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In this study, an improved gravity model and social network analysis (SNA) are applied to analysis 
CO2 emissions in China’s power sector, uniquely incorporating electricity and fossil fuel trade 
flows. It further explores the dynamic effect of energy transition on networks using a panel model, 
and clarifies the provincial roles in emission abatement and resource allocation. According to the 
findings, significant regional heterogeneities in CO2 emissions from 2007 to 2022 can be observed. 
Coal-dependent provinces, such as Inner Mongolia and Shanxi, face high emissions and challenging 
transitions, while developed areas such as Beijing and Shanghai have decreased emissions through 
clean energy integration and enhanced power efficiency. Network analysis identifies Beijing 
and Jiangsu as central to resource management, empowered by robust policy and information-
sharing capabilities, while most provinces demonstrate weaker coordination owing to constrained 
intermediary functions. In addition, the study observes that energy transitions increase network 
density (0.3512) and contacts (0.3545) yet decrease efficiency (− 0.1464), suggesting technical and 
coordinative obstacles. An increasing degree of transition strengthens interprovincial CO2 connections, 
establishing provinces experiencing more rapid transitions as critical nodes. Greater closeness 
centrality (0.0186) signifies shorter collaborative pathways, accelerating the transition. These findings 
derive practical guidance for regional power collaborations and sustainable growth, offering novel 
perspectives for a green transition toward carbon neutrality.
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As the world’s leading source of carbon emissions, China confronts significant challenges in curbing emissions 
in the face of global climate change1. The power sector, a primary driver of CO2 emissions, is outstanding 
both for its high emission levels and its complex network2. This sector’s proportion of overall CO2 emissions, 
demonstrated by its crucial function in national abatement strategies, has significantly grown through economic 
expansion3. Moreover, national energy strategies that advance clean energy and optimize the energy mix are 
transforming its emission signature4,5. These strategies affect not only aggregate emissions but also the functions 
and relationships of provinces in the emissions network6. Therefore, analyzing the power sector’s emissions 
network and evaluating the effects of energy transition are fundamental to attaining sustainable development 
objectives.

Recent analyses into CO2 emissions from the power sector have progressed from single-region analyses to 
explore interregional spatial networks, and explained how environmental and economic factors affect regional 
emissions through complex spatial relationships7. For instance, regions with high energy demand frequently 
represent critical points in networks, where their emission control approaches influence adjacent regions 
through ripple effects8. Identifying these critical points is crucial for formulating collaborative regional emission 
reduction strategies9. Studies also demonstrate that economic exchanges and policy alignment between regions 
are indispensable for emissions management, particularly in energy-intensive regions, as localized strategies 
can affect neighboring regions through technological diffusion and economic bonds10. Accordingly, SNA and 
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econometric methods are extensively employed to measure CO2 emission trends, thereby exposing interregional 
carbon interdependencies and spillover channels11.

In spatial econometrics, studies on CO2 emissions often concentrate on explaining the diffusion and 
dependencies between regions. The Spatial Lag Model (SLM) and Spatial Error Model (SEM) are frequently 
employed to model these regional emission relationships. Zhang et al.12, for instance, utilized the SLM to 
demonstrate a significant spatial spillover effect of renewable energy on air pollution reduction. Employing 
the SEM, Vagnini et al.13 determined that policy differences in the European Union significantly affect carbon 
emissions across regions. The Spatial Durbin Model (SDM), an extension of the SLM, incorporates lagged 
variables to study complex inter-regional effects; utilizing this method, Weng et al.14 demonstrated that clean 
energy investments in neighboring countries lead to higher domestic carbon emissions across 72 countries. Liu 
et al.15 determined that new energy use considerably decreases emissions through spatial spillover effects across 
Chinese provinces. While spatial econometric models utilize spatial weight matrices to connect regions, the 
selection of these matrices can affect the robustness of the results. In addition, these models typically prioritize 
attribute data over relational data, which may restrict their capacity to fully represent the spatial relationships in 
carbon emissions16. Therefore, certain researchers have adopted SNA with its multi-level network structures to 
study the spatial dynamics of CO2.

SNA has found extensive application in emissions research, particularly for explaining emission relationships 
and diffusion pathways across geographic regions, national borders, and economic sectors. For instance, Liu et 
al.17 employed SNA to identify the influential roles of primary emitters in international air pollution control 
networks. Similarly, Pan et al.18 demonstrated SNA’s capacity to track policy effects across sectors in China’s 
energy transition, thereby informing policy development and industrial optimization. In the power sector, SNA 
indicates complex inter-regional carbon dependencies. Yang and Su19 have demonstrated that inter-regional 
collaboration significantly improves emission abatement. Geng et al.20 further described the evolving patterns 
of regional collaboration in clean energy development and carbon mitigation. The integration of SNA with 
other quantitative approaches has amplified its contribution to carbon emission studies. Xia et al.21, for instance, 
coupled SNA with the environmentally extended input–output (EEIO) model to chart carbon movements across 
economic sectors, and argued for the critical role of the power sector. Li et al.22 employed SNA and bibliometric 
analysis to connect electricity market volatility with carbon trading behaviors, demonstrating SNA’s ability 
to monitor inter-market connections. These analyses emphasize the utility of SNA in exposing inter-regional 
emission patterns and locating critical junctures, thus facilitating cooperative emission reduction efforts and 
policy improvements23.

The debate surrounding the environmental advantages of energy transition often focuses on energy substitution 
and its consequences for CO2 emissions. A majority of studies indicate that substituting non-fossil energy sources 
for fossil fuels lowers CO2 emissions24. Nevertheless, certain research highlights potential disadvantages: Kinyar 
and Bothongo25 observed that the fluctuating nature of non-fossil energy sources presents challenges to grid 
stability, potentially increasing dependence on fossil fuels. Increasing prices for non-fossil energy may also curb 
consumption, resulting in a “rebound effect” that elevates emissions26. Geographic and regional considerations 
introduce further complexity to this matter. Nan et al.27 indicated that, owing to the pollution haven effect and 
spatial spillover effects driven by regional competition and imitation, policies implemented in isolation often fail 
to significantly decrease local emissions. In China, interprovincial power transfers totaled 1.85 trillion kWh in 
2023, illustrating a significant regional interdependence in power production and consumption. While power 
generation is generally geographically independent, changes in one region’s energy mix can significantly affect 
emissions in adjacent regions28. Wang and Liu29 proposed that a spatial CO2 emission network would more 
effectively represent cross-regional synergistic relationships and transmission effects in energy transitions.

Existing studies display certain limitations. Firstly, while spatial econometric models are frequently employed 
to appraise the spillover effects of CO2 emissions, their capacity to detect cross-regional spatial relationships 
is limited. Secondly, network analysis is primarily utilized in country-specific or global studies, with a narrow 
concentration on industries such as the power sector. Thirdly, notwithstanding the identification of numerous 
factors affecting CO2 emissions, research exploring the effect of energy transition remains limited, especially 
regarding how it restructures CO2 networks. To further contextualize the novelty of our study, we compare it 
with prior research in Table 1, which summarizes key contributions and research gaps in the field.

As Table 1 illustrates, prior research has explored diverse aspects of energy transition, biofuel logistics, AI-
driven energy efficiency, and trade globalization. However, none have fully integrated SNA with an improved 
gravity model to assess the impact of energy transition on CO2 emissions across China’s power sector. Our 
study provides a novel contribution by mapping regional CO2 interdependencies, identifying key provinces 
in the transition, and evaluating the policy-driven impact of trade flows on emission reduction efforts. The 
comprehensive approach offers policymakers a new perspective on how to enhance regional cooperation and 
accelerate the transition toward carbon neutrality. This study addresses key gaps by focusing on two questions: 
What are the defining features of China’s power sector CO2 emission network? How does the energy transition 
affect the network structure and the function of individual provinces? These findings are intended to improve 
the geographic targeting of emissions control and inform interprovincial CO2 reduction policies by assessing the 
relationship between emissions and energy transition.

Contributions
As CO2 emissions in the power sector grow increasingly complex, traditional single-region studies are no longer 
sufficient for understanding interprovincial relationships. This study develops an integrated framework to 
examine China’ power sector emissions from a network perspective, emphasizing interregional CO2 linkages. 
The main contributions are as follows:

(1) Establishing an interprovincial CO2 emission network framework

Scientific Reports |        (2025) 15:18794 2| https://doi.org/10.1038/s41598-025-99021-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Existing research often focuses on individual provinces, overlooking interregional carbon linkages and 
prioritizing “attribute data” over “relational data”. This study combines an improved gravity model with SNA to 
construct a nationwide emission network. This approach quantifies interregional CO2 interactions, offering a 
comprehensive view of the spatial structure and dynamic evolution of emission flows. It addresses the limitations 
of traditional methods in analyzing nonlinear and cross-regional emission relationships.

(2) Incorporating energy trade data to refine CO2 flow calculations
Traditional methods assess emissions based on production locations, ignoring the impact of energy trade. 

This study integrates interprovincial fossil energy and electricity trade data into the gravity model, improving the 
accuracy of CO2 linkage calculations. This refinement better captures interregional carbon exchange mechanisms 
and clarifies the role of key provinces in resource allocation.

(3) Examining the impact of energy transition on the emission network
Unlike previous studies that focus on the overall impact of energy transition on total emissions or explore 

multiple factors affecting the emission network, this study systematically evaluates the independent effect of 
energy transition on the network’s structural characteristics. Using a panel model, it reveals how changes in 
the energy mix directly influence network density and connectivity. The findings highlight the role of energy 
transition in fostering interregional collaboration while identifying potential efficiency challenges.

(4) Providing a policy tool for regional CO2 reduction coordination
By identifying the structural roles of provinces in the emission network, this study offers a scientific 

basis for understanding regional disparities and optimizing CO2 reduction strategies. The results can inform 
interprovincial policy coordination, improve energy cooperation mechanisms, and guide carbon trading 
system design, supporting policymakers in enhancing cross-regional synergies for emission reduction. Figure 1 
illustrates the framework of the paper.

Methods and data
CO2 emission estimation model
The first step of this study is to calculate CO2 emissions from the power sector in each province, providing 
fundamental data for subsequent network construction. Given that thermal power is the primary source of CO2 
emissions, its quantification follows the methodology outlined by the IPCC (2006), with the calculation formula 
as follows40:

	
CO2 =

∑
I=1

CO2I =
∑
I=1

EI × EF I =
∑
I=1

EI × NCV I × CEF I × COF I × 44/12� (1)

In Eq.  (1), CO2 refers to carbon dioxide emissions, while I indicates the energy type. EI represents energy 
consumption, EFI denotes the emission factor, and NCVI corresponds to the average low heat value, CEFI 
signifies the carbon content per unit of heating value, and COFI denotes the carbon oxidation rate. We utilize 
provincial fuel consumption data from the China Energy Statistical Yearbook and match corresponding emission 
factors based on fuel types to ensure data accuracy and consistency. The computed results serve as the core input 
for subsequent network analysis.

Authors Main thrusts Major findings Research gaps

Guchhait et al.30 Smart production with hybrid energy-enabled 
material requirement planning (MRP)

Uses Laplace transformation for MRP optimization, 
integrates renewable energy in logistics

Does not analyze CO2 emissions or 
interregional energy transition effects

Amankou et al.31 Dual-channel retail management with blockchain 
and IoT-based consumer service

Enhances consumer experience and optimizes pricing 
strategies using blockchain

Focuses on retail sector, lacks energy transition 
or emission analysis

Habib et al.32 Possibilistic programming for biodiesel supply 
chains under uncertainty Optimizes cost and carbon emissions in biofuel logistics Does not consider regional energy transition 

dynamics or network effects

Garai and 
Sarkar33

Reverse logistics in closed-loop supply chains for 
biofuels and herbal medicines

Focuses on economic feasibility and sustainability of 
biofuel logistics

Lacks energy transition perspective and 
interregional CO2 impact

Sarkar et al.34 Sustainable biofuel production with optimized 
energy utilization

Proposes flexible production models that reduce energy 
consumption and emissions

Concentrates on biofuels, not broader CO2 
networks or power sector analysis

Zhang et al.35 Energy transition in G7 nations Uses network topology to examine energy spillovers Limited to G7 countries, does not analyze 
China’s interprovincial CO2 emissions

Yang et al.36 Role of AI in low-carbon energy transition AI enhances energy efficiency and transition via spillover 
effects

Does not incorporate trade flows or regional 
emission dependencies

Wang et al.37 Sustainable energy transition for urban 
development

Uses deep learning for renewable energy forecasting in 
cities

Focuses on urban energy transition, lacks 
provincial CO2 emission network analysis

Yang et al.38 China’s energy transition pathways toward 2060 
carbon neutrality

Uses multi-model comparisons to classify transition 
pathways

Lacks a network-based perspective on 
interprovincial energy transitions

Xie et al.39 Impact of globalization and energy consumption 
on China’s CO2 emissions

Examines trade openness and FDI effects on renewable vs. 
non-renewable energy use

Uses wavelet analysis but lacks a focus on 
spatial CO2 emission networks

This study Energy transition’s impact on CO2 emissions and 
regional cooperation in China’s power sector

Applies SNA and an improved gravity model to 
analyze CO2 emissions, incorporating trade flows and 
interprovincial dependencies

Uniquely integrates spatial emission spillovers, 
policy coordination, and trade flow impacts on 
CO2 emissions, filling gaps in prior research

Table 1.  Comparison of present study with some major contributions.
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Social network analysis model
After obtaining provincial CO2 emission data, an interprovincial carbon emission network needs to be built to 
assess how energy transition affects regional emission relationships. This process involves two key steps.

First, the gravity model is used to quantify interprovincial CO2 emission linkages and construct the emission 
network. In this study, dynamic CO2 emissions in the power sector form a network where provinces are nodes, 
and interprovincial emissions linkages are connections. Given the limitations of the Vector Autoregressive 
Model (VAR) in capturing network dynamics due to its sensitivity to lag order, the gravity model is adopted, as it 
facilitates analysis across both temporal and spatial dimensions41. The gravity model, derived from the physical 
law of gravitation, was integrated into economics to analyze trade flows and regional economic interactions. 
Its central principle posits that the interaction intensity between two economies is proportional to their 
economic scale and inversely proportional to their distance. Extensively applied in areas such as international 
trade, population migration, logistics, and environmental economics, the model has also been instrumental in 
studying the transmission of CO2 emissions. Leveraging this framework, the study utilizes the gravity model to 
quantify interprovincial emission linkages, seeking to reveal the spatial flow patterns of CO2 emissions in the 
context of energy transition.

In CO2 emission analysis, the gravity model assumes that the strength of emission linkages between two 
regions depends on their emission levels, economic size, and geographical or economic distance. Regions with 
higher emissions often have stronger energy and industrial ties, resulting in more intense emission interactions. 
Similarly, provinces with larger economies typically exhibit greater energy demand and more developed 
industries, strengthening their emission connections. Geographical distance also plays a key role: emission 
linkages are stronger between nearby provinces and weaken with increasing distance. Additionally, economic 
ties, energy trade, and electricity flows further shape interregional emission linkages.

This study refines the traditional gravity model to improve its applicability in analyzing CO2 emissions 
within the power sector. First, based on relevant research, population and GDP are incorporated as “mass” 
factors to more accurately assess the determinants of interprovincial emission linkages42,43. Compared to the 
conventional approach, which solely considers CO2 emissions as the mass variable, this enhancement provides 
a more comprehensive reflection of the role of regional economic scale in emission flows. Second, variables for 
electricity trade and fossil energy trade are introduced to better characterize the interregional mobility of CO2 
emissions. Electricity trade reflects the imbalance in power supply and demand across provinces and, to some 
extent, determines the inter-provincial transfer of CO2 emissions. Fossil energy trade captures the geographical 
distribution of energy production and consumption, directly influencing the spatial characteristics of emission 
linkages. These refinements are theoretically grounded in the acknowledgment of the impact of interprovincial 
energy flows on CO2 emission associations, thereby enhancing the model’s explanatory power44–46. Furthermore, 

Fig. 1.  Research framework.
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to accurately capture the spatial structure of the gravity model, the denominator component is optimized by 
refining the calculation of interprovincial distance. Specifically, the traditional Euclidean distance is replaced 
with a “geographical distance/economic disparity” measure, which better captures the economic drivers of 
interprovincial energy dependence47. The modified gravity model is as follows:

	

xij = Ci

(Ci + Cj) ×
5
√

Pi × Ci × GDPi × T C
i × T E

i × 5
√

Pj × Cj × GDPj × T C
j × T E

j(
Dsij

Gei−Gej

)2 � (2)

xij  represents the connection between carbon emissions of provinces i and j in the power sector. P denotes 
population, GDP represents regional gross domestic product, and C signifies total CO2 emissions, TC and TE 
denote fossil energy and electricity trade volumes, respectively. Net trade values distinguish imports and exports, 
using absolute values in calculations. Ds measures the distance between i and j, and Ge is per capita GDP. Using 
Eq. (2), we obtain a 30 × 30 interprovincial gravity matrix and calculate the average for each row. The enhanced 
gravity model incorporates not only traditional factors like economic scale and geographical distance but also 
integrates energy flow characteristics specific to the power sector, better reflecting the actual structure of the 
CO2 emission network. During model estimation, logarithmic linearization is applied to reduce the impact of 
variable magnitude differences and improve model robustness. Furthermore, the emission linkage matrix is 
standardized to ensure data comparability. This approach allows for the quantification of CO2 emission linkage 
intensity between provinces and the construction of a comprehensive emission network, offering critical data 
support for subsequent network analysis.

Then, this study utilizes the SNA method, transforming the interprovincial association matrix into a network 
adjacency matrix to construct a CO2 emission network. SNA effectively quantifies relational data through network 
structures and has been extensively applied in industrial structure, energy, and economic management48–50. In 
the field of CO2 emission studies, SNA serves as a powerful tool for revealing spatial flow patterns of emissions 
and regional interactions from a network perspective. Unlike traditional statistical methods, SNA focuses on 
the relationships between nodes (i.e., research subjects) and edges (i.e., connections between nodes) within a 
network. By examining network structures and individual node attributes, it enables the identification of CO2 
emission transmission mechanisms across regions and highlights the critical nodes that play pivotal roles in 
these processes.

In the CO2 emission network, provinces are represented as nodes, and interprovincial CO2 emission linkages, 
calculated using the gravity model, form the edges connecting these nodes. SNA is applied to construct the 
emission network, quantifying the characteristics of emission flows across regions. It utilizes network structural 
metrics and individual centrality measures to assess the role of each province within the network.

At the network level, SNA examines features such as connectivity, density, efficiency, and hierarchy. 
Connectivity reflects the overall stability and vulnerability of the carbon emission network, while density 
measures the intensity of interprovincial emission linkages. Efficiency evaluates the presence of redundant 
connections, providing insights into the flow efficiency of carbon emissions. Hierarchy identifies dominant 
nodes, emphasizing core regions that play a critical role in carbon emission flows. At the individual level, SNA 
employs centrality measures to evaluate the position of each province within the network. Degree centrality 
counts the number of direct connections a province has, with higher values indicating a more central role in 
emission flows. Closeness centrality measures the average shortest path length from a province to all others; 
higher values suggest a central position, enhancing overall network connectivity. Betweenness centrality assesses 
the extent to which a province acts as a bridge between others, with higher values indicating a strategic role 
in carbon emission transmission. Such provinces are crucial for emission governance and regional policy 
coordination.

The strength of SNA lies in its ability to systematically and intuitively reveal the structural characteristics of 
the CO2 emission network and identify the relative importance of provinces in emission flows. Additionally, 
SNA can be combined with econometric methods, such as regression analysis, to explore the factors driving 
changes in the network structure. Based on the CO2 emission network, this study uses SNA to analyze both the 
overall network structure and individual node characteristics, with key indicators calculated as follows51:

Overall network
Network connectivity reflects the stability and vulnerability of the network. Its calculation is given by Eq. (3):

	
Co = 1 − V

N × (N − 1) /2 � (3)

Where Co denotes connectivity, V is the count of unreachable node pairs, and N denotes the total nodes.
Network density measures the strength of spatial connections. The formula is:

	
D = L

N × (N − 1) � (4)

where D is the network density, L is the number of links, and N × (N − 1) represents the maximum potential 
connections.

Network efficiency evaluates redundant links, showing inter-provincial link effectiveness. Lower efficiency 
suggests more inter-provincial connections, leading to denser CO2 emission distribution. The formula is:
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E = 1 − M

max(M) � (5)

where E represents network efficiency, M is the count of redundant path.
Network hierarchy reflects the dominance levels within the network members:

	
H = 1 − K

max(K) � (6)

where H denotes network hierarchy, K denotes the number of symmetrically reachable node pairs.

Individual network
Centrality reflects a node’s status and influence within a network, encompassing degree, closeness, and 
betweenness centrality. Degree centrality highlights a node’s core position. The formula is:

	
De = n

N − 1 � (7)

De represents the degree, n represents the number of provinces directly connected to the target province, and N 
indicates the total number of nodes.

Closeness centrality measures the total distance from a node to all others.

	
C−1

AP i =
n∑

j=1

dij� (8)

CAPi represents the closeness centrality of node, and dij denotes the shortest distance between i and j.
Betweenness centrality quantifies a node’s influence on interactions between other nodes. The formula is:

	
CBi =

2
∑n−1

j=1

∑n

k=2 bjk (i)
N2 − 3N + 2

� (9)

where j ≠ i ≠ k and j < k, CBi represents the betweenness centrality, and bjk(i) denotes the ability of node i to 
mediate the connection between nodes j and k.

The gravity model offers a robust quantitative framework for analyzing spatiotemporal correlations, while SNA 
translates these relationships into measurable network indicators, facilitating the identification of key provinces 
and their respective roles. This combined methodology serves as an effective analytical tool for examining the 
CO2 emission network within China’s power sector. It not only ensures the accuracy and reliability of correlation 
assessments but also uncovers the underlying network structure and the impact of individual nodes. This dual 
approach enhances the understanding of the mechanisms driving interprovincial collaboration in emission 
reduction efforts.

Panel data model
Model specification
In the power sector, CO2 reduction focuses on optimizing generation mix and enhancing efficiency. Efficiency 
gains depend on advances in technologies like boiler combustion and carbon capture, which require substantial 
early investment. Simplifying energy use at the consumer level, especially through energy transitions, offers a 
more practical approach.

Building on the constructed CO2 emission network, this study uses a panel data model to quantify the impact 
of energy transition on the carbon emission network52. The panel data model is an econometric tool designed 
to analyze data with both time and individual dimensions, making it widely applicable in economic, social, 
and environmental research. Unlike cross-sectional data (single time point) or time series data (single entity 
over time), the panel data model tracks the same subjects across multiple time points. This approach better 
controls for individual heterogeneity, improves estimation accuracy, and enhances the robustness of findings. 
In this study, the model quantifies the influence of energy transition on the structural characteristics of the CO2 
emission network and identifies factors driving the spatial evolution of emissions.

A major strength of the panel data model is its ability to account for unobservable individual effects, such as 
a province’s resource endowment, industrial structure, policy environment, and economic development level, 
which significantly shape carbon emission networks. Traditional regression methods often assume these factors 
are randomly distributed, but interprovincial differences are typically fixed and influential, leading to biased 
estimates. By incorporating fixed effects (FE) or random effects (RE), the panel data model reduces bias and 
provides a more accurate assessment of energy transition’s impact.

In the model, the dependent variable is defined using structural indicators of the CO2 emission network to 
capture its dynamic features. The core explanatory variable is energy transition level, measured by the share of 
non-hydro renewable energy (e.g., wind and solar) in total electricity generation. To improve model reliability 
and explanatory power, control variables are included to address potential confounding factors, ensuring the net 
effect of energy transition is accurately identified. The relationship between energy transition and the emissions 
network is expressed in the following:
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	 lnSANit = α0 + α1ET Dit + Controlit + µit + σit + εit� (10)

SANit denotes the CO2 emission network features for province i in year t; ET Dit indicates denotes the 
proportion of non-fossil energy for i in year t; µit and σit denote the fixed effects corresponding to provinces 
and years, respectively, while εit signifies the random error term; Controlit refers to the set of control variables.

The factors affecting CO2 emissions in the power sector also contribute to spatial spillover effects. Based on 
previous research53–58, the selected control variables are:

Controlit = {AP CRit, P IRit, F Iit, CT Pit, P Cit, ECIit}, where:
(1) AP CRit: APCR reflects internal power use within the power sector; higher rates indicate lower energy 

efficiency and higher emissions. Controlling APCR aids in evaluating the net impact of energy transitions on 
emissions.

(2) P IRit: Measures power system dependency on energy inputs. Regional energy differences may affect 
emissions, so controlling PIR reduces these disruptions.

(3) F Iit: New technology investments may enhance energy efficiency or renewable energy use, reducing 
emissions. As a control variable, FI identifies the impact of capital accumulation in the energy sector on emissions.

(4) CT Pit: Thermal power generation links directly to fossil fuel use, a major emission source. Controlling 
CTP isolates emission changes from energy transitions.

(5) P Cit: Reflects the dependence of economic activity and living standards on electricity. Including PC in 
the model helps eliminate the impact of electricity demand fluctuations on emission levels.

(6) ECIit: Total energy consumption/GDP shows energy use per economic output unit and is a core efficiency 
indicator. Controlling ECI reduces emission differences stemming from economic growth or efficiency changes.

This set of control variables is crucial for clarifying factors affecting CO2 emissions in power generation, 
allowing an accurate assessment of the environmental impact of clean energy initiatives.

Estimation
This study employs multiple regression techniques to ensure robust and reliable analysis of panel data. Ordinary 
least squares (OLS) regression is first used as a baseline to assess the impact of energy transition on the CO2 
emission network. Since OLS cannot control for individual fixed effects, it may introduce bias due to omitted 
variables. To address this, FE and RE models are applied. The Hausman test59 determines the choice between 
them: if individual effects correlate with explanatory variables, FE is selected; otherwise, RE is used. FE improves 
accuracy by accounting for unobservable provincial-level heterogeneity, while RE enhances efficiency under the 
assumption of randomly distributed individual effects.

Additionally, quantile regression (QR) is used to analyze the heterogeneous effects of energy transition 
across different network levels60. Unlike traditional methods focusing on mean effects, QR estimates coefficients 
across conditional distributions, revealing how energy transition impacts vary with network characteristics61. 
Specifically, it identifies differential effects on provinces with high centrality (core nodes) versus low centrality 
(peripheral nodes), offering insights into the spatial heterogeneity of energy policies. This approach also 
strengthens robustness against outliers, ensuring broader generalizability, which is crucial given the uneven 
distribution of CO2 emission networks. A fixed-effects panel quantile regression model was designed as follows:

	 Qy (τ |Xt) = θτ + XT
t ϑτ � (11)

Qy(τ |Xt) represents the τ th conditional quantile of y. The variable Xt signifies the influencing factors, and 
ϑτ  and θτ  respectively denote the impact parameters and unobserved influences in the τ th quantile. Although 
panel quantile regression is widely acknowledged, conventional methods typically assume individual effects 
represent only a “location shift”, leaving the entire distribution unaddressed. Such models are insufficient in 
dealing with endogeneity issues62. To overcome these shortcomings, Machado and Silva63 proposed an enhanced 
Method of Moments Quantile Regression (MMQR) approach. This method integrates individual effects into 
the QR framework, allowing these effects to influence the entire conditional distribution rather than just the 
mean or specific quantiles. MMQR captures greater individual heterogeneity, making it particularly effective 
for analyzing the diverse impacts of energy transition on networks. In practice, emission networks are shaped 
by factors such as economic development levels, energy consumption patterns, and policy environments, which 
vary across regions and over time. While traditional QR methods struggle to model such complexity, MMQR 
offers a more robust framework for examining the dynamic impacts of energy transition on CO2 emission 
network structures by incorporating individual effects.

A key strength of MMQR is its ability to address endogeneity, enhancing estimation robustness. In panel 
data analyses, explanatory variables often correlate with the error term, causing biased results. Traditional 
methods like OLS or QR typically assume exogeneity, an assumption frequently violated in energy economics. 
For instance, energy transition progress may be influenced by emission levels, or unobserved factors like policy 
changes and technological advancements may simultaneously impact energy structures and emission networks. 
By using Generalized Method of Moments (GMM) to estimate the conditional distribution, MMQR effectively 
reduces endogeneity and strengthens causal inference, making it ideal for handling the complex data structures 
in energy economics.

In this study, the MMQR method is applied to construct an extended econometric model, enabling the 
analysis of energy transition impacts on CO2 emission networks across different quantile conditions:

	 Yit = θi + ϑXit +
(
δi + ρŹit

)
ϕit� (12)
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where (θ, ϑ, δ, ρ) are coefficients to be estimated, and P (δi + ρŹit > 0) = 1 represents the probability. 
The terms (θi, δi), i = 1, 2, 3, . . . , n, indicate the fixed effects for individual i, and Ź  is a k-vector of known 
elements of X  that are differentiable with respect to component ξ, specified as:

	 Źξ = Źξ (X) , ξ = 1, 2, . . . , k.� (13)

Xit is identically and independently distributed across both cross-sections i and time series t. ϕit is orthogonal 
to Xit, stabilizing the model and accounting for extreme exogenous behavior. Therefore, the model could be 
shaped as:

	 Qy (τ |Xit) = (θi + δiq (τ)) + ϑXit + ρŹitq (τ)� (14)

where Xit represents the vector of regressors, and Qy (τ |Xit) indicates the quantile distribution of Yit. To 
address optimization, the following equation is proposed:

	
min

q

∑
i

∑
t

γτ

(
Rit −

(
δi + ρŹit

)
q
)

� (15)

Such as, γτ (B) = (τ − 1) BI {B ≤ 0} + T BI {B > O} indicates check function.
The study follows a structured approach: First, provincial CO2 emissions from the power sector are 

calculated to form the dataset. Second, an improved gravity model measures interprovincial carbon emission 
linkages, generating a standardized association matrix. Third, a CO2 emission network is built using SNA, with 
network and node indicators extracted to identify spatial patterns and key provinces. Finally, energy transition 
variables are incorporated into a panel data model for regression analysis, assessing their impact on the network 
and exploring provincial roles in CO2 reduction. This framework ensures logical consistency across data 
measurement, network construction, and causal analysis, strengthening the scientific validity of the findings.

Data source
This study examines CO2 emissions in the power sector across 30 provinces in China (excluding Tibet). Data 
on energy types used in thermal power are derived from the “China Energy Statistical Yearbook”64. The average 
net calorific value is also obtained from the same source. Information on the carbon content of unit heat and the 
carbon oxygenation rate is sourced from the “Guidelines for Provincial Greenhouse Gas Inventories (Trial)”65 
and “2006 IPCC Guidelines for National Greenhouse Gas Inventories”66. SNA parameters are drawn from the 
“China Statistical Yearbook”67 and “China Energy Statistical Yearbook”68. Table 2 summarizes the parameters 
and data sources utilized in the panel model. The notation and abbreviations are provided in the Appendix A.

Results
Spatial distribution analysis of emissions
Figure 2 reveals significant interprovincial disparities in CO2 emissions from China’s power sector from 2007 
to 2022. Inner Mongolia, Shandong, and Jiangsu emerged as the highest-emitting provinces, driven by their 
coal-dominated energy systems and roles as major electricity exporters. Inner Mongolia and Shanxi consistently 
exhibited high CO2 emissions intensity due to their reliance on coal, with coal-fired power generation still 
accounting for over 70% of their electricity output in 2022, despite national renewable energy policies. Analysis 
indicates divergent trends: while some developed regions reduced emissions, Inner Mongolia and Shanxi 
experienced emissions rebounds between 2017 and 2022, reflecting persistent coal dependency. In contrast, 
Hainan and Qinghai maintained minimal emissions through early adoption of renewable energy, particularly 
wind and solar power. Beijing achieved a 12.30% cumulative emission reduction through stringent energy 
policies, industrial restructuring, and the complete phase-out of local coal-fired power by 2017. The city now 
relies mainly on clean energy imports from neighboring provinces. Advanced initiatives, including ultra-low 
energy buildings, smart grids, and demand-side management, have optimized electricity use and reduced peak 
demand. Additionally, Beijing’s leadership in China’s carbon trading market has driven reductions through 
stricter carbon quotas and market incentives for cleaner technologies, positioning it as a model for urban 

Variable Name Source

SAN Network features (overall and individual) Calculated by SNA method

ETD Degree of energy transition

China Electric Power Yearbook

APCR Auxiliary power consumption rate

PIR Ratio of the input-power from other regions

CTP Installed capacity of thermal power generation equipment

DCF Average utilization hours of power generation equipment

FI Investment in fixed assets of energy sector
China Energy Statistical Yearbook

PC Per capita household power consumption

ECI Energy consumption intensity China Statistical Yearbook

Table 2.  Summary statistics and definition of variables.
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decarbonization. These disparities highlight the uneven progress of China’s energy transition, with some regions 
advancing decarbonization while others remain heavily reliant on fossil fuels.

The kernel density analysis in Fig. 3 reveals a widening divergence in provincial CO2 emissions over the study 
period. The declining peak height of the density curve and the elongation of its right tail signify intensifying 
polarization. Energy-producing provinces such as Inner Mongolia, Xinjiang, and Shanxi contributed to upper-
tail expansion through persistent coal reliance, while post-2017 emission declines in eastern coastal provinces 
like Jiangsu, Zhejiang, and Guangdong created an emergent bimodal distribution. This bifurcation reflects 

Fig. 3.  Kernel density estimate of CO2 emissions in power sector (2007, 2012, 2017, 2022).

 

Fig. 2.  Average CO2 emissions in the power sector, 2007–2022.
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asymmetric energy transition outcomes: economically developed regions leveraged stringent environmental 
policies and technological upgrades to reduce emissions, whereas resource-dependent provinces faced structural 
inertia from fossil fuel lock-in and industrial path dependency, hindering decarbonization efforts.

Figure 4 delineates three distinct phases of emission evolution. From 2007 to 2012, rapid industrialization and 
urbanization drove nationwide emission surges, with coal-dependent provinces like Inner Mongolia (+ 96.87%) 
and Anhui (+ 98.69%) doubling emissions as they expanded coal-fired power capacity to meet soaring domestic 
and interprovincial electricity demand. Subsequently, the 2012–2017 phase marked a transitional period, as 
national policies such as the air pollution prevention and control action plan and coal consumption caps curbed 
coal use and improved energy efficiency. Beijing and Tianjin emerged as decarbonization leaders, achieving 
reductions of 21.53% and 13.51%, respectively, through coal-to-gas conversion, industrial relocation, and 
stringent energy conservation mandates. However, progress remained uneven, with many provinces prioritizing 
economic growth over emission controls. Post-2017, regional trajectories diverged sharply: eastern provinces like 
Jiangsu and Guangdong accelerated decarbonization via renewable energy integration and industrial upgrades, 
while resource-rich regions such as Inner Mongolia and Shanxi regressed due to renewed coal investments 
and delayed transitions, exemplifying the dual challenges of fossil fuel lock-in and institutional inertia. This 

Fig. 4.  CO2 emissions growth rates in power sector (2007–2012, 2012–2017, 2017–2022).
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widening gap underscores the necessity for spatially targeted policies to reconcile regional disparities in China’s 
energy transition.

Figure  5 reveals a stark divergence in emission trends: northern energy hubs maintained high pre-
2017 emission levels, while eastern provinces achieved significant post-2017 reductions through renewable 
energy adoption and industrial restructuring. Eastern regions, particularly Shanghai and Zhejiang, drove 
decarbonization by integrating offshore wind and distributed solar power, optimizing smart grid infrastructure, 
and implementing stricter energy efficiency standards. Shanghai capitalized on its coastal location to expand 
photovoltaic generation and enhance grid flexibility, while Zhejiang promoted distributed renewables through 
subsidies, green financing, and stringent regulations. In contrast, central and western provinces sustained elevated 
emissions due to entrenched fossil fuel reliance and slow clean energy deployment. These spatial disparities 
underscore structural challenges in China’s energy transition, including uneven technological capacity, resource 
distribution, and economic priorities. Addressing these imbalances necessitates region-specific policies tailored 
to local barriers, such as coal dependency in resource-rich areas and grid constraints in less developed regions.

Analysis of the spatial correlation network structure of emission
Overall network analysis
Produced with NetDraw in UCINET, Fig. 6 depicts the spatial relationships of CO2 emissions in China’s power 
sector. Between 2007 and 2022, the sector’s emission network transitioned from an East-centered configuration 
to a more distributed, multipolar structure. Provinces with high GDP and large populations, such as Shanghai, 
Beijing, and Jiangsu, remain major emission contributors due to their reliance on fossil fuels and electricity 
imported from energy-abundant provinces like Shanxi and Inner Mongolia. Inner Mongolia and Shanxi 
function as “carbon hubs” within the national network, exporting both electricity and associated CO2 emissions 
to multiple regions. Network analysis reveals that these provinces exhibit high correlation, underscoring their 
critical intermediary roles in CO2 transmission. Despite growing investments in renewable energy, emissions 
in these provinces have not declined significantly, as coal power continues to dominate their energy systems. 
This highlights the structural challenges in decoupling economic growth from carbon-intensive energy use. 
With the advancement of the “West–East Power Transmission” policy, central and western regions, particularly 
Sichuan and Gansu, have become more prominent in the emission network through renewable energy sources. 
By 2022, interregional power connections had become more robust, indicating a national pattern in electricity 

Fig. 5.  Provincial power sector CO2 emission distribution.
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consumption and production. This development highlights the importance of expanding renewable energy 
capacity, improving power market structures, and strengthening regional partnerships to lower emissions.

Connectedness, contacts and density analysis
From 2007 to 2022, the Connectedness value for CO2 emissions in the power sector stayed constant at 1, 
demonstrating significant spatial diffusion across adjacent provinces. Network Contacts and Density measure 
the extent of inter-provincial collaboration, reaching their highest point in 2014 with 211 contacts and a density 

Fig. 6.  Spatial correlation network of CO2 in power sector (2007, 2012, 2017, 2022).
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of 0.24, as illustrated in Fig. 7. This peak signifies the apex of joint efforts. A decline afterward suggests the effects 
of policy enactment and weakened network strength69. Minor increases in 2017–2018 align with nationwide 
backing for renewable energy and environmental policies70. Post-2020 fluctuations are likely associated with 
post-COVID-19 economic resurgence and increasing energy consumption71.

Hierarchy and efficiency analysis
Figure 8 illustrates a consistent decrease in Hierarchy, from 0.55 to 0.35, between 2007 and 2014, suggesting 
a lessening of hierarchical distinctions among provincial power authorities and a movement towards more 
equitable partnerships. This pattern corresponds with China’s power market reforms and growth in electricity 
trading between provinces, intended to improve resource use and support the increases of renewable energy 
sources72. The sharp increase in 2015 reflects greater centralized authority over CO2 emissions, possibly 
strengthening hierarchical arrangements in policy execution across provinces. The variability, particularly the 
downward trend from 2016 to 2018, implies that the sector is adjusting to new market and policy requirements, 
improving both information exchange and resource coordination.

Efficiency stayed relatively constant, with a marginal increase from 2018 to 2020, indicating better resource 
distribution and information dissemination in response to CO2 reduction and renewable energy targets73. This 
consistent performance highlights the effects of innovation and enhanced management practices, demonstrating 
the power sector’s capacity for and adjustment to green energy transitions.

Centrality analysis
This study offers an in-depth analysis of centrality measures in the spatial network of CO2 emissions in power 
sector, focusing on Degree, Closeness, and Betweenness centralities. These measures shed light on the strategic 
function of each province in the network. From 2007 to 2022, leading provinces such as Beijing, Shanghai, Jiangsu, 
and Zhejiang maintained sustained influence in China’s energy and emissions landscape, holding key positions 
due to their advanced policy frameworks and resource management capabilities. Network analysis highlights 
Beijing and Jiangsu as central nodes, empowered by their robust policy implementation and information-
sharing infrastructures. Beijing, as a pilot region for the national carbon trading market, has established 
stringent emission reduction regulations and advanced monitoring systems, enabling effective interprovincial 
collaboration. Similarly, Jiangsu leverages its developed industrial base and power market reforms to actively 
engage in cross-regional electricity trading and clean energy integration, enhancing its role in coordinating 
energy and CO2 flows across the network. These capabilities stand in stark contrast to coal-dependent provinces, 
where underdeveloped policy execution and limited information-sharing mechanisms hinder progress. Our 
analysis centers on the 2022 findings, which are presented in Fig. 9.

Fig. 7.  Network contacts and density of CO2 emission in power sector (2007–2022).
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Point centrality  China’s provinces have an average in-degree and out-degree of 6.43. Provinces exceeding this 
average in out-degree, such as Guangdong, Gansu, Shanghai, and Jiangsu, exhibit significant capacity for re-
source dissemination and information exchange. Guangdong and Jiangsu, for instance, as economically de-
veloped areas, actively champion clean energy policies, facilitate technical collaborations, and advance mar-
ket-based reforms. Provinces with above-average in-degree, including Shanghai, Jiangsu, and Beijing, hold 
influential positions in power sector decision-making and technological advancement.

The average degree centrality is 34.02. Provinces exceeding this average, including Shanghai, Jiangsu, and 
Beijing, are not only highly connected but also occupy central positions in the power network. Their extensive 
connectivity suggests significant potential to propel the energy transition and the integration of renewable energy 
sources; whereas, provinces with lower degree centrality scores, such as Qinghai, Liaoning, and Heilongjiang, 
occupy more peripheral network positions, presenting obstacles to their respective energy transitions.

Closeness centrality  The average closeness centrality across the provinces is 61.56, ranging from 52.73 to 93.55. 
Closeness centrality measures a node’s total distance to others in a network, with higher values indicating short-
er, more direct connections that enable faster and more efficient coordination in energy transitions. Provinces 
like Shanghai, Jiangsu, and Beijing, which exhibit high centrality, benefit from privileged access to resources and 
information. This advantageous positioning allows them to rapidly implement emissions reduction policies, pro-
mote renewable energy adoption, and act as hubs for energy transition. For example, Jiangsu leverages its central 
role to trade renewable energy with Anhui, helping to stabilize grid fluctuations, while Beijing collaborates with 
Tianjin and Hebei to develop regional emission reduction strategies, fostering a low-carbon ecosystem. These 
efforts highlight how high closeness centrality facilitates clean energy adoption and cross-regional cooperation 
in emissions management, enabling these provinces to lead national sustainability goals. On the other hand, 
provinces with lower centrality, such as Qinghai and Heilongjiang, may face information deficits and logistical 
challenges, potentially limiting their ability to contribute effectively to broader network-wide sustainability in-
itiatives.

Betweenness centrality  A betweenness centrality analysis across 30 provinces produced an average of 2.36, for 
a total of 70.69. Beijing, Shanghai, Jiangsu, Zhejiang, and Fujian surpassed this average, constituting 85.44% of 
the total. These regions function as crucial intermediaries in CO2 emission transmission, exerting significant 

Fig. 8.  Hierarchy and efficiency of CO2 emission in power sector (2007–2022).
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effect over other provinces. Economically prosperous areas such as Shanghai, Tianjin, Beijing, Jiangsu, and Zhe-
jiang, reflected by significant economic effect and extensive carbon trading markets, hold central positions in 
the network.

In contrast, Qinghai, Ningxia, Liaoning, Anhui, and Hainan exhibit significantly lower betweenness centrality 
values, representing only 0.40 (0.57% of the total). This points to a network imbalance, where their geographic 
isolation limits their effect on other provinces’ CO2 emissions, relegating them to peripheral network positions.

Block model analysis  The CO2 emissions spatial network is divided into four plates (Fig. 10) using the CON-
COR tool in UCINET, with a maximum cutting degree of 2 and a convergence index of 0.2. The first plate com-
prises four provinces, representing economically developed areas. The second plate comprises three provinces 
experiencing comparatively rapid economic expansion. The third plate contains ten provinces, largely repre-
sented by energy-intensive industries located in central and northern regions. Finally, the fourth plate consists 
of thirteen provinces, primarily resource-rich yet economically less developed areas situated in western and 
southern China.

Block modeling reduces the complexity of networks by aggregating them into blocks and matrices. This 
method, utilizing spatial clustering, segments the network to appraise the roles and functions of each block74.

Table 3 outlines the functions of the sectors within the CO2 network. In Plate 1, provinces display strong 
internal emission connections (actual internal relation ratio at 15.38%, exceeding the expected 10.34%), suggesting 
close CO2 ties attributable to similar economic structures and regional collaborations. The significantly greater 
number of external inflows (82) compared to outflows (22) indicates that these economically advanced regions 
rely on external energy sources to sustain high levels of economic activity. Therefore, these regions function 
as “Main Inflow” regions, supporting economic growth through energy imports while lowering local CO2 

Fig. 9.  Centrality analysis of the CO2 emission (2022).
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emissions by utilizing external sources of clean energy. Provinces in Plate 2 demonstrate a slightly higher internal 
relationship ratio (10.00%) than expected (6.90%), indicating a certain level of emission connection. External 
inflows (34) and outflows (18) are relatively balanced, suggesting that these provinces both receive and transmit 
energy and its associated CO2 emission effects in the network. Crucial provinces such as Zhejiang, Hubei, and 
Fujian, essential to the economies of East and Central China, are categorized as “Bidirectional Spillover” regions 
given their dual function in power generation and distribution. Resource-abundant provinces in Plate 3 exhibit 
an internal relationship ratio of 20.37%, lower than the expected 31.03%, indicating weak emission connections 
in this group. Their effect is primarily external, supplying energy to other regions. With 43 outgoing and only 
20 incoming connections, they constitute the key energy providers, functioning as “Main Outflow” roles in the 
CO2 network. The internal connection ratio of provinces in Plate 4 (25.81%) is below the expected (41.38%), 
suggesting weak internal emission relationships. However, with 69 outgoing connections, these provinces are 
integrated into the national CO2 emission network, acting as an “Agent” for power transmission.

To clarify the spatial relationships of CO2 emissions among plates, a density matrix was computed. The power 
sector’s emission density threshold was established at 0.22 in 2022. Plates surpassing this threshold suggest 
clustering and are designated as 1, while those below are coded as 0. As presented in Table 4, this approach 

Year Plate

Contacts 
received Contacts sent

Expected internal relationship Actual internal relationship Plate roleInside Outside Inside Outside

2022

I 4 82 4 22 10.34% 15.38% Main inflow

II 2 34 2 18 6.90% 10.00% Bidirectional spillover

III 11 20 11 43 31.03% 20.37% Main outflow

IV 24 16 24 69 41.38% 25.81% Agent

Table 3.  The role of plates in the network.

 

Fig. 10.  Four plates classification.
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effectively demonstrates CO2 emission diffusion and portrays the dynamics of emission transfer among 
provinces.

Table 3 indicates that plate I depends considerably on energy offered by plate III, with a correlation 
coefficient of 0.93. This suggests that emissions in central economic zones are greatly influenced by resource-
producing provinces. This dependency exposes the susceptibility of advanced regions reflected by limited energy 
independence and reliance on outside sources (particularly plate III). Therefore, any changes in the energy mix, 
policies, or external markets in supplying regions could destabilize these areas. The decarbonization of plate I 
hinges not only on domestic technological advancements but also on the consistent supply and decarbonization 
efforts of energy-producing regions.

Resource-producing provinces shoulder CO2 abatement obligations, as the “export-carbon, import-benefit” 
structure can generate imbalanced advantages. In particular, plate III faces high emissions coupled with 
restrained economic expansion. To cultivate equitable regional progress, these provinces must reduce emissions 
and obtain economic or technical assistance from plate I to enable a sustainable transition. The bidirectional 
spillover plate II connects and governs the network through reciprocal exchanges with plates I and IV (0.50 
and 0.23). Meanwhile, the agent plate IV functions as a conduit for CO2 and energy streams, sustaining robust 
connections with plates I and II (0.75 and 0.64). This intermediary function is essential for preserving the stability 
of the national energy supply network as both an energy transition pathway and a CO2 emission control point.

Energy transition effect on CO2 emission network
Results of the panel data model
Table 5 illustrates the impact of energy transition on the network. The overall network characteristics are time-
series averages of individual network data. Models (1) to (3) estimate ETD effects on network density, contacts, 
and efficiency. ETD positively affects density and contacts (0.3512 and 0.3545), indicating that greater clean 
energy use strengthens network density and interregional connections. This suggests that promoting renewable 
energy during energy transition has strengthened regional coordination in power dispatch, creating stronger 
connections in emission management across regions. Conversely, ETD negatively affects efficiency (− 0.1464), 

Variables Model 1: Density Model 2: Contacts Model 3: Efficiency

ETD
0.3512*** 0.3545*** − 0.1464***

(− 4.6150) (− 4.6638) (− 3.7827)

APCR
0.5494 0.5537 − 0.3146

(− 0.6742) (− 0.6803) (− 0.7593)

PIR
2.9963 3.1479* − 1.6204*

(− 1.8574) (− 1.9536) (− 1.9754)

FI
− 0.0261 − 0.0349 − 0.0015

(− 0.2464) (− 0.3294) (− 0.0276)

CTP
− 0.5033 − 0.4835 0.1610

(− 0.9459) (− 0.9096) (− 0.5950)

PC
− 0.9719*** − 0.9917*** 0.4465***

(− 3.8212) (− 3.9038) (− 3.4523)

ECI
− 0.6291 − 0.6304 0.2651

(− 1.1723) (− 1.1761) (− 0.9716)

cons
7.5326 14.3133** − 3.7968

(− 1.4038) (− 2.6706) (− 1.3915)

obs 16 16 16

R2 0.874 0.875 0.813

Table 5.  The influence of energy transition to the overall network. Note: (1) ***, **, and * denote a significance 
at the level of 1%, 5%, and 10%; (2) Obs is the abbreviation of number of observed values; (3) t-values are 
included in the bracket; (4) Results are estimated by Stata 16.

 

Year Plate

Density Matrix Image matrix

I II III IV I II III IV

2022

I 0.33 0.33 0.30 0.12 1 1 1 0

II 0.50 0.33 0.10 0.23 1 1 0 1

III 0.93 0.17 0.12 0.01 1 0 0 0

IV 0.75 0.64 0.04 0.15 1 1 0 0

Table 4.  Density and image matrices of CO2 emissions.
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suggesting that a higher clean energy share reduces overall network efficiency, potentially due to renewable 
energy’s variability and the resulting challenges in dispatch and storage.

Regarding control variables, PC has a significant negative impact on density and contacts, indicating that 
as household power consumption rises, network density and connectivity decrease. This may be attributed to 
the increased difficulty in scheduling. However, its effect on efficiency is significantly positive, implying that 
higher power consumption enhances power allocation efficiency. Other variables (APCR, PIR, FI, CTP, and 
ECI) exhibit insignificant effects on network characteristics, suggesting their limited influence on the network.

Overall, while increasing the proportion of non-fossil energy, consideration should be given to improving the 
stability and scheduling efficiency of new energy technologies. This can reconcile the tension between increased 
network density and decreased efficiency, thus optimizing the overall performance of the power network during 
the energy transition.

Considering the small sample size, the OLS method may produce biased estimates. To appraise how the 
energy transition affects individual characteristics in the CO2 emissions network, we employ a panel data model, 
presented in Table 5. Hausman test results, with p-values of 0.000 for Models (4) to (6), support the application 
of a fixed effects (FE) model.

Table 6 illustrates the relationship between the energy transition and the centrality of provincial power 
sectors in the CO2 emission network. As an independent variable, ETD significantly positively impacts degree, 
betweenness and closeness centrality. A 1% increase in ETD corresponds to a 0.4046% increase in betweenness 
centrality, a 0.0186% increase in closeness centrality, and a 0.1233% rise in degree centrality. These results 
indicate that as non-fossil fuel power generation expands, provincial power sectors occupy increasingly 
important positions in the network. Degree centrality represents a province’s direct connections, suggesting that 
the energy transition facilitates greater inter-provincial CO2 interaction. The observed increase in betweenness 
centrality indicates that certain provinces function as crucial intermediaries in CO2 coordination, bridging 
and influencing interprovincial carbon flows. This intermediary function is vital as the transfer of CO2 across 
regions is a fundamental component of the energy transition. Geographic location, economic development, and 
energy structure are factors that drive certain provinces to become key nodes in the emission network. This 
observation is consistent with the “Emission Transfer” theory, which hypothesizes that CO2 moves from regions 
with more stringent regulations to those with less stringent regulations75. Meanwhile, the growth of closeness 
centrality suggests that the network paths for certain provinces are now shorter, enabling faster and more 
efficient cooperation in CO2 management. This may be a consequence of accelerated energy transitions, where 
increased reliance on non-fossil fuels improves energy efficiency, thereby strengthening the overall coherence of 
the emission network.

Higher levels of APCR correlate positively with all three centrality measures, indicating that provinces 
generating more electricity for their own use hold greater influence in the emissions network; whereas, PIR 
demonstrates a negative correlation, suggesting reduced centrality for provinces reliant on external power. 

Variables Model 4: Betweenness Model 5: Closeness Model 6: Degree

ETD
0.4046*** 0.0186*** 0.1232***

(− 3.7802) (− 2.7770) (− 4.3761)

APCR
0.6154*** 0.0342** 0.1720***

(− 2.9077) (− 2.5803) (− 3.0895)

PIR
− 0.6397*** − 0.0298** − 0.1622***

(− 2.9677) (− 2.2091) (− 2.8610)

FI
0.1640* 0.0093 0.0680***

(− 1.6630) (− 1.5079) (− 2.6224)

CTP
− 0.2600 − 0.0244 − 0.0933

(− 1.0940) (− 1.6398) (− 1.4925)

PC
− 0.0141 0.0376* 0.1256

(− 0.0443) (− 1.8885) (− 1.5010)

ECI
− 1.3913*** − 0.0664*** − 0.3617***

(− 4.2467) (− 3.2378) (− 4.1964)

cons
− 1.0267 3.9438*** 2.5375***

(− 0.4871) (− 29.8971) (− 4.5763)

Time effect Yes Yes Yes

Province effect Yes Yes Yes

FE/RE FE FE FE

obs 480 480 480

R2 0.220 0.198 0.363

Table 6.  The influence of energy transition to the individual network. Note: (1) ***, **, and * denote a 
significance at the level of 1%, 5%, and 10%; (2) FE indicates to estimate results by fixed effect method; (3) 
Obs is the abbreviation of number of observed values; (4) t-values are included in the bracket; (5) Results are 
estimated by Stata 16.
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Increased FI corresponds to higher betweenness and degree centrality, implying that greater investment 
strengthens connectivity and a province’s overall network role. ECI negatively correlates with all centrality 
measures, indicating that provinces with lower energy efficiency are less central, potentially due to lagging 
energy transitions.

These findings imply that China’s transition to renewable energy will restructure provincial CO2 emission 
networks, potentially generating a “beggar-thy-neighbor” effect. Provinces leading in clean energy adoption 
may shift emissions to those transitioning more slowly through industrial relocation, thereby redistributing, 
rather than decreasing, total emissions. Meanwhile, leading provinces may decrease their reliance on external 
energy by increasing self-sufficiency or by strengthening partnerships with other provinces through technology 
and knowledge sharing, solidifying their central positions in the emissions network. Overall, energy transition 
requires balancing emission reductions in developed provinces with preventing emission increases in those 
transitioning more slowly. The evolution of network depends on how to manage inter-provincial dependencies 
and cooperation.

Lag effect
To account for the delayed influence of ETD on the CO2 emissions network, a one-period lag of ETD is included 
as a predictor variable. This reflects the near-term consequences of prior transitions and helps control for 
autocorrelation, thereby increasing model stability. Table 7 demonstrates that lagged ETD significantly increases 
network density (0.2809), contacts (0.2828), betweenness centrality (0.2552), closeness centrality, and degree 
centrality. This finding indicates that growth in non-fossil energy sources strengthens network connectivity and 
enhances the central positions of certain nodes, cultivating a more effective CO2 control network.

The lagged negative effect of ETD on efficiency (− 0.1238) deserves consideration. While the growth of non-
fossil energy improves network structure, it may temporarily decrease efficiency due to lags in technological 
adaptation and infrastructure adjustments during the transition process. In the initial phases of non-fossil 
energy integration, the power sector may experience transient efficiency reductions resulting from constraints 
in equipment modernization and technical optimizations.

This lagged effect of non-fossil power generation on the CO2 emissions network indicates that the energy 
transition strengthens network structure, particularly concerning regional collaboration and information 
exchange. Simultaneously, it highlights short-term variability in efficiency. Therefore, policymakers should 
prioritize a balance between network connectivity and operational efficiency to ensure incremental advancements 
in near-term energy utilization while pursuing long-term decarbonization objectives.

Robustness check
To assess the reliability of the regression results, this study employs several tests analyzing the effect of energy 
transition on the CO2 emission network. We first appraise both overall and individual network indicators to 
confirm the stability of the results. In line with Wang et al.76, robustness evaluations, incorporating control 

Variables Model 7: Density Model 8: Contacts Model 9: Efficiency Model 10: Betweenness Model 11: Closeness Model 12: Degree

L. ETD
0.2809*** 0.2828*** − 0.1238*** 0.2552** 0.0139** 0.0841***

(− 4.2595) (− 4.2880) (− 3.7065) (− 2.0960) (− 2.0333) (− 2.8926)

APCR
0.3425 0.3430 − 0.2476 0.8755*** 0.0354** 0.1843***

(− 0.4280) (− 0.4286) (− 0.6109) (− 3.5661) (− 2.5750) (− 3.1496)

PIR
3.5575* 3.7203* − 1.7862* − 0.7642*** − 0.0317** − 0.1663***

(− 2.0444) (− 2.1381) (− 2.0266) (− 2.9981) (− 2.2595) (− 2.7874)

FI
− 0.0880 − 0.0973 0.0237 0.2090* 0.0104* 0.0773***

(− 0.7869) (− 0.8699) (− 0.4174) (− 1.9199) (− 1.6578) (− 2.9031)

CTP
− 0.5397 − 0.5144 0.2282 − 0.3354 − 0.0216 − 0.0917

(− 0.8864) (− 0.8450) (− 0.7401) (− 1.1906) (− 1.3280) (− 1.3239)

PC
− 0.8330** − 0.8515*** 0.3891** − 0.0630 0.0303 0.0791

(− 3.4983) (− 3.5763) (− 3.2266) (− 0.1543) (− 1.3443) (− 0.8256)

ECI
− 0.5704 − 0.5685 0.2673 − 1.8684*** − 0.0774*** − 0.4459***

(− 1.0294) (− 1.0260) (− 0.9526) (− 5.0607) (− 3.5821) (− 4.8508)

cons
7.8562 14.5972** − 4.3055 − 0.5412 3.9669*** 2.8027***

(− 1.4151) (− 2.6295) (− 1.5312) (− 0.2170) (− 26.9600) (− 4.4762)

Time effect Yes Yes Yes Yes Yes Yes

Province effect Yes Yes Yes Yes Yes Yes

FE/RE FE FE FE FE FE FE

obs 15 15 15 450 450 450

R2 0.801 0.804 0.766 0.189 0.161 0.298

Table 7.  Lag effect of energy transition. Note: (1) ***, **, and * denote a significance at the level of 1%, 5%, 
and 10%; (2) FE indicates to estimate results by fixed effect method; (3) Obs is the abbreviation of number of 
observed values; (4) t-values are included in the bracket; (5) Results are estimated by Stata 16.
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variables sequentially (models 13–19 in Table 8), indicate that ETD maintains its significance. To account 
for possible endogeneity, the primary model is re-evaluated utilizing Two-Stage Least Squares (2SLS) with 
the instrumental variable (DCF)77. Results from models 20 and 21 demonstrate that ETD retains a high level 
of significance. The Kleibergen–Paap rk LM and Cragg–Donald Wald F statistics support the validity of the 
chosen instruments. Overall, the robustness tests validate the stability about the energy transition’s effect on CO2 
emissions in the power sector across various model specifications and estimation methods.

Results from quantile regressions
Employing quantile regression analysis, we further explore the heterogeneous effects of energy transition on 
the structure of emission networks at different points in the distribution. Due to sample size considerations and 
estimator performance, this method focuses solely on analyzing its influence on individual network properties. 
Table 9 indicates that the effect of ETD on three network metrics (betweenness, closeness, and degree) varies 
significantly across quantiles. In the Betweenness model, ETD coefficients at the 25th, 50th, and 75th quantiles 
are 0.3863, 0.4045, and 0.4211, respectively. This suggests a consistently positive association between energy 
transition and node importance, an association which becomes more significant at higher quantiles.

The effect of ETD on closeness is significant at the 50th and 75th percentiles, suggesting that energy transition 
primarily drives increased closeness in medium- and high-emission nodes, with less significant effects on low-
emission networks. In the degree model, ETD’s effect remains significant across all percentiles, particularly at 
the 75th percentile, where it exhibits a coefficient of 0.1404. This observation strengthens the positive association 
between energy transition and emission network connectivity across various distributional levels. Other control 
variables, including APCR and ECI, also demonstrate significance across different percentiles. Specifically, ECI 
consistently produces a significant negative effect on both betweenness and degree, suggesting that provinces 
represented by lower energy consumption efficiency tend to exhibit reduced nodal importance and connection 
strength.

In summary, the quantile regression results further confirm the heterogeneous effect of energy transition on 
emission network structure across the distribution. The role of energy transition appears particularly important 
in enhancing the importance and connectivity of network nodes in high-emission provinces.

Variables Model 13: FE Model 14: FE Model 15: FE Model 16: FE Model 17: FE Model 18: FE Model 19: FE Model 20: IV Model 21: IV

DCF
− 1.7164***

(− 10.8822)

ETD
0.3857*** 0.3839*** 0.3684*** 0.3410*** 0.3389*** 0.3244*** 0.4046*** 0.5670***

(− 3.7479) (− 3.7235) (− 3.5541) (− 3.2232) (− 3.2145) (− 3.0199) (− 3.7802) (− 2.6043)

APCR
0.0615 0.1905 0.2195 0.3558* 0.3640* 0.6154*** 0.1369* 0.5812***

(− 0.3614) (− 0.9783) (− 1.1203) (− 1.7210) (− 1.7568) (− 2.9077) (− 1.6616) (− 2.9389)

PIR
− 0.2767 − 0.2854 − 0.3933* − 0.4182* − 0.6397*** − 0.2120*** − 0.4940***

(− 1.3559) (− 1.3991) (− 1.8702) (− 1.9612) (− 2.9677) (− 3.0062) (− 2.8523)

FI
0.1227 0.1613 0.1468 0.1640* 0.1518*** 0.1485

(− 1.2667) (− 1.6391) (− 1.4606) (− 1.6630) (− 3.8953) (− 1.5430)

CTP
− 0.4674** − 0.4929** − 0.2600 − 0.3144*** − 0.2571

(− 2.0064) (− 2.0905) (− 1.0940) (− 3.2465) (− 1.1307)

PC
0.2293 − 0.0141 0.9048*** − 0.0176

(− 0.7187) (− 0.0443) (− 7.1548) (− 0.0535)

ECI
− 1.3913*** 0.3030** − 1.5282***

(− 4.2467) (− 2.3305) (− 4.7022)

cons
− 1.3712*** − 1.4784*** − 1.7222*** − 2.4078*** 0.5111 − 0.5204 − 1.0267 11.0409*** − 1.7941

(− 10.9959) (− 4.5936) (− 4.6748) (− 3.6784) (− 0.3206) (− 0.2425) (− 0.4871) (− 6.8508) (− 0.8180)

Time effect Yes Yes Yes Yes Yes Yes Yes Yes Yes

Province effect Yes Yes Yes Yes Yes Yes Yes Yes Yes

FE/RE FE FE FE FE FE FE FE FE FE

obs 480 480 480 480 480 480 480 480 480

R2 0.172 0.172 0.176 0.179 0.187 0.188 0.220 0.851

Kleibergen–Paap rk LM statistic 66.037 66.037

[0.000] [0.000]

Cragg–Donald Wald F statistic 118.423 118.423

Kleibergen–Paap rk Wald F statistic 115.202 115.202

Table 8.  Robustness check. Note: (1) ***, **, and * denote a significance at the level of 1%, 5%, and 10%; (2) FE 
indicates to estimate results by fixed effect method; (3) Obs is the abbreviation of number of observed values; 
(4) t-values are included in the bracket; (5) Results are estimated by Stata 16.
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Discussion
Impacts of energy transition on CO2 network structure
China’s energy transition in the power sector has brought notable changes to the structure of interprovincial CO2 
emission networks. While it has strengthened connectivity across regions, it has also introduced new challenges 
that require careful policy attention. Key metrics such as Density, Contacts, and Efficiency illustrate these 
dynamics. Rising network density (0.3512) and contacts (0.3545) indicate stronger interprovincial linkages, but 
a slight decline in efficiency (− 0.1464) highlights persistent technical and coordination barriers. This duality 
reflects the complexity of renewable energy integration: while it enhances connectivity, it also introduces 
inefficiencies due to renewable variability and uneven policy implementation.

The evolution of interprovincial cooperation underscores the critical role of policy in shaping collaboration. 
During the early 12th Five-Year Plan, strict policy enforcement strengthened cooperation, but the subsequent 
decline in Contacts and Density suggests weakening ties as policy incentives diminished. This highlights the 
need for institutionalized, long-term mechanisms to sustain collaboration and reduce reliance on short-term 
interventions78. Fluctuations in Efficiency reveal that many interprovincial linkages involve redundant or 
inefficient CO2 flows, emphasizing the need for optimized energy dispatch, improved grid infrastructure, and a 
stronger national carbon trading system to enhance cost-effective emission reduction79. Additionally, the decline 
in Density, likely linked to greater reliance on local energy sources, calls for enhanced interprovincial clean 
energy exchange to balance local autonomy with national decarbonization goals80.

Drivers and constraints of interprovincial CO2 connectivity
Energy transition has been driven by several key forces that strengthened interprovincial CO2 connectivity, 
though notable constraints still remain. First, the uneven distribution of renewable resources has driven cross-
provincial electricity trade81, with resource-rich provinces such as Inner Mongolia and Xinjiang supplying clean 
power to developed regions like Jiangsu and Zhejiang. Second, policies such as renewable consumption mandates 
and carbon trading have reinforced coordination, strengthening CO2 linkages82. Third, rapidly transitioning 
provinces such as Jiangsu and Sichuan have emerged as central nodes, facilitating the redistribution of electricity 
and fostering a more interconnected CO2 network83. These shifts have contributed to a more integrated 
framework for emission reduction and policy coordination.

However, technical and coordination challenges persist. The intermittency of wind and solar power, combined 
with insufficient storage and transmission capacity84, has led to renewable curtailment in Inner Mongolia and 
Xinjiang. Policy discrepancies across provinces further complicate coordination85, as Beijing and Shanghai 
prioritize renewables, while Shanxi and Inner Mongolia remain coal-dependent. Moreover, fragmented 
transmission systems and market structures hinder efficient electricity exchange86, as evidenced by Beijing’s 
struggles to secure external renewable power. These barriers highlight the need for a more coordinated national 
strategy to address both technical and policy-related inefficiencies.

Policy implications for a coordinated energy transition
Addressing the technical and institutional barriers identified above requires a series of coordinated policy 
measures. First, a unified national electricity market would facilitate renewable integration and improve 

Quantile Betweenness Closeness Degree

Model 22: 25% Model 23: 50% Model 24: 75% Model 25: 25% Model 26: 50% Model 27: 75% Model 28: 25% Model 29: 50% Model 30: 75%

ETD
0.3863** 0.4045*** 0.4211*** 0.0146 0.0244*** 0.0331*** 0.1042*** 0.1226*** 0.1404***

(− 0.1544) (− 0.1144) (− 0.1514) (− 0.0112) (− 0.0077) (− 0.0095) (− 0.0381) (− 0.0277) (− 0.0362)

APCR
0.6382** 0.6155*** 0.5948* 0.0421** 0.0470*** 0.0513*** 0.1957*** 0.1728*** 0.1505**

(− 0.3164) (− 0.2344) (− 0.3104) (− 0.0202) (− 0.0137) (− 0.0171) (− 0.0742) (− 0.0539) (− 0.0705)

PIR
− 0.5951* − 0.6394*** − 0.6800** − 0.0268 − 0.0335** − 0.0396** − 0.1600** − 0.1621*** − 0.1642**

(− 0.3334) (− 0.2470) (− 0.3270) (− 0.0235) (− 0.0159) (− 0.0199) (− 0.0742) (− 0.0538) (− 0.0704)

FI
0.195 0.1642 0.1361 0.0149 0.0124 0.0101 0.0905*** 0.0688*** 0.0478

(− 0.1419) (− 0.1052) (− 0.1392) (− 0.0114) (− 0.0077) (− 0.0096) (− 0.0349) (− 0.0254) (− 0.0331)

CTP
− 0.3432 − 0.2604 − 0.1849 − 0.0349 − 0.0386** − 0.0420** − 0.0732 − 0.0926 − 0.1115

(− 0.3352) (− 0.2484) (− 0.3288) (− 0.0246) (− 0.0167) (− 0.0208) (− 0.0808) (− 0.0586) (− 0.0767)

PC
0.0954 − 0.0135 − 0.113 0.0583 0.0453 0.0336 0.122 0.1255 0.1289

(− 0.4721) (− 0.3499) (− 0.4631) (− 0.0429) (− 0.0291) (− 0.0363) (− 0.1209) (− 0.0877) (− 0.1148)

ECI
− 1.2806** − 1.3908*** − 1.4913*** − 0.0617* − 0.0698*** − 0.0770*** − 0.4059*** − 0.3631*** − 0.3217***

(− 0.5108) (− 0.3785) (− 0.5011) (− 0.0334) (− 0.0227) (− 0.0283) (− 0.1250) (− 0.0908) (− 0.1187)

Time effect Yes Yes Yes Yes Yes Yes Yes Yes Yes

Province effect Yes Yes Yes Yes Yes Yes Yes Yes Yes

obs 480 480 480 480 480 480 480 480 480

Table 9.  Quantile regression estimates. Note: (1) ***, **, and * denote a significance at the level of 1%, 5%, and 
10%; (2) Obs is the abbreviation of number of observed values; (3) t-values are included in the bracket; (4) 
Results are estimated by Stata 16.
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dispatch efficiency87. Second, strengthening regional carbon compensation mechanisms would ensure that 
energy-exporting provinces receive adequate financial support for their low-carbon transition, promoting 
equitable investment in green technologies88. Third, leading provinces such as Beijing and Jiangsu should share 
policy frameworks and technological expertise to accelerate renewable adoption in less-developed regions. 
Additionally, expanding energy storage capacity89, incentivizing coal-dependent provinces to transition90, and 
fostering stronger interprovincial cooperation will be critical to building a more efficient and resilient CO2 
emission network.

In conclusion, while energy transition has reinforced interprovincial CO2 linkages, achieving long-
term carbon neutrality requires balancing regional energy independence with national policy coordination. 
Establishing stable cross-provincial collaboration, optimizing resource allocation, and ensuring sustained 
policy enforcement will be essential to maintaining momentum in the low-carbon transition. These findings 
underscore the importance of aligning local and national strategies to ensure an efficient and equitable energy 
transition in China’s power sector.

Conclusions and policy implications
This study applies SNA to outline the evolution of the CO2 emissions network in China’s power sector and 
explore the position of each province and clustering patterns. Moreover, it analyzes the effect of energy transition 
on the emissions network with a panel model.

Conclusions
According to the results of the model, we have drawn the following conclusions:

	1.	 Between 2007 and 2022, China’s provincial CO2 emissions from the power sector exhibited regional hetero-
geneities. Provinces reliant on fossil fuels, such as Inner Mongolia and Shanxi, encounter challenges in tran-
sitioning, whereas Beijing and Shanghai have decreased emissions through the integration of clean energy, 
indicating asymmetries in reduction strategies.

	2.	 Provinces differ in resource connections and information exchange in the CO2 emissions network. Central 
regions exhibit high centrality and can effectively direct reduction efforts, while the peripheral positions of 
most provinces constrain network effectiveness.

	3.	 Provinces such as Beijing, Shanghai, and Jiangsu depend on energy from other regions, causing an unequal 
allocation of CO2 reduction responsibilities, which emphasizes the necessity for greater interregional energy 
collaboration.

	4.	 Panel model analysis shows that a strengthened energy transition increases network density and connections 
but reduces efficiency. Provinces rapidly experiencing transition assume central roles in CO2 emission net-
works through interprovincial collaborations. Greater degree and betweenness centrality suggest more direct 
connections and critical intermediary roles. The decline in efficiency, however, reflects challenges in coordi-
nating clean energy infrastructure and cross-regional partnerships. The lag analysis indicates that non-fossil 
power generation favorably affects the CO2 network, particularly strengthening the significance and connec-
tivity of high-emission provinces.

Policy recommendations
According to these findings, we offer the following policy recommendations:

	1.	 To achieve carbon neutrality, prioritize support for high-emission areas to upgrade clean energy technolo-
gies. Encourage eastern regions to improve energy efficiency and renewable energy use, concentrating on 
reducing emissions and balancing supply–demand in western energy-exporting areas.

	2.	 Policies should enhance CO2 network efficiency by fostering stronger linkages between peripheral and de-
veloped provinces, facilitating resource and expertise exchange. For coal-dependent regions like Inner Mon-
golia and Shanxi, targeted financial mechanisms and industrial transition strategies are essential to reduce 
coal reliance. Key measures include upgrading grid infrastructure to improve renewable energy integration, 
reforming power market mechanisms to ensure equitable compensation for clean energy exports, and pro-
moting industrial diversification to lessen economic dependence on coal. Furthermore, expanding inter-
provincial electricity trading systems could enable these regions to curtail coal-fired generation while main-
taining energy security, supporting a more balanced and sustainable energy transition. Besides, the network 
function of less-connected provinces should be enhanced through funding and technology dissemination.

	3.	 “Main inflow” regions should reduce reliance on high-carbon energy, support sustainable energy transitions 
in resource-producing areas, and amplify the mediating function of “bidirectional spillover” and “agent” re-
gions to facilitate inter-regional emission reduction cooperation. Strengthening carbon trading mechanisms 
and incentives in the power sector will further propel the energy transition.

	4.	  To advance energy transition and improve network efficiency, policymakers should incentivize provincial 
investments in technology and energy infrastructure, particularly clean energy distribution systems and in-
terprovincial partnerships. Measures are necessary to avert the “beggar-thy-neighbor” effect, wherein de-
veloped regions transfer their carbon burdens to slower-transitioning provinces. A coordinated regional 
policy is advised to ensure fair CO2 responsibility. High-centrality provinces (e.g., Shanghai, Beijing, Jiangsu, 
Zhejiang) should spearhead technological advancement and low-carbon development in the power sector. 
Constructing a shared platform for technology exchange will further support clean energy integration and 
efficient CO2 abatement through enhanced interprovincial collaboration.
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This study provides valuable insights into the dynamics of CO2 emissions reduction in China’s power sector, but 
several limitations should be acknowledged. First, the use of provincial-level data may obscure intra-provincial 
heterogeneity in energy structures and decarbonization efforts. Variations in energy transition progress across 
cities and industrial sectors within provinces could significantly influence emission patterns and network 
dynamics. Second, the analysis does not fully account for policy and institutional differences across provinces, 
which are critical in shaping energy transition outcomes. Disparities in the implementation of renewable energy 
policies, carbon trading mechanisms, and subsidy programs may lead to uneven emission reduction trajectories. 
Third, the findings are specific to China’s energy system, which differs from other countries in terms of market 
structure, regulatory frameworks, and domestic energy coordination. This limits the generalizability of the 
results to other regions without further validation. Finally, reliance on historical data may affect the accuracy of 
long-term emission projections, as future technological advancements and policy shifts could alter the pace and 
scale of decarbonization.

Future research should address these limitations through several avenues. First, integrating more granular 
data at the city or sectoral level could better capture regional disparities in energy transition. Second, 
incorporating policy heterogeneity into analytical frameworks would help assess how different regulatory 
environments influence emission reduction pathways. Third, cross-country comparative studies could validate 
the applicability of these findings in diverse institutional and economic contexts. Additionally, employing 
scenario-based modeling or advanced machine learning techniques could enhance the robustness of long-term 
emission forecasts, providing a stronger foundation for policy formulation and strategic planning in the power 
sector.

Data availability
Data used in this study are available from the corresponding authors upon reasonable request.
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