (n = 5), 
regression- (n = 2), graph- (n = 1) and ensemble-based (n = 1; Fig. S2, 
Table S2) [16–24]. In addition, some tools make specific biological as-
sumptions; for example, CRCmapper is aiming to map core regulatory 
circuits (CRCs), which in turn are based on the existence of 
super-enhancers [8,20]. 

We applied all nine tools (where possible with multiple PWM li-
braries and backgrounds) to perform TF prioritization using the 84 
H3K27ac ChIP-seq datasets as input. This resulted in 13 different TF 
prioritization approaches. 

To compare the performance of the different approaches, we con-
verted the metric of each approach (e.g., p-value, AUC, or z-score) into 

Fig. 1. Schematic of the benchmarking framework to access the performance of TF prioritization tools. 
Data curation step: manual dataset curation of H3K27ac experiments with underlying TF perturbation (e.g., TF knockout or overexpression), yielding 84 ChIP-seq 
datasets, a subset of 53 with matched RNA-seq and 13 with matched ATAC-seq. Tool implementation step: implementation of nine TF prioritization tools and 
inference of TFs on the 84 datasets. 
Ranking step: Resulting outputs are converted to ranked TF lists based on the tool statistic (e.g., p-value, AUC, or Z-score). Rankings are scaled to values between 
0 and 1 (see Methods) to ensure cross tool comparability. Label recovery step: The scaled rankings are searched for the first occurrence of the experiment label (=
perturbed TF). This analysis was performed using either a stringent label definition (exact TF match) or a more relaxed definition (any TF binding a similar motif). 
Benchmark step: These label recovery strategies in combination with the resulting rankings were used to compute eight benchmark metrics for each of the tools. 
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scaled ranks (Fig. 1). For tools outputting multiple ranking metrics, we 
chose the best performing metric for each of the tools (see Methods, 
Fig. S5A, B). 

We examined the two most common parameters, the PWM motif 
library and the set of background sequences used by a tool. These pa-
rameters were only explored when accessible as arguments of the tools. 
For the PWM motif library, we compared the default motif libraries of a 
given tool with a recently published consensus library containing 5594 
PWMs covering 1210 TFs (referred to as “+Lambert”) [2]. For the tools 
that enabled to change the background sets, we reported the tools 
background default and a background based on genomic regions where 
H3K27ac was enriched in the control conditions compared to the per-
turbed condition (referred to as “+bg”, for background). However, we 
made a comparative analysis of different backgrounds and found that 
the influence of the background set is neglectable compared to the TF 
tool, the ranking metrics of the different tools and the TF library 
(Fig. S5). 

Throughout the manuscript, we refer to the perturbed TF in an 
experiment as the experiment label. We considered two criteria to assess 
whether the perturbed TF could be recovered from the data. For the 
stringent criterion, we required the TF name associated with a particular 
PWM/peak set to be the same as the TF perturbed in the experiment. For 
the relaxed criterion, we required the ranked PWMs/peak sets to be 
associated with a TF homologous to the perturbed TF (e.g., GATA1 PWM 
for GATA2 as label). The main rationale for the relaxed criterion was to 
allow for a fair comparison of approaches using different PWM/ChIP-seq 
peak collections and to address PWM redundancy between homologous 
TFs. The recovered TF labels in combination with the scaled rankings 

were used to compute eight different metrics (Fig. 1, Methods, and next 
Results section). 

In summary, we assembled a diverse set of TF prioritization tools and 
combined with a representative set of TF perturbation H3K27ac ChIP- 
seq experiments into a benchmarking framework to examine their per-
formance on real world experimental data. 

2.2. Benchmark comparison of TF prioritization tools based on recovering 
perturbed TFs 

To exclude the possibility of systematic bias introduced by the 
datasets, we investigated the number of tools that returned the per-
turbed TF in the results. For clarity, we named a label recovered if the 
perturbed TF is shown at all in the output of a tool. We observed that for 
all 84 datasets, at least two tools returned the expected TF label 
(Fig. S3A, B). For 72 of them, the TF label ranked among the top 30 for at 
least one tool using the relaxed label recovery criterion (Fig. S3B). 

Next, we benchmarked the TF prioritization tools using eight 
different metrics (see Methods). The first metric we computed for each 
tool was the number of datasets processed without errors and the 
number of TF labels recovered using both the stringent and relaxed 
criteria. Only four of the TF prioritization approaches did not complete 
for all 84 experiments using default parameters (Fig. 2A, B, white bars). 
TFEA, GimmeMotifs, HOMER + Lambert + bg and HOMER + bg failed 
to run for 26% (22), 21% (18), 7% (6) and 1% (1) of the experiments, 
respectively. Frontrunners using this metric were RcisTarget with and 
without background, which recovered 82 labels, and HOMER 
+ Lambert, MEIRLOP and monaLisa with 81 labels recovered (Fig. 2B). 

Fig. 2. Summary of performance metrics used to evaluate TF prioritization tools. (A) Number of recovered perturbed TFs among the top 5 (yellow), 10 (green), 30 
(red) and all ranks (blue) using the stringent label definition. Grey indicates number of successfully processed datasets, but none of the perturbed TF was recovered. 
White illustrates number of failed datasets. TF prioritization strategies were sorted according to the number of recovered TFs among the top 30. (B) Same as (A) using 
the relaxed label definition for the recovery of perturbed TFs. (C) Summary of the area under curve (AUC) for precision-recall (PR) curve, receiver operating 
characteristics (ROC) curve and cumulative rank distribution. (D) Same as (C) but using the relaxed label definition. 
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The tools with the least recovered labels were CRCmapper (n = 54) and 
LOLA (n = 49). The stringent label recovery strategy gave a similar 
ranking on performance with fewer labels recovered overall (Fig. 2A, 
median number of TFs recovered, stringent n = 73 and relaxed n = 75). 
Only RcisTarget + bg (n = 82) performed the same as in the relaxed 
strategy. The second-best approaches were HOMER + Lambert (n = 80) 
and monaLisa (n = 80), both recovering one fewer TF label than using 
the relaxed strategy. The tools with the lowest recovery were again 
CRCmapper and LOLA which only reported 37 and 42 labels in their 
results, respectively. Overall, none of the tools recovered all 84 TF labels 
and each label was recovered by at least two tools, suggesting that the 
label recovery failures were not driven by specific datasets but rather 
were tool-specific (Fig. 2A, B and Fig. S3A, B). 

The second metric we considered was the number of labels recovered 
as one of the top 5, 10, or 30 TFs reported in the results (Fig. 2A, B). The 
rationale behind this metric was based on a plausible real-world sce-
nario that top TFs would often be selected for follow-up experiments. 
This revealed that RcisTarget, RcisTarget + bg, monaLisa and MEIRLOP 
were performing best independently of the rank thresholds and label 
recovery criteria (Fig. 2A, B). In contrast, the bottom ranking tools 
included GimmeMotifs (stringent), BART (relaxed), CRCmapper and 
TFEA (both). Nevertheless, even the best performing tools predicted TF 
labels among the top 30 ranks for only about half of all datasets (e.g., 
RcisTarget + bg n = 43 for relaxed, n = 38 for stringent and monaLisa 
n = 43 for relaxed and n = 30 for stringent). 

We evaluated the tools using the area under the curve (AUC) for the 
precision-recall curve (PR), receiver operator characteristic curve 
(ROC), and the cumulative distribution of label ranks. Using these 
metrics, the best performing tools were again RcisTarget + /- bg, 
monaLisa and MEIRLOP, independently of the label recovery criteria 
(Fig. 2C, D and Fig. S4B, C). In the stringent case, the highest AUC of the 
PR or ROC curves was achieved by RcisTarget + bg (0.90/0.87) and for 
relaxed by MEIRLOP (0.94/0.92). In contrast, the lowest PR/ROC AUC 
had BART (0.64/0.51) for stringent label recovery and LOLA (0.70/ 
0.52) for relaxed label recovery. Moreover, the relaxed label recovery 
criteria led to a slight increase in both metrics for most tools (Fig. S4D, 
E). CRCmapper and LOLA were the exceptions, showing a decrease in 
both PR/ROC AUCs. 

Finally, the AUC of the cumulative distribution of label ranks 
confirmed the frontrunner tools mentioned above (Fig. 2C, D and 
Fig. S4A). CRCmapper was at the bottom of the ranking (0.05/0.14) and 
BART second last in the stringent evaluation (0.13), while HOMER + bg 
was second last in the relaxed evaluation (0.27). 

In conclusion, the tested tools were able to recover known TF labels 
with variable accuracies, and monaLisa, RcisTarget and MEIRLOP per-
formed best across several of our benchmark metrics. 

2.3. Effects of parameter tweaking on the performance of TF prioritization 
tools 

We next evaluated how modifying the default parameters influenced 
the performance of the TF prioritization tools. To maintain the number 
of computational jobs tractable, we selected two or three parameters of 
each tool based on the emphasis that these parameters were given in the 
documentation of the tools (see Supplementary Material). We varied the 
parameters to different degrees, resulting in more than 18500 compu-
tational jobs. For most tools, changing the default parameters had little 
effect on their overall performance (Fig. S7). For MEIRLOP, however, we 
observed a drop in performance when varying the default parameters. 
Importantly, the ranking of TF tools when ran with the default param-
eters was almost identical to the ranking of TF tools when selecting the 
runs with the best performing parameters values. Based on these data, 
we conclude that compared to the choice of the TF tool, varying pa-
rameters of an individual tool has a minimal effect in their performance. 

2.4. Performance of TF prioritization tools using ATAC-seq data 

In addition to H3K27ac maps, 11 of the 84 curated datasets in this 
study included ATAC-seq maps for 14 TF perturbations and their cor-
responding controls (Table S1). Using these data, we evaluated how the 
TF prioritization tool rankings differed when using ATAC-seq instead of 
H3K27ac maps as inputs. When using ATAC-seq data, the best 3 per-
forming tools to recover the labels among the top 30 hits were monaLisa, 
MEIRLOP and HOMER, recovering 9, 8, and 8 TF labels, respectively 
(Fig. S6B). 

For most tools, we found that TF labels that were recovered among 
the top hits using H3K27ac data also ranked among the top hits using the 
matching ATAC-seq data. For example, out of the 14 TF experiments 
with both H3K27ac and ATAC-seq, 7 TF labels were recovered by 
monaLisa among the top 30 hits using H3K27ac data (Fig. S6B, D). Of 
these, 6 TF labels were also recovered among the top 30 hits using 
ATAC-seq data. This statistic varied slightly among the different tools (7 
out of 7 for BART, 5 out of 5 for HOMER, 5 out of 5 for GimmeMotifs, 
and 5 out of 6 for LOLA). For BART, the rankings based on ATAC-seq 
data were identical to the rankings of H3K27ac data. This similarity in 
the rankings is explained by how BART maps input data into their 
resource of cis-regulatory elements. 

Overall, the best performing tools at identifying TF master regulators 
from H3K27ac data were also the best tools for ATAC-seq data. 

2.5. Influence of experimental and dataset features on tool performance 

Having established the performance of each tool, we next asked what 
features could best explain the observed tool performance. To address 
this question, 16 features were chosen based on the experimental design 
(e.g., H3K27ac ChIP antibody, perturbation type, etc.), the quality of 
ChIP-seq (e.g., sequencing depth, fraction of reads in peaks (FRIP), etc.), 
the effect of the TF perturbation on gene expression as measured by 
RNA-seq (n = 53; e.g., expression of the perturbed TF, etc.; see Methods) 
and the information content (IC) of the PWM. We trained a random 
forest classifier using these features to predict the combined stringent 
and relaxed TF label ranks. Resulting models were able to fit these ranks 
with a median Pearson correlation coefficient (PCC) between 0.78 
(LOLA) and 0.38 (CRCmapper, Fig. 3A). 

Next, we computed the scaled importance for each feature to gain 
insights into their influence on resulting rankings (see Methods). This 
revealed that the most important features were the TF family, the in-
formation content of the motif, the number of uniquely mapped reads, 
FRIP and the type of TF perturbation (Fig. 3A). In contrast, the least 
important features were the association with a super-enhancer (is SE), 
RNA-seq log2(FC) of the perturbed TF, biological sample type (tissue vs. 
cell line) and PCR bottle neck coefficient (PBC). 

However, some tools showed deviations from these general patterns. 
For example, the most important feature for MEIRLOP was the TF 
perturbation type (Fig. 3A). Other outliers in the feature importance 
ranking included CRCmapper and TFEA with the number of replicates 
and BART with the species (reference genome). 

Next, we focused on the two most important experimental features 
and examined whether tools perform differently for each feature mo-
dality by looking again at the TF label recovery among the top 30 ranks. 
Firstly, the overall performance differed across TF families with bZIP 
and GATA factors being most frequently recovered (e.g., BART bZIP=6/ 
6, RcisTarget bZIP n = 5/6 and RcisTarget + bg GATA n = 6/7, Fig. 3B). 
In contrast, TFs belonging to the C2H2 ZF and bHLH families were 
recovered least frequently (e.g., MEIRLOP C2H2 ZF n = 5/14 and 
CRCmapper bHLH n = 2/6). RcisTarget showed the best performance 
for four out of seven categories across TF families (Fig. 3B). Secondly, 
the other most important experiment feature was the perturbation type. 
Overall, we observed a maximum top 30 recovery of 66.7% (Agonist 
TFs: BART) and a minimum of 0% (Antagonist TFs: CRCmapper, Gim-
meMotifs, TFEA; Fig. 3C). When considering the median performance, 
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the lowest performance was associated with TF KO experiments (21%, 
7/33). RcisTarget performed best in 3 out of the 5 perturbation type 
categories. Only BART outperformed RcisTarget for agonist perturba-
tions and HOMER for KO (Agonist: 66.7% BART compared with 55.6% 
RcisTarget; KO: 36.4% HOMER compared with 30.3% RcisTarget + bg). 

In summary, TF rankings of the benchmarked tools overall were 
mostly influenced by TF family and perturbation type, with a tendency 
of more specialized tools being also influenced by their specific as-
sumptions (e.g., CRCmapper, TFEA). 

3. Discussion 

In this benchmark study, we examined the performance of nine TF 
prioritization tools in combination with the two most common param-
eters (PWM motif library and the set of background sequences used), 
resulting in 13 approaches to rank TFs [16–24]. The ground truth for this 
was defined using a collection of published H3K27ac ChIP-seq experi-
ments which included a TF perturbation in their design (OE, KO, etc.). 
The major task for all approaches was to recover these known TF labels. 

Fig. 4 summarises our results and illustrates the performance of each 

Fig. 3. Influence of experiment features on tool performance. (A) Scaled feature importance for 15 features used to regress the TF rankings using random forest 
models (see Methods). Colour scale encodes the different feature types including experiment (red), ChIP-seq QC (blue) and RNA-seq (green) features. Outlier tools 
were annotated. Abbreviations: FRIP = Fractions of reads in peaks, Motif IC = Motif information content, NSC = Normalized Strand Cross-correlation coefficient, 
RSC = Relative Strand Cross-correlation coefficient, PBC = PCR bottleneck coefficient, Is SE = Is super-Enhancer. (B) Tool performance as proportion recovered TF 
labels in top 30 stratified by TF families. Selected tools were highlighted. TF families with less than 5 datasets were summarised as “Other”. (C) Same as in (B) but 
datasets were stratified by perturbation type. 
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tool encoded into three groups (poor, intermediate and good) across all 
considered metrics (see Methods). In our benchmark, we use the default 
parameters recommended by the tool authors, which were likely 
selected based on a parameter optimization process during their devel-
opment. As such, our study also evaluates how generalizable these pa-
rameters are across real-world datasets. Thus, a method that performs 
well across datasets without fine-tuning each parameter is ranked better 
than a tool that would need dataset-specific fine-tuning of parameters. 
Nevertheless, our analyses indicate that the effects of tweaking param-
eters of a tool on its performance is minimal compared to the choice of 
TF tool. 

Overall, most tools perform best for the metrics ‘number of suc-
cessfully processed datasets’ and ‘labels recovered’, suggesting that all 
tools can process the input data. However, tools showed marked per-
formance differences when considering the other metrics. Based on our 
performance metrics, we found that RcisTarget and monaLisa perform 
best, regardless of the TF label recovery criteria used. GimmeMotifs and 
TFEA failed to complete for around 20% of the test datasets, but their 
label recovery was relatively good when these tools ran thought suc-
cessfully. Our analysis thus indicates that these tools could substantially 
boost their performance by increasing the robustness of their code 
implementation. 

We found that all TF prioritization approaches perform better using 
the relaxed label recovery criterion (see Results). Moreover, differences 
between the stringent and relaxed label recovery criteria were only 
observable for tools in the bottom half of the final rankings. Top ranking 
approaches like RcisTarget, MEIRLOP and monaLisa already performed 
well using the more stringent criteria. In contrast, approaches in the 
bottom half profited from the relaxed criterion due to the circumstance 
that they ranked a homologous TF even better than the exact TF label. 

Furthermore, we investigated the influence of pre-defined genomic 
background sequences (‘+bg’) and/or the use of a more comprehensive 
consensus motif library (Lambert et al.) if tools were enabling the user to 
specify these parameters [2]. This revealed that for example RcisTarget 
profited from specifying a custom background, but HOMER worked 
better using its default background computation. In contrast, HOMER 
performed better using the Lambert et al. motif library instead of the 
default one. Although the choice of background seemed to partially 
influence the performance of the tools, this was neglectable compared to 
the choice of TF ranking tool or other parameters such as the motif 

library. 
The bottom three tools were TFEA, CRCmapper and BART, per-

forming either ‘poor’ or ‘intermediate’ across most metrics. The poor 
performance of TF ChIP-seq library-based approaches such as BART 
might be attributed to a lower complexity of their underlying databases 
compared with PWM-based tools. Since the enrichment approaches of 
BART and RcisTarget are quite similar, one could speculate that the 
incorporation of large-scale TF datasets such as REMAP 2022 or UNI-
BIND could greatly enhance the performance of such tools [25,26]. In 
contrast, the poor performance of CRCmapper could be explained by the 
specific assumptions made by the tool: CRC is optimized for recovering 
TFs in SEs, and thus expects that TFs of interest are associated with a SE, 
which might not broadly apply across multiple experiments and datasets 
[20]. Overall, we observed for 25 out of 84 H3K27ac datasets an asso-
ciation of the perturbed TF to a SE. Therefore, CRCmapper’s very spe-
cific assumptions led to an overall poorer performance in our 
benchmark, which focused on a more general task. 

We found that the families of the TF substantially influence the re-
covery of the TFs from the tools. This observation is in line with previous 
reports of varying performance of PWMs to predict TF binding 
depending on their TF family affiliation (e.g., C2H2 ZFs and bHLH TFs) 
[27]. The tools benchmarked in this manuscript depend on PWMs, and 
thus their performance could be compromised when PWMs are not 
sufficient to accurately predict TF binding to DNA. As an alternative to 
PWM-based methods, deep learning approaches have recently been 
developed to predict TF binding. For example, DeepBind and BindSpace 
are convolutional neural network models developed to predict tran-
scription factor binding [28,29]. Another recent development is the 
Enformer model, that was able to predict dozens of chromatin and gene 
expression tracks uniquely from DNA sequence [30]. A major advantage 
of these models is their capacity to learn not only motifs, but also 
sequence features such as DNA sequence composition and complex po-
sitional configurations, such as periodicity of TF motifs or distance 
requirement between TF motifs. Our benchmark suggests that tools to 
prioritize TFs would benefit from incorporating deep leaning-centric 
predictions of TF binding (for an in-depth discussion of TF binding 
prediction models see [31]). 

Although we compiled a large H3K27ac dataset for our benchmark, 
this study has some limitations. First, we benchmarked these tools on 
H3K27ac ChIP-seq data, assuming that the TF perturbation will lead to 

Fig. 4. TF prioritization tool benchmark summary. (A) Dot plot heatmap summarising the benchmark results for the stringent label recovery strategy. Tool per-
formance for each single metric was encoded according to the respective rank into one of three categories including poor (blue), intermediate (yellow) and good 
(red). Tools were ordered according to their overall performance across all eight metrics. (B) Same as (A) but for the relaxed label recovery strategy. 
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H3K27ac changes. Future work is needed to evaluate their performance 
using other high throughput sequencing technologies, such as H3K4me3 
(Promoter), H3K4me1 (Enhancer) ChIP-seq, RNA-seq and a more 
comprehensive ATAC-seq (open chromatin) dataset collection [1,32]. 
Second, this benchmark is focused on the performance of approaches to 
recover a perturbed TF, mimicking a particular real-world scenario 
common, for example, in drug discovery. As such, we do not assess the 
performance of the tools in other contexts (e.g., simulation approaches, 
other definitions of regulatory elements such as open chromatin, or 
other histone marks). 

4. Conclusion 

In conclusion, our comprehensive benchmark provides recommen-
dations for the scientific community on which TF prioritization tool 
perform best (i.e., RcisTarget, MEIRLOP and monaLisa) for perturbed TF 
recovery. We believe this will help improve hypothesis generation from 
H3K27ac ChIP-seq data, one of the most widely profiled histone marks. 
In addition, our study reveals shortcomings of current tools, which we 
are hoping will influence further improvement of existing tools as well 
as the development of novel tools. 

5. Methods 

5.1. ChIP-seq pre-processing 

Publicly available H3K27ac ChIP-seq datasets with TF perturbations 
were manually curated and associated FASTQ files were downloaded 
using SRAToolkit (V2.11.2; https://github.com/ncbi/sra-tools). Pre- 
processing of each experiment was performed using the ENCODE 
ChIP-seq pipeline (V1.9.0) [33]. Briefly, reads were aligned to the 
respective reference genome (hg38 or mm10) using Bowtie2 (V2.3.4.3) 
and subsequently filtered for unmapped reads, not primary alignments 
as well as duplicates using SAMtools (V1.12)/Picard (V2.9.2) [34–36]. 
Peak calling was performed using MACS2 (V2.2.5) with following pa-
rameters: –cap-num-peak 500000 –pval-thresh 0.01 [37]. Consensus 
peak sets per condition were computed by performing the overlap 
reproducibility analysis as implemented in the ENCODE pipeline. In 
addition, peaks were filtered for overlap with blacklist regions. 

5.2. ATAC-seq pre-processing 

We scanned the publicly available ChIP-seq data (see above) for 
matched ATAC-seq datasets with TF perturbations. The associated 
FASTQ files were downloaded using SRAToolkit (V2.11.2; https://gith 
ub.com/ncbi/sra-tools). Pre-processing of each experiment was per-
formed using the ENCODE ATAC-seq pipeline (V2.0.3) [33]. Briefly, 
reads were aligned to the respective reference genome (hg38 or mm10) 
using Bowtie2 (V2.3.4.3) and subsequently filtered for unmapped reads, 
not primary alignments as well as duplicates using SAMtools 
(V1.12)/Picard (V2.9.2) [34–36]. Peak calling was performed using 
MACS2 (V2.2.5) with following parameters: –cap-num-peak 300000 
–pval-thresh 0.01 [37]. Consensus peak sets per condition were 
computed by performing the overlap reproducibility analysis as imple-
mented in the ENCODE pipeline. In addition, peaks were filtered for 
overlap with blacklist regions. 

5.3. Differential peak analysis 

For the differential peak calling, peaks from both conditions (control 
and TF perturbation) were merged. H3K27ac as well as open chromatin 
(ATAC-seq) enrichment was quantified for these merged peaks, by 
counting the reads using the featureCount function from the Rsubread 
package (V2.2.6) with parameters countMultiMappingReads = False 
and allowMultiOverlap = True [38]. 

For experiments with more than one replicate per condition, 

differential peak analysis was performed using DESeq2 (V1.30.1) with 
default settings [39]. All peaks were then sorted by -log10(p-value) 
* log2(fold change) (log2(FC)) and we took the top 1000 peaks as 
foreground and the bottom 1000 peaks as background set. 

For experiments with only one replicate per condition, we normal-
ized the counts using DESeq2 estimateSizeFactors function and calcu-
lated the log2(FC). Peaks were sorted according to their log2(FC). The 
top 1000 peaks were defined as foreground and the bottom 1000 as 
background sets. 

Resulting foreground were used as input for TF prioritization tools 
expecting peaks as input (e.g., HOMER, RcisTarget, etc.). In case of the 
“+ bg” strategy, we provided the background peak sets as custom 
background. 

5.4. RNA-seq pre-processing 

RNA-seq data associated with the H3K27ac ChIP-seq was down-
loaded using SRAToolkit. Expression levels for the respective gene 
annotation (Ensembl GRCm38.98 or GRCh38.98) was performed using 
the PISCES pipeline (V0.1.3.1) with default parameters [40,41]. 

5.5. Differential gene expression analysis 

The function getBM from the package biomaRt (V2.46.3) was used to 
assign the external_gene_name to the ensembl_gene_id from Ensembl 
[41]. We then used DESeq2 to normalize the raw gene counts and fit 
them to a negative binomial distribution. Then a generalized linear 
model and Wald test was used to compute differential expression be-
tween the TF perturbation condition compared with the control [39]. 

5.6. TF prioritization tool settings and parametrizations 

A comprehensive tool overview including versions can be found in 
Supplementary Table 2.  

1) BART 
For this benchmark, BART was run with the positional parameter 

‘region’ using the differentially expressed genomic region sets 
described in differential peak analysis as input [17]. The output of 
BART was ranked according to the p-value column.  

2) CRCmapper 
For this benchmark, we computed potential SEs using ROSE2 

separately for condition and control. We then ran CRCmapper on 
both sets of.bam files, identified peaks (see ChIP-seq pre-processing), 
activity tables, and the default parameters of CRCmapper [20]. To 
infer differentially expressed TF’s, we computed the normalized 
output degrees individually from condition and control CRCmapper 
outputs as a summary network statistic. Finally, the differential 
network statistics were calculated as the difference between condi-
tion and control betweenness and were subsequently used for 
ranking.  

3) GimmeMotifs 
GimmeMotifs was run using its gimme maelstrom command and 

its second input option which contains the merged peaks from con-
trol and condition experiment identified in ChIP-seq pre-processing 
step and their log-transformed read counts [24]. The reference li-
brary used is the Lambert et al. motif library. We also allowed the tool 
to return redundant motifs, to report the scores of all motifs and use 
12 threads by using the parameters: –no-filter, –filter_cutoff 0 and –N 
12. All other parameters were left at their default values. The output 
of GimmeMotifs used for ranking was z-scores.  

4) HOMER 
We ran HOMER four times for our benchmark: Once using HO-

MER’s default motif library and using no background sequences but 
instead letting HOMER select them from the input, once using HO-
MER’s default motif library and using background sequences as 
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computed in differential peak analysis (HOMER + bg), once using 
the Lambert et al. motif library as a reference library and no back-
ground sequences (HOMER + Lambert) and finally using the 
Lambert et al. motif library as a reference library and using the pre- 
computed background sequences (HOMER + Lambert + bg) [2,16]. 
As input sequences we always used the differentially expressed peaks 
as computed in differential peak analysis. HOMER’s script findMo-
tifsGenome.pl was ran with the above descript parameters and in-
puts, as well as the parameter –nomotif to indicate that we are not 
interested in de novo motif enrichment. All other parameters were 
left to their default values. HOMER’s output used for ranking were 
the p-values.  

5) LOLA 
For our benchmark, we ran LOLA with the query set being the 

differentially expressed peaks as discussed in differential peak 
analysis [18]. The universe or background peaks used are the com-
bined peaks from the condition and control experiment computed as 
in ChIP-seq pre-processing. LOLA was then run with its default pa-
rameters and using its default reference library of public datasets. For 
ranking we used LOLA’s mean rank based on p-value, log odds ratio 
and number of overlapping regions.  

6) MEIRLOP 
In our benchmark, we used fasta files containing the merged peaks 

from control and condition experiment identified in ChIP-seq pre- 
processing step and their associated log2(FC) (see differential peak 
analysis) as scores for the input of MEIRLOP [21]. The Lambert et al. 
motif library was used as the reference library and the –length 
parameter was set to incorporate sequence length as a covariate since 
our input sequences were not of the same length as is preferred by 
MEIRLOP. All other parameters were left to their default values. We 
ranked the output of MEIRLOP according to the output’s adjusted 
p-value.  

7) monaLisa 
To run monaLisa we used its randomized lasso stability selection 

on our precomputed differentially expressed regions (see differential 
peak analysis) with the response vector corresponding to their log2 
(FC) [22]. As predictors the Lambert et al. motif library was used. All 
other parameters were kept at the same values as indicated in their 
vignette. MonaLisa’s output was ranked according to the normalized 
area under the selection curve.  

8) RcisTarget 
We ran RcisTarget twice: Once using the differentially expressed 

peak regions (see differential peak analysis) with (RcisTarget + bg) 
and once without background regions (RcisTarget) [19]. The back-
ground regions are the merged peaks from control and condition 
experiment identified in the ChIP-seq pre-processing step. We set the 
NES threshold parameter to 0, such that all motifs are returned even 
if the predicted NES score is very low. All other parameters were set 
as suggested by the vignette on ‘RcisTarget - on regions’. The output 
of RcisTarget was ranked according to the NES score.  

9) TFEA 
To run TFEA, we used the BAM and BED files of the control and 

condition experiments as computed in ChIP-seq pre-processing and 
the Lambert et al. [2,23]. Motif library. TFEA was then ran in parallel 
with the parameter –cpus 6 and all other parameters set to the 
default values. TFEA’s output was ranked according to the Bonfer-
roni and GC corrected p-values. 

5.7. Performance benchmark 

Depending on the approach, the outputs contain either a list of TF or 
motifs, with associated scores attached. To account for different types of 
scores reported by the approaches (e.g., p-value, z-score, AUC, …), we 
ranked the entries in the outputs according to their score, with lower 
ranks associated with more important entries. We then compared the 
ranks of labels scaled between [0,1]. 

Two label identification strategies were employed to account for the 
advantage of approaches using reference libraries which allow motifs to 
be associated with multiple TFs (Fig. 2A). The first strategy termed 
‘stringent’, forces a one-to-one mapping between motifs and TFs in all 
approaches. The second strategy called ‘relaxed’ does the exact opposite 
by creating a mapping between each TF and TFs it is sharing a motif with 
within the Lambert et al. motif library. The rank of the label is then 
computed by using the best rank between the mapped TF of the label. 

We adapted part of our benchmark metrics from the ChEA3 paper 
published by Keenan et al. in 2019 [42]. Accordingly, we calculated a 
Receiver Operator Characteristic (ROC) and Precision Recall (PR) curve 
by bootstrapping the down sampled negative class from the rankings as 
was suggested by Keenan et al. By doing this we account for the fact that 
our positive class consisting of our labels is significantly smaller than our 
negative class comprised of all other TFs. For both, the ROC and PR 
curve, we also computed the Area Under the Curves (AUC). 

The second metric we implemented from the Keenan et al. looks at 
the deviation of the cumulative distribution of perturbed TF ranks D(r) 
from a uniform distribution using the Anderson-Darling test. We would 
expect a significant p-value if perturbed TFs would display preferentially 
low or high ranks. Additionally, we determined the AUC of D(r)-r since 
many labels with low ranks give rise to a high AUC in this case. 

To put all results together we created a summary of all metric out-
comes. We stratified all outcomes into three groups for better read-
ability. For the number of labels recovered and successfully processed 
datasets the thresholds are determined by dividing all used datasets (84) 
into three equal groups. The same idea was used for the AUC of ROC and 
PR curve, where we grouped the results into three groups between 0.5 
and 1 and for the cumulative rank distribution AUC between 0 and 0.5. 
For the number of labels in Top 5–30, we used the maximal respective 
value to create the three groups. 

5.8. Ranking metric comparison 

We compared the choice of ranking metric for tools outputting more 
than two non-correlated metrics which could be used for ranking the TF 
motifs. Following tools fulfilled these criteria: BART, CRCmapper, LOLA, 
MEIRLOP and TFEA (Table S2). The H3K27ac analysis using these tools 
was performed as described above. Resulting outputs were used to 
create a TF ranking for each metric and count the number of recovered 
TF labels in the top 30 (Fig. S5A, B). The metric maximizing the number 
of recovered TFs among the top 30 was used for the benchmark com-
parison of tools (see Table S2 for list of the best metric per tool). 

5.9. Background comparison 

To compare the influence of background choice on the TF ranking, 
we ran HOMER with four different background sets with either the 
default HOMER motif library or Lambert et al. The four different back-
ground sets were constructed as following:  

• Default – random selection of GC% content matched regions from the 
genome.  

• Diff – Top 1000 most differential peaks for the control condition (see 
section differential peak analysis)  

• Neutral – 1000 non-differential peaks from the comparison TF 
perturbation vs control.  

• Rmd – random draw of 1000 GC% content matched non-overlapping 
regions from the genome. 

HOMER and downstream analysis were performed as described 
above. 

5.10. Parameter tweaking 

We conducted a parameter tweaking analysis to ensure the 
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robustness of the final tool ranking. We selected up to three parameters 
per tool from a set of available parameters based on their potential 
impact on the results (see Supplementary Text for the full list). We 
explored up to five different values per parameter in combination with 
each other. 

We performed TF prioritization for each tool with the added pa-
rameters, as described in each tool section. The downstream benchmark 
analysis was conducted as described above. 

5.11. Random forest modelling and feature importance 

To study the influence of experimental features and data character-
istics on TF rankings, we looked at three different types of features: 
ChIP-seq quality measures (Normalized Strand Cross-correlation coef-
ficient (NSC), uniquely mapped reads, Relative Strand Cross-correlation 
coefficient (RSC), PBC, Fraction of reads in peaks (FRIP)), experimental 
features (perturbation type, number of replicates, TF family, antibody 
type, reference genome, is super-enhancer, biological sample type, 
number of differential peaks) and RNA- seq features (TF log2(FC), 
number of differential genes). All groups with less than five experiments 
were grouped together into ‘Others’. 

For RNA-seq features, TF log2(FC) were categorized into four groups 
(log2(FC) < = 2, 2 < log2(FC) < = 6, log2(FC) > 6 and missing RNA- 
seq) and the number of differentially expressed genes into five groups 
(# differential genes <= 100, 100 < number of differential genes <=

500, 500 < number of differential genes <= 1000, number of differ-
ential genes > 1000 and missing RNA-seq). 

In addition, we computed the information content (IC) for each TF as 
additional feature. Briefly, the IC per motif was computed using 
ggseqlogo to compute the IC per bp and then average over each position 
[43]. From that we derived an IC per TF by averaging the IC per motif 
over multiple motifs as assigned by Lambert et al. 

We added all missing experiments with rank= 1 to have 84 experi-
ment results for each tool. 

We trained a random forest with 10-fold cross validation predicting 
the rank for the above-described features using the cforest() function 
from the R package party (V1.3) [44]. The conditional feature impor-
tance was calculated using the varimp() function for each fold. We 
scaled resulting feature importance and computed the mean across the 
10 folds. Additionally, we calculated the Pearson’s correlation coeffi-
cient between predicted and true rank in the test sets to assess the fit of 
the random forest for each tool. 

Ethics approval and consent to participate 

Not applicable. 

Consent for publication 

Not applicable. 

Funding 

Not applicable. 

Availability of data and materials 

All ATAC-seq, ChIP-seq and RNA-seq datasets used in this study were 
listed in Supplementary Table S1 including GEO IDs. 

All intermediate results (peak files, tool outputs and processed out-
puts) were made available here https://zenodo.org/records/10990183. 

Code to reproduce our findings can be found here https://github. 
com/Novartis/TF_Prioritization_Benchmark_GB2023. 

CRediT authorship contribution statement 

Sebastian Steinhauser: Conceptualization, Data curation, Investi-
gation, Methodology, Supervision, Writing – original draft, Writing – 
review & editing. Alejandro Reyes: Project administration, Visualiza-
tion, Writing – original draft, Writing – review & editing. Leonor 
Schubert Santana: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Project administration, Software, Visuali-
zation, Writing – original draft. Enrico Ferrero: Funding acquisition, 
Investigation, Writing – original draft, Writing – review & editing. 
Sebastian Hoersch: Funding acquisition, Project administration, 
Writing – original draft, Writing – review & editing. Swann Gaulis: Data 
curation, Funding acquisition, Investigation, Project administration, 
Supervision, Writing – original draft, Writing – review & editing. 
Christian Kolter: Funding acquisition, Investigation, Project adminis-
tration, Writing – original draft, Writing – review & editing. 

Competing interests 

All authors are, or were, employees or affiliates of the Novartis 
Pharma AG. The authors declare that they have no competing interests. 

Acknowledgments 

We would like to thank Dr. Julianne Perner from the Novartis In-
stitutes for Biomedical Research (Basel, Switzerland) for her scientific 
and technical contributions to this project. We would also like to express 
our gratitude to Drs. Mikhail Pachkov and Erik van Nimwegen from the 
Biozentrum of the University of Basel (Switzerland) for fruitful 
discussions. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.csbj.2024.05.016. 

References 

[1] Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to 
genome-wide predictions. Nat Rev Genet [Internet], 15. Nature Publishing Group; 
2014. p. 272–86 (Available from), 〈http://doi.org/10.1038/nrg3682〉. 

[2] Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human 
transcription factors. Cell [Internet], 172. Elsevier; 2018. p. 650–65 (Available 
from), 〈http://linkinghub.elsevier.com/retrieve/pii/S0092867418301065〉. 

[3] Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA 
methylation. Nat Rev Genet [Internet] 2016;17:551–65. cited 2017 Jan 23];, 〈http 
://www.nature.com/doifinder/10.1038/nrg.2016.83〉. 

[4] Reiter F, Wienerroither S, Stark A. Combinatorial function of transcription factors 
and cofactors. Curr Opin Genet Dev [Internet] 2017;43:73–81. cited 2017 Jan 23];, 
〈http://www.ncbi.nlm.nih.gov/pubmed/28110180〉. 

[5] Weidemüller P, Kholmatov M, Petsalaki E, Zaugg JB. Transcription factors: bridge 
between cell signaling and gene regulation. Proteomics [Internet], 21. John Wiley 
& Sons, Ltd; 2021 [cited 2022 Sep 19], 〈https://onlinelibrary.wiley.com/doi/full/ 
10.1002/pmic.202000034〉. 

[6] Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell 
Cell Press 2013;152:1237–51. 

[7] Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. Distinct and 
predictive chromatin signatures of transcriptional promoters and enhancers in the 
human genome. Nat Genet [Internet] 2007;39:311–8. cited 2014 Jul 11];, 〈http:// 
www.ncbi.nlm.nih.gov/pubmed/17277777〉. 

[8] Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, et al. Super- 
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