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Abstract

Background: Discovering novel disease genes is still challenging for diseases for which no prior knowledge - such
as known disease genes or disease-related pathways - is available. Performing genetic studies frequently results in
large lists of candidate genes of which only few can be followed up for further investigation. We have recently
developed a computational method for constitutional genetic disorders that identifies the most promising
candidate genes by replacing prior knowledge by experimental data of differential gene expression between
affected and healthy individuals.
To improve the performance of our prioritization strategy, we have extended our previous work by applying differ-
ent machine learning approaches that identify promising candidate genes by determining whether a gene is sur-
rounded by highly differentially expressed genes in a functional association or protein-protein interaction network.

Results: We have proposed three strategies scoring disease candidate genes relying on network-based machine
learning approaches, such as kernel ridge regression, heat kernel, and Arnoldi kernel approximation. For
comparison purposes, a local measure based on the expression of the direct neighbors is also computed. We have
benchmarked these strategies on 40 publicly available knockout experiments in mice, and performance was
assessed against results obtained using a standard procedure in genetics that ranks candidate genes based solely
on their differential expression levels (Simple Expression Ranking). Our results showed that our four strategies could
outperform this standard procedure and that the best results were obtained using the Heat Kernel Diffusion Ranking
leading to an average ranking position of 8 out of 100 genes, an AUC value of 92.3% and an error reduction of
52.8% relative to the standard procedure approach which ranked the knockout gene on average at position 17
with an AUC value of 83.7%.

Conclusion: In this study we could identify promising candidate genes using network based machine learning
approaches even if no knowledge is available about the disease or phenotype.

Background
Discovering novel disease genes is still challenging for
constitutional genetic diseases (a disease involving the
entire body or having a widespread array of symptoms)
for which no prior knowledge - such as known disease
genes or disease-related pathways - is available. Perform-
ing genetic studies frequently result in large lists of can-
didate genes of which only few can be followed up for
further investigation. Gene prioritization establishes the

ranking of candidate genes based on their relevance
with respect to a biological process of interest, from
which the most promising genes can be selected for
further analysis.
Several computational methods for prioritizing candi-

date genes have been proposed, such as ENDEAVOUR
[1], GeneWanderer [2], or Prioritizer [3] that rank can-
didate genes based on associations between known dis-
ease genes and candidate genes using different data
sources and methodology. Lage et al. (2007) developed a
phenome-interactome network that integrates phenoty-
pic literature information from OMIM with a cross spe-
cies protein-protein interaction (PPI) network [4]. Chen
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et al. (2009) applied link based strategies widely used in
social and web network analyses to prioritize disease
candidate genes based on PPI networks [5]. Subrama-
nian et al. (2005) developed a computational method,
Gene set enrichment analysis (GSEA), that determines
whether an a priori defined set of genes shows statisti-
cally significant concordant differences between two bio-
logical states (e.g. phenotypes), i.e. whether the genes are
differentially expressed or not [6]. Similarly, Liu et al.
(2007) developed a network-based approach, Gene Net-
work Enrichment Analysis (GNEA) for the identification
of transcriptionally altered biological processes between
disease and normal states [7]. It analyzes gene expres-
sion microarray and protein-protein interaction data to
identify the affected regions in a protein-protein interac-
tion network. Beside these methods, others can be
found in the literature that prioritize candidate genes for
human diseases. Among these, several were implemen-
ted as web-based applications that can be freely
accessed. In a previous study we have reviewed distinct
web-based and freely accessible gene prioritization tools
for human diseases [8].
The aforementioned methods usually rank candidate

genes by matching their information across multiple
data sources against a profile derived from a set of
genes, keywords, pathways, or biological processes
already known to be associated with the phenotype.
However, often only little is known about the molecular
basis of the phenotype, such as no known disease genes
and limited knowledge about the biological cascades
involved, and only few or no keywords are known which
can be used either to retrieve genes or to perform text
mining. To overcome this limitation, we proposed in a
previous study a computational method to identify the
most promising candidates within a region for which
limited or no prior knowledge is available regarding a
phenotype of interest by using experimental data on dif-
ferential gene expression between affected and healthy
individuals [9]. Using a network-based approach, we
assessed the relevance of a candidate gene by consider-
ing the level of differential expression in its neighbor-
hood under the assumption that strong candidates tend
to be surrounded by differentially expressed neighbors.
For several genetic diseases, however, there is no guar-
antee that the expression levels of the disease gene itself
is affected, rather, genes ‘’downstream’’ of the disease
gene are those whose expression will be affected. There-
fore, we consider the differential expression data at the
network levels instead of (isolated) gene levels. Mapping
expression patterns on a network, we then expect to
observe a disrupted expression module around the dis-
ease gene, while other candidate genes (not causally
related to the phenotype) should not be part of such a
disrupted expression module. This approach is less

biased than assessing relevant candidate genes by per-
forming text mining, finding associations between
known disease genes and candidate genes, or detecting
disease relevant pathways. We define a notion of a soft
neighborhood where each gene is given a contributing
weight, which decreases with the distance from the can-
didate gene in the network. To account for multiple
paths between genes, we defined a notion of distance
using the Laplacian exponential diffusion kernel. Finally,
we scored candidates by aggregating the differential
expression of their neighbors weighted as a function of
distance.
To further improve prioritization results we have

extended our previous work in this study by applying
four different strategies to prioritize candidate genes
based on network analysis of differential expression
using distinct machine learning approaches to determine
whether a gene is surrounded by highly differentially
expressed genes in a functional association or protein-
protein interaction network. Here, we have mainly
focused on further performance improvement and deter-
mination of an appropriate neighborhood for network
propagation of differential expression analysis by consid-
ering and benchmarking many variables occurring here
in the presented ranking strategies. We have further
compared our prioritization results with a standard pro-
cedure in genetics that ranks candidate genes based
solely on their differential expression levels.
First, we propose an alternative to our previous idea of

defining a notion of distance using the Laplacian expo-
nential diffusion kernel. Instead of aggregating the dif-
ferential expression of neighbors weighted as a function
of distance, we have smoothed a candidate gene’s differ-
ential expression levels through kernel ridge regression.
We name this strategy Kernel Ridge Regression Ranking.
Second, we have applied the Heat Kernel Diffusion

Ranking, introduced by Chung and Yau (1999) [10], to
our problem of disease candidate gene prioritization.
Third, we have carried out network diffusion by apply-

ing the Arnoldi algorithm based on a Kyrlov Space
method as presented in [11]. We name this strategy
Arnoldi Diffusion Ranking.
Fourth, we have ranked the candidate genes by com-

bining their differential expression levels with the aver-
age of the differential expression levels among their
direct neighbors in a functional association or protein-
protein interaction network, which we name Direct
Neighborhood Ranking. This straightforward approach
for scoring candidates is presented here for comparison
purposes as a naïve strategy for network analysis of dif-
ferential expression.
We have benchmarked these four strategies on 40

publicly available data sets originated from Affymetrix
chips on which mice with (simple) knockout genes were
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tested against controls. The raw cel files were down-
loaded from GEO [12]. For each data set we have com-
puted the differential expression levels for each gene in
our network based on the expression in the knockout
experiment versus the expression in the control (see
Methods).
Since we were seeking for a suitable interaction net-

work for our application, we have considered two differ-
ent types of networks: functional association networks
and protein-protein interaction (PPI) networks. As a
functional association network, we have used two differ-
ent STRING releases (version 7.1 [13] and version 8.2
[14]), which include associations and physical interac-
tions coming from heterogeneous databases. As PPI net-
works, we have used BioGRID [15] and I2 D [16]. By
using different networks in our ranking strategies, we
evaluated their suitability as an interaction network for
our application, and to what extent performance is influ-
enced by the characteristics of the underlying network.
In the field of cancer, some methods for network ana-

lysis are available for gene expression towards identifica-
tion of expression signatures or of dysregulated
subnetworks as biomarkers. However, the task we
address is that of prioritization of disease causing genes
in constitutional genetic disorders using expression data.
That problem is different from that of signature identifi-
cation in cancer because it focuses on the ranking of
candidate genes instead of the identification of subnet-
works (see for example [17-19]). There is no established
method to tackle the specific problem of candidate gene
prioritization in constitutional disorders from expression
data.

Results
In this section, we have evaluated the gene prioritization
results obtained using each of the presented strategies,
focusing on performance improvement. We aim to
assess whether machine learning approaches based on
random walks can outperform a standard procedure in
genetics, the Simple Expression Ranking (see for example
[20-22]).
The previous described methods require several para-

meters that we have tuned in order to obtain stable
ranking results. Additionally, we combine several pre-
processing techniques, expression measures and net-
works:

(1) Preprocessing
Gene expression data was preprocessed using
three different techniques: MAS5, RMA and
GCRMA (for details see Methods section).

(2) Expression measure
We have computed three different expression
measures: log2 ratio, the test statistic (derived

from CyberT [23], and the significant log2 ratio
(p-value derived from CyberT).

(3) Network
Four different mouse networks were selected for
diffusion: two versions of the functional associa-
tion network obtained from STRING (versions
7.1 and 8.2), a PPI network obtained from Bio-
GRID (version 2.0.61), and a PPI network
obtained from I2 D (version 1.72).
All strategies were applied to these four net-
works. The Similarity Network for the Kernel
Ridge Regression Ranking was obtained using the
Laplacian Exponential Diffusion kernel (a = 0.5),
the Regularized Commute Time kernel (a = 0.90
and a = 0.95), and the Regularized Laplacian Dif-
fusion kernel (a = 1 and a = 2), see equations
(1)-(3). For the Heat Kernel Diffusion Ranking we
have applied discrete approximation of the Heat
Kernel rank approach [24], see equation (9). For
the Arnoldi Diffusion Ranking we have applied
Arnoldi approximation [11], see equation (11).
Finally, for the Direct Neighborhood Ranking we
have used the network directly to capture a
neighborhood for a candidate gene, see equation
(13).

(4) Methods and parameter setting
Kernel Ridge Regression Ranking, Heat Kernel
Diffusion Ranking, and Arnoldi Diffusion Ranking
require a value for the diffusion rate a. We have
chosen this parameter to be 0.5 for all strategies.
Kernel Ridge Regression Ranking requires two
parameters, l, for which we have chosen five dif-
ferent values{10-2 ,10-1 ,100 ,101 ,102}, and nn,
the maximum number of neighbors, for which
we have chosen three values: 30, 50, and 100.
Heat Kernel Diffusion Ranking requires one para-
meter, m, defining the number of iterations, i.e.,
the number of steps in the random walk through
the network. Arnoldi Diffusion Ranking requires
one parameter, m, defining the number of itera-
tions for obtaining an approximation of the net-
work diffusion using the Arnoldi algorithm.
Direct Neighborhood Ranking requires a weight,
a, for which we chose a value of 0.5, so that both
the expression of the candidate itself and its
average surrounding expression in the network
were weighted equally. As potential values for ε,
we have chosen 0.15, 0.4 and 0.7 (regarding the
confidence scores in STRING).

Validation
The parameter settings were tuned to obtain stable
ranking results for the benchmark data, indicated by the
rank of the knockout gene. We have computed ROC
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curves and the corresponding AUC values and counted
the number of knockout genes ranked in the top10% for
all ranking lists using all parameter settings. A descrip-
tion of the parameter tuning procedure follows. In this
step, we used the STRING network (v.7.1) in all the pre-
sented strategies. After the determination of the optimal
parameters, we have explored alternative kernels in the
Kernel Ridge Regression Ranking, different preference
vectors in the Heat Kernel Diffusion Ranking, and dis-
tinct networks in all strategies using the determined
parameter settings.

Parameter Tuning
Table S1a (see additional file 1) illustrates the ranking
results obtained by applying the Kernel Ridge Regression
Ranking using different values for l and nn and the
Laplacian Exponential Diffusion Kernel with a = 0.5
using the STRING network (v.7.1). Based on the results
presented we have chosen l to be 1 and nn to be 50
since these values lead to the most stable ranking results
in comparison to other values, considering the AUC and
the number of top ranked knockout genes.
Table S1c (see additional file 1) illustrates the ranking

results obtained by applying the Heat Kernel Diffusion
Ranking using distinct number of steps in the random
walk through the STRING network (v.7.1). These results
clearly show that the method is able to generate a reli-
able ranking in a reduced number of steps, i.e. m = 2.
Table S1f (see additional file 1) illustrates the ranking

results obtained by applying the Arnoldi Diffusion Rank-
ing using distinct number of iterations in the Arnoldi
approximation and the STRING network (v.7.1). The
results clearly show that the method is able to produce
a reliable ranking using only 2 iterations, as in the case
of the Heat Kernel Diffusion Ranking, i.e. m = 2.
Table S1e (see additional file 1) illustrates the ranking

results obtained by applying the Direct Neighborhood
Ranking using the STRING network (v.7.1) and a = 0.5
with distinct thresholds ε. Results show a decrease in
performance with the increase of ε, due to information
loss (many associations are then missing from the net-
work), i.e. ε = 0.15.
Table 1 shows the overall results of the four strategies

including their best performing parameters, and using
two different releases of the STRING network (version
7.1 and version 8.2).

Kernels in Kernel Ridge Regression Ranking
The Kernel Ridge Regression Ranking is based on a ker-
nel matrix derived from the STRING network or the PPI
network from BioGRID or I2 D, as shown in equations
(1)-(4). As discussed in the Methods section, several ker-
nel matrices are available in the literature. In this study,
we have assessed which of the three considered kernels

performs best in our application. Table S1b (see addi-
tional file 1) shows the results based on the Laplacian
Exponential Diffusion Kernel, Regularized Laplacian
Kernel and Regularized Commute time Kernel with dif-
ferent parameters. It stands out that the Laplacian Expo-
nential Diffusion Kernel with a = 0.5 performs better
than the other kernels. Thus, in our study, the Laplacian
Exponential Diffusion kernel with a = 0.5 will be used
as the kernel matrix in the Kernel Ridge Regression
Ranking.

Preference vector initialization in Heat Kernel Diffusion
Ranking
Francisco et al. (2009) suggested initializing the prefer-
ence vector p0 with binary values [25]: the seed genes
known to be involved in the disease would be set to 1,
as all other genes in the vector would be set to 0. In
order to assess the contribution of the gene expression
levels to the ranking, we have compared four different
scenarios: first, only the candidate genes were initialized
with 1 and the remaining genes with 0 (same procedure
as in [25]), independent of their expression value. Sec-
ond, we have only initialized the candidate genes with
their differential expression levels obtained in the
experiment and the remaining genes with 0. Third, we
have filled the preference vector p0 with all the expres-
sion values available in the experiment. Fourth, we have
initialized all genes that are differentially expressed in
the experiment with 1, all other genes with 0, thus we
have made no difference between genes that were highly
or weakly differentially expressed. Table S1d (see addi-
tional file 1) shows the result of these four scenarios for
initializing the preference vector.
It can be seen that by using only binary values (sce-

nario 1), the Heat Kernel Diffusion Ranking performs
poorly (AUC = 61.2% with only 5 knockout genes in the
top 10%). However, using expression values instead of
binary ones, the method performs better. This shows
that the contribution of expression levels coming from a
disease or knockout related microarray experiment is
significant. Furthermore, if all available expression values
are added to the preference vector (scenario 3), the
results were further improved against the ones obtained
by initializing the preference vector with the expression
levels of the candidate genes only (scenario 2). However,
if the expression values are replaced by binary ones (sce-
nario 4), the results are slightly worse than considering
differential expression values. By considering all avail-
able expression values (scenario 3), the ranking obtained
between 31 and 32 top 10% ranked knockout genes with
an AUC of between 88.9% and 90.7% for the log2 ratio
or the test statistic as the expression measure, indepen-
dent of the preprocessing technique. In subsequent
steps, we use all available expression data for initializing
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the preference vector in the Heat Kernel Diffusion
Ranking.

Error Reduction
Table 1 shows that the Simple Expression Ranking per-
forms well: using MAS5 preprocessed data we have
obtained an AUC of 83.7%. However, by applying the

presented machine learning strategies based on random
walks, the results could be further improved.
Results of the Heat Kernel Diffusion Ranking using

RMA preprocessed data have obtained an AUC value of
91% and 92.3% using the STRING networks v7.1 and
v8.2, respectively, and the significant log2 ratio as
expression measure. This presents an error reduction of

Table 1 Overview of prioritization results

STRING v. 7.1 STRING v. 8.2

top 10 top 20 AUC top 10 top 20 AUC

Standard genetic procedure: Simple Expression Ranking 20 25 0.801 20 25 0.801

Direct Neighborhood Ranking log2 ratio 27 31 0.859 12 23 0.747

ε >0.15, a = 0.5 sign. log2 ratio 28 31 0.880 12 24 0.760

test statistic 29 30 0.856 13 22 0.738

Kernel Ridge Regression Ranking log2 ratio 23 29 0.809 14 26 0.759

l = 1, nn = 50, KLED , a = 0.5 sign. log2 ratio 27 32 0.868 17 25 0.817

RRMA test statistic 20 26 0.771 15 20 0.691

Heat Kernel Diffusion Ranking log2 ratio 32 34 0.900 32 33 0.913

all expression values for p0 , m = 2, a = 0.5 sign. log2 ratio 31 34 0.910 31 35 0.923

test statistic 32 34 0.901 32 34 0.911

Arnoldi Diffusion Ranking log2 ratio 27 31 0.857 27 29 0.851

m = 2, a = 0.5 sign. log2 ratio 28 31 0.885 28 31 0.873

test statistic 28 30 0.855 28 29 0.844

Standard genetic procedure: Simple Expression Ranking 18 24 0.777 18 24 0.777

Direct Neighborhood Ranking log2 ratio 27 31 0.874 12 23 0.761

ε >0.15, a = 0.5 sign. log2 ratio 25 28 0.855 11 22 0.736

test statistic 27 31 0.863 12 24 0.750

Kernel Ridge Regression Ranking log2 ratio 21 28 0.769 17 24 0.756

l = 1, nn = 50, KLED , a = 0.5 sign. log2 ratio 27 31 0.835 20 26 0.796

GCRMA test statistic 19 22 0.745 16 23 0.744

Heat Kernel Diffusion Ranking log2 ratio 31 33 0.905 32 34 0.914

all expression values for p0 , m = 2, a = 0.5 sign. log2 ratio 28 33 0.889 29 34 0.907

test statistic 32 33 0.895 32 35 0.913

Arnoldi Diffusion Ranking log2 ratio 27 32 0.875 26 31 0.874

m = 2, a = 0.5 sign. log2 ratio 25 29 0.860 25 28 0.852

test statistic 27 31 0.865 28 31 0.862

Standard genetic procedure: Simple Expression Ranking 24 28 0.837 24 28 0.837

Direct Neighborhood Ranking log2 ratio 23 27 0.846 9 20 0.743

ε > 0.15, a = 0.5 sign. log2 ratio 25 28 0.844 11 22 0.729

test statistic 27 30 0.855 12 24 0.745

Kernel Ridge Regression Ranking log2 ratio 18 24 0.736 17 24 0.766

l = 1, nn = 50, KLED , a = 0.5 sign. log2 ratio 23 29 0.834 17 22 0.755

MAS5 test statistic 13 18 0.790 16 24 0.790

Heat Kernel Diffusion Ranking log2 ratio 26 32 0.877 28 34 0.890

all expression values for p0 , m = 2, a = 0.5 sign. log2 ratio 26 31 0.877 26 34 0.899

test statistic 32 32 0.890 31 34 0.904

Arnoldi Diffusion Ranking log2 ratio 25 27 0.849 24 27 0.851

m = 2, a = 0.5 sign. log2 ratio 25 29 0.853 25 27 0.847

test statistic 26 30 0.858 27 29 0.850

The results are based on optimized parameter settings for all presented strategies using different STRING networks. Note that the results of the Simple Expression
Ranking do not depend on the network because they are only using differential expression levels to rank the candidate genes.
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52.8% relative to the Simple Expression Ranking for the
STRING network v8.2 and 44.8% for the STRING net-
work v7.1. Regarding the number of knockout genes, the
Heat Kernel Diffusion Ranking has ranked a maximum
of 32 knockout genes in the top 10% for both STRING
network releases using the test statistic as expression
measure, independent of the preprocessing technique.
The Simple Expression Ranking could rank at most 24
knockout genes in the top 10% for MAS5 preprocessed
data, which again presents an error reduction of 50%
using the Heat Kernel Diffusion Ranking.
The Kernel Ridge Regression Ranking strategy could

outperform the Simple Expression Ranking only for
RMA using the significant log2 ratio as expression mea-
sure and STRING network v7.1. The corresponding
error reduction was of 19% regarding the AUC (86.8%)
and the number of knockout genes (27) relative to the
Simple Expression Ranking using MAS5. For STRING
v8.2 and all other settings the Kernel Ridge Regression
Ranking could not outperform the Simple Expression
Ranking.
The Arnoldi Diffusion Ranking strategy could outper-

form the Simple Expression Ranking for RMA prepro-
cessed data using the significant log2 ratio or test
statistic as expression measure and STRING v7.1 or for
GCRMA preprocessed data using the log2 ratio as
expression measure and STRING v8.2. The error could
be reduced by 29.4% in terms of the AUC for STRING
v7.1 (88.5%) and by 22.7% for STRING v8.2 (87.4%).
Regarding the number of top ranked knockout genes,
we could reduce the error for both networks by 25%
(28 top ranked knockout genes) relative to the Simple
Expression Ranking. For some other settings this strat-
egy could outperform the Simple Expression Ranking
as well.
The Direct Neighborhood Ranking strategy could out-

perform the Simple Expression Ranking for RMA pre-
processed data using the significant log2 ratio or test
statistic as expression measure and the STRING network
v7.1. The error could be reduced by 26.4% in terms of
the AUC (88%) and by 31% in terms of the number of
knockout genes (29) relative to the Simple Expression
Ranking using MAS5 preprocessed data. For some other
settings this strategy could outperform the Simple
Expression Ranking as well. However, for STRING v8.2
the Direct Neighborhood Ranking could not outperform
the Simple Expression Ranking.
As a consequence, the Heat Kernel Diffusion Ranking

shows the largest error reduction relative to the Simple
Expression Ranking considering both the AUC values
and the number of top ranked knockout genes. Further-
more, these results were achieved independent of the
preprocessing technique and for both STRING network
releases.

Analysis of dependency on expression levels
We have further analyzed the influence of the expres-
sion levels of the candidate genes in the performance of
the four presented ranking strategies. For this purpose,
we have set the expression levels of the knockout genes
to 0 and compared with the original results. Table S2
shows that none of the strategies achieves a comparable
level of performance if the expression level of the
knockout gene is set to 0. Therefore it is reasonable to
assume that the performance of all four strategies in
this study is highly dependent on integration of the
expression levels of the knockout gene.

Comparison of different networks: functional association
networks vs. protein-protein interaction networks
As shown in the Methods Section, the mouse PPI net-
work originated from BioGRID contains substantially
less information then both mouse STRING networks.
Nevertheless, we have analyzed to what extent the gene
prioritization methods depend on the choice of the net-
work and how sparsity is influencing the results.
Table 1 illustrates a direct comparison between both

STRING releases using the four gene prioritization stra-
tegies. It shows that the performance of both, the Kernel
Ridge Regression Ranking and Direct Neighborhood
Ranking, using STRING v7.1 is better than using
STRING v8.2. By updating the STRING network from
version 7.1 to 8.2, the error was increased by approx.
30%-50% in comparison to version 7.1, depending on
the parameter setting. However, the performance for the
Heat Kernel Diffusion Ranking and Arnoldi Diffusion
Ranking applying both STRING releases are comparable,
even though the releases differ substantially from each
other. This demonstrates that these two strategies are
not as dependent on the choice of the network as the
other two. On the other hand, by updating the STRING
network from version 7.1 to 8.2 the performance could
not be improved further using the Heat Kernel Diffusion
Ranking or Arnoldi Diffusion Ranking as expected.
Figure 1 shows the ROC curves of the performance of

the presented strategies for gene prioritization using
RMA preprocessed data and the significant log2 ratio as
the expression measure for both STRING network
releases in comparison to the Simple Expression Ranking
using MAS5 preprocessed data. The reason for choosing
RMA as the preprocessing technique and the significant
log2 ratio as the expression measure is that this setting
leads generally to the most stable and reliable result in
our study (see Table 1).
Using the mouse PPI network obtained from the Bio-

GRID database, we could not obtain good quality rank-
ing results for our benchmark. Out of the 40 data sets,
only six could be used on the PPI network because the
knockout genes of the other 34 data sets were absent
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from the PPI network (this network is very sparse, see
Table 2). For validating the performance of the strate-
gies, we have used 100 candidate genes that were ranked
for each data set. However, using this PPI network, only
4-10 of the candidate genes were found in the network
(data not shown). Therefore, we could not perform a
meaningful comparison between the functional associa-
tion network from STRING and the PPI network from
BioGRID. Thus, we can draw the conclusion that a
sparse network, like the BioGRID mouse network, is not
suitable for our application.
The mouse PPI network from the I2 D database is a

higher-coverage PPI network (see Table 2). However,
like for the BioGRID mouse network, the I2 D mouse
network is missing knockout genes from the bench-
mark. Only 35 out of 40 data sets could be used on the
PPI network because the others were incomplete (data
not shown). For this reason we have extended the net-
work by five additional nodes which are isolated from
the other nodes in the networks, since the database
does not provide information about interactions
between these nodes and the others in the network.
Table S3 (see additional file 1) shows that by using the
I2 D network the results coming from the Heat Kernel
Diffusion Ranking and the Arnoldi Diffusion Ranking
were only slightly better than those obtained by the
Simple Expression Ranking, for the other ranking

strategies the I2 D network performed worse in terms
of the AUC value and top ranked knockout genes.
Comparing with the STRING network, our results have
shown that a functional association network like the
STRING network performs better in our application
than a PPI network.

Comparison of different expression measures and
preprocessing techniques
In this study, we have evaluated not only different net-
works applied on the four presented strategies, but also
different expression measures in combination with the
preprocessing techniques applied by the strategies. Table
1 illustrates that in our application RMA best results
correlates with the significant log2 ratio as expression
measure, GCRMA with the log2 ratio, and MAS5 with
test statics. In terms of the presented prioritization stra-
tegies, Table 1 shows that the Kernel Ridge Regression
best results correlate with the significant log2 ratio as
expression measure, and the Heat Kernel Diffusion
Ranking with test statistic and significant log2 ratio.
These results show that there is no clear conclusion to

draw in terms of identifying the best performing prepro-
cessing technique or expression measure. Finding the
best performing preprocessing technique is a challenge
and has been widely discussed in the literature, such as
[26-29].

Figure 1 Performance comparison of STRING network v 7.1 and v 8.2. Comparison of the performance between STRING network version 7.1
and version 8.2 applying the four presented strategies using RMA preprocessed data and the significant log2 ratio as the expression measure in
comparison to the Simple Expression Ranking using MAS5 preprocessed data.

Table 2 Overview of the global network properties of the underlying networks

Database (mouse) Number of Genes Number of Interactions Average Node Degree

STRING v7.1 16,566 820,177 49.5

STRING v8.2 24,442 1,405,375 57.5

BioGRID v2.0.61 1,417 2,026 2.5

I2 D v1.72 10,867 79,088 10.6
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Discussion
As we have introduced in this study, there are several
methods in the literature to prioritize candidate genes.
Among these approaches, there are methods requiring
knowledge about disease-gene association, whereas
others do not have this precondition. However, these
methods will be ineffective if no knowledge is available
for a specific disease. In our previous study, we intro-
duced an approach to overcome this limitation by repla-
cing this knowledge by disease-specific experimental
data [9].
The purpose of this study was to further improve the

performance of the prioritization results and the deter-
mination of an appropriate neighborhood for network
analysis which has been a major issue in our previous
work. We have extended our previous work extensively
by suggesting four strategies to prioritize candidate
genes based on distinct machine learning approaches to
determine whether a gene is surrounded by highly dif-
ferentially expressed genes in a network, by considering
variations in parameter settings, usage of different kernel
functions, preprocessing techniques and expression mea-
surements. All prioritization results coming from these
different settings were benchmarked on 40 mouse
knockout data sets computing AUC values and the
number of knockout genes ranked in the top 10%. The
performance was assessed against results obtained using
a standard procedure in genetics that ranks candidate
genes based solely on their differential expression levels
(Simple Expression Ranking) that was clearly outper-
formed by the here presented ranking strategies in
terms of AUC values and ranking positions of knockout
genes (see Results section).
We have used three distinct random walk based stra-

tegies plus one naïve strategy without network diffusion
but a direct neighborhood analysis. The random walk
strategies all base on the Exponential Diffusion Kernel,
although the methodology is distinct: the Kernel Ridge
Regression Ranking computes the (convergent) kernel to
solve a regression problem, the Heat Kernel Diffusion
Ranking computes an iterative diffusion with only 2
steps over the network and combines it with expression
data coming from the experiment which is the Heat
Kernel rank, and the Arnoldi Diffusion Ranking com-
bines an approximation of the kernel with expression
data. It has to be noted that the convergence in the
Heat Kernel Diffusion Ranking and in the Arnoldi Diffu-
sion Ranking has been measured in terms of ranking
results and not in terms of kernel assimilation which
makes it not comparable to the kernel matrix computa-
tion resulting from the Kernel Ridge Regression Ranking.
Although we have considered and benchmarked many

variables occurring in our ranking strategies, there are

still a few that influence the performance of our prioriti-
zation strategies.
First, the quality and coverage of the network around

the actual disease gene will be a strict bottleneck as we
already analyzed in [9]. For example, an isolated gene
with no edges in the network can not be effectively
prioritized by our methods. We have used the STRING
network based on the assumption that a network, inte-
grating multiple heterogeneous data sources, is more
complete and robust and therefore less prone to the
problems caused by sparsity. Further, we must note that
extending the data sources from version 7 to 8 has
resulted in a larger network with good coverage. Errors
in the network might cause both false negatives and
false positives.
Continuing improvements in the quality of protein

association networks are expected to contribute to
increased effectiveness of the proposed method which
could be demonstrated by comparing the two releases
STRING v7.1 and STRING v8.2. In the latter release the
performance could be increased further from 91% to
92.3% using the Heat Kernel Diffusion Ranking, although
the performances obtained by using both releases are
not as significant as by using the Kernel Ridge Regression
Ranking and Direct Neighborhood Ranking. The perfor-
mance for the Kernel Ridge Regression Ranking and
Direct Neighborhood Ranking using the STRING network
v7.1 was better than using the STRING network v8.2. By
updating the STRING network from version 7.1 to 8.2,
the error was increased by approx. 30%-50%, dependent
of the setting.
Worsening in the performance using the updated ver-

sion of the STRING network in the Direct Neighborhood
Ranking could be explained by the fact that we could
observe more neighbors for the candidate genes so that
a few highly differentially expressed genes lost their
influence in comparison to version 7.1 in which fewer
neighbors were detected. For the Kernel Ridge Regression
Ranking, however, the similarity matrices of both
STRING releases differ substantially from each other
and cannot be compared directly since there is only a
small overlap between both STRING networks.
To evaluate to what extent the coverage of the inter-

action network influences our method, we have further
applied 2 distinct PPI networks of different coverage.
Using the BioGRID network, results have shown that
this network was too sparse for our application because
most of the knockout genes from the data sets and can-
didate genes to be ranked in the underlying study were
absent from the network (data not shown). Using the I2
D network, results have shown that we could slightly
outperform our Baseline, the Simple Expression Ranking.
Nevertheless, the STRING network is more densely

Nitsch et al. BMC Bioinformatics 2010, 11:460
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connected and contains more genes (see Table 2), which
led to a better performance for the ranking results.
Like in the BioGRID network, some knockout genes

were also absent from the I2 D network. Therefore we
extended the network by these nodes, but with no inter-
action between them and the other nodes in the net-
work. Our results have shown that some of the isolated
genes could be ranked highly (data not shown) despite
their missing interactions because the ranking strategies
also consider the candidate genes’ expression levels. As
long as an isolated gene has a large differential expres-
sion level, it can be ranked highly. However, this is not
a guarantee to detect this gene among the top ranked
genes because a highly differentially expressed neighbor-
hood will still dominate. Therefore an isolated gene can-
not be reliably prioritized by our ranking strategies.
Nevertheless, the ranking strategies using the STRING

network have performed better than using the I2 D net-
work, probably because of the difference in coverage.
One may argue that it is not appropriate to compare a
PPI network with a functional association network
because the latter is including associations apart from
physical interactions, but we are seeking for a suitable
and high-coverage interaction network for our applica-
tion that leads to reliable ranking results of candidate
genes, regardless of the nature of the associations.
In the literature, several databases can be found to con-

struct an interaction network that can be categorized in
terms of types and scope of data sources, types of interac-
tions, or range of details on protein interactions [30].
Comprehensive protein interaction databases, such as
BioGRID [15], DIP [31], BIND [32], IntAct [33], MINT
[34], I2 D [16], iRefIndex [35] or STRING [13,14] collect
physical interactions or functional associations between
proteins, integrating distinct information sources about
protein interactions coming from high-throughput
experimental data, structural data, manual curation, or
functional predictions. Specialized protein interaction
databases, such as MIPS [36] or HPRD [37] collect
(manually) curated interactions from yeast or human,
respectively. For this study, the BioGRID database was
used to represent a (sparse) PPI network containing only
high-throughput experimental data, the I2 D database
was used to represent a high-coverage PPI network inte-
grating different information sources, and STRING was
used to represent a high-coverage functional association
network combining associations and physical interactions
coming from distinct data sources.
In Nitsch et al. (2009) we adopted the hypothesis from

Köhler et al. (2008) that global network-similarity mea-
sures capture relationships between disease proteins bet-
ter than algorithms based on direct interactions [2,9].
The latter was considered in the Direct Neighborhood
Ranking strategy which performed worse than the Heat

Kernel Diffusion Ranking leading to a global diffusion
measure. Since we have proposed the Direct Neighbor-
hood Ranking as a naïve method for comparison pur-
poses, we have already expected not to outperform the
other three random walk based strategies because of its
systematic bias favoring highly connected genes in the
network (which we discuss later).
Second, the integration of expression data proved to

have a significant influence on the performance of the
prioritization strategies which is supported by the results
using the mouse knockout experiments data. By using
mouse knockout data sets, we could guarantee to use
disease relevant tissue which is an important issue in
identifying disease related genes (disease genes might
not be expressed in other tissues). We have further ana-
lyzed the dependency of the ranking performance on
the preprocessing of expression data. In the literature
there are many controversial discussions about the per-
formance of these, including MAS5, RMA, and
GCRMA, and the community cannot harmonize (see for
example [26-29]). For this reason we have applied
MAS5, RMA, and GCRMA on the benchmark data sets
leading to different ranking results, as we would have
expected.
In the Results section we have claimed that we could

not draw a clear conclusion in terms of identifying the
best performing preprocessing technique or expression
measure. Nevertheless, the best results were achieved
using RMA preprocessed data in comparison to the
other preprocessing techniques. However, in other appli-
cations alternative techniques might perform better. The
same matters for finding an appropriate expression mea-
sure. In the literature there are many measures, from
which we have chosen the log2 ratio, the significant
log2 ratio, and test statistic derived from CyberT. By
analyzing their performance in our application, we could
not claim one measure to be outperforming another,
however, the significant log2 ratio led to the most stable
results over the majority of the settings.
The quality of the experimental data has also an

important impact on the performance of the prioritiza-
tion strategies. By using expression data that was either
incomplete or of poor quality, the prioritization strate-
gies could not lead to reliable results. The sensitivity of
the different scoring strategies or the underlying net-
works to this effect may vary (for example, PPI networks
have been reported to be more sensitive to this effect).
This issue may come up when applying the presented
method to real genetic disorders in human. In our pre-
vious study, we could already detect four known disease
genes in human using public available expression data
of good quality [9]. Therefore, the bottleneck of our
method is again the sparseness and quality of experi-
mental data.

Nitsch et al. BMC Bioinformatics 2010, 11:460
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Third, the choice of appropriate parameters for the
presented strategies has a large influence on the perfor-
mance. Therefore we had several parameters and set-
tings to optimize. By using the optimal parameters and
settings, we have obtained stable and robust results for
the prioritization problem. All presented strategies have
outperformed our Baseline, the Simple Expression Rank-
ing - as we have expected - for certain settings. The
Heat Kernel Diffusion Ranking has shown the largest
error reduction relative to the Simple Expression Rank-
ing in terms of AUC values and number of top ranked
knockout genes, independent of the preprocessing tech-
nique and for both STRING network releases. Our
results show that the Simple Expression Ranking is per-
forming well for MAS5 preprocessed data. However, the
Heat Kernel Diffusion Ranking on RMA preprocessed
data could achieve and error reduction of 52.8% for the
STRING network v8.2 and 44.8% for the STRING net-
work v7.1.
Fourth, the fact that a disease related gene may have

only a weakly differentially expressed neighborhood
negatively affects the prioritization methods. In this
case, our hypothesis of observing a strongly differentially
expressed neighborhood for disease related genes can
fail. By introducing a better experimental design that
can trigger a disease pathway more reliably in which the
effect is more focused around the disease gene, would
overcome this limitation because in our approach we do
not consider pathways but only neighbors that are sur-
rounding a gene in the network. In this case the Simple
Expression Ranking can perform better as long as the
disease gene is highly differentially expressed since this
naïve method does not depend on expressed pathways
or neighborhoods.
Fifth, a systematic bias using a biological network

favoring highly connected genes can be observed in our
method which leads to sensitivity to skewed degree dis-
tributions. This bias is clearly a limitation of our method
and can be addressed through proper randomization. By
randomizing signals across the network, the bias caused
by the higher connectivity (or higher total weights) can
be removed since highly connected nodes will have a
higher baseline signal across the randomizations. We
are currently investigating this issue.

Conclusion
In this study, we have extended extensively our previous
work by applying machine learning approaches based on
random walk models to determine whether a gene’s
neighborhood is highly differentially expressed. We have
explored three different random walk based strategies
plus one naïve strategy based on a direct neighborhood
analysis. These four network-based prioritization strate-
gies for scoring candidate genes based on their

differentially expressed neighborhood were benchmarked
on 40 publicly available knockout experiments in mice.
Performance was assessed against results obtained using
a standard procedure in genetics that ranks candidate
genes based solely on their differential expression levels
(Simple Expression Ranking). Results showed that our
strategies could outperform this standard procedure and
that the best results were obtained using the Heat Kernel
Diffusion Ranking leading to an average ranking position
of 8 out of 100 genes, an AUC value of 92.3% and an
error reduction of 52.8% relative to the standard proce-
dure approach which ranked the knockout gene in aver-
age at position 17 with an AUC value of 83.7%. Thus, we
could identify promising candidate genes using network-
based machine learning approaches even if no knowledge
is available about the disease or phenotype.

Methods
Benchmark data
The benchmark for this study consists of 40 publicly
available data sets originated from Affymetrix chips on
which mice with knockout genes were tested against
controls. The raw cel files were downloaded from GEO
[12]. Table 3 shows all data sets used in our benchmark.

Preprocessing
We have preprocessed the gene expression data using
three different preprocessing techniques: MAS5 (Affy-
metrix Microarray Suite 5.0) [38], RMA [39], and
GCRMA [40]. Moreover, we have assessed their indivi-
dual contribution to results seeking the best perfor-
mance in a number of validation tests.
We have implemented the preprocessing techniques in

R using the BioConductor package which includes a
large number of meta-data packages available that are
oriented towards different types of microarrays. Affy is
the most common library that is used for data proces-
sing and visualization of Affymetrix GeneChip measure-
ments [41].

Differential expression measures
After the preprocessing step we have computed the dif-
ferential expression level for each gene in the network
based on the expression in the knockout experiment
versus the expression in the control for each data set.
We have used three different measures of differential

expression:

• log2 ratio that is defined as log 2
mutant
control( ) .

• Significant log2 ratio: only significant log2 ratios
(pvalue < 0.05) are considered, otherwise they are
set to 0. The pvalue was computed by CyberT.
• Test statistic: computed from CyberT.

Nitsch et al. BMC Bioinformatics 2010, 11:460
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CyberT [23] employs statistical analyses based on sim-
ple t-tests that use the observed variance of replicate
gene measurements across replicate experiments, or reg-
ularized t-tests that use a Bayesian estimate of the var-
iance among gene measurements within an experiment.

Network
A functional protein association network is an undir-
ected graph with proteins as nodes and associations as
edges. Whenever there is a functional association
between two proteins, an edge will be set between the
corresponding nodes in the graph. The weights of the
edges represent a confidence value on the evidence of
such an association. The functional protein association
network for mouse was obtained from STRING [13], a
database of known and predicted protein-protein asso-
ciations derived from heterogeneous data sources and
different organisms including both physical interactions
and functional associations. In the following we will
refer to this network as the STRING network.
STRING 7 integrates known interactions coming from

interaction databases, such as MINT, HPRD, BioGRID,
DIP, Reactome, BIND, and KEGG, as well as text
retrieved from PubMed abstracts and other scientific
resources [13]. The STRING network v7.1 for the
mouse organism contains 16,566 genes and 820,177
interactions with an average node degree of 49.5.
STRING 8 [14] includes beside the included databases

from the previous release updated databases and new
resources, such as IntAct, NCI-Nature Pathway Interac-
tion Database and Gene Ontology protein complexes.
The STRING network v8.2 for the mouse organism con-
tains 24,442 genes and 1,405,375 interactions with an
average node degree of 57.5. It has to be noted that the
two STRING versions share only 375,682 interactions
representing 46% and 27% of the v7.1 and v8.2 network
sizes respectively, which leads to the fact that these two
releases are very different and therefore not comparable.
However, we have to mention that these numbers are
estimates due to mapping of gene ids.
In addition to two releases of the STRING network

(versions 7.1 and 8.2), we have also obtained a protein-
protein interaction (PPI) network for mouse from Bio-
GRID (version 2.0.61), a repository for physical and
genetic interactions derived from literature and high-
throughput experiments [15]. The BioGRID v2.0.61 for
the mouse organism contains 1,417 genes and 2,026
interactions with an average node degree of 2.5.
We have further used a second PPI network for

mouse that was derived from I2 D (Interologous Inter-
action Database) which is a database integrating existing
curation, such as IntAct, BIND, DIP, MINT, and HPRD,
high-throughput and predicted interactions [16]. The I2
D v1.72 for the mouse organism contains 10,867 genes
and 79,088 interactions with an average node degree of
10.6.

Table 3 The benchmark data

Gene Name GEO accession number Gene Name GEO accession number

1 Abca1 GSE5496 21 Mbnl1 GSE14691

2 Btk GSE2826 22 Mst1r, Ron GSE16629

3 Cav1 GSE10849 23 MyD88 GSE6688

4 Cav3 GSE10848 24 Nos3, eNos GSE1988

5 Cftr GSE5715 25 Phgdh GSE8555

6 Clcn1 GSE14691 26 Pmp22 GSE1947

7 Cnr1 GSE7694 27 PPARa GSE6864

8 Emd GSE5304 28 Prkag3, AMPK G3 GSE4065

9 Epas1, Hif-2 GSE16067 29 Pthlh, Pthrp GSE17654

10 Esrra GSE7196 30 Rab3a GSE6527

11 Gap43 GSE12687 31 RasGrf1 GSE8425

12 Gnmt GSE9809 32 Rbm15 GSE12628

13 Hdac1 GSE5583 33 Runx GSE4911

14 Hdac2 GSE6770 34 Scd1 GSE2926

15 Hsf4 GSE12415 35 Slc26a4 GSE10587

16 Hspa1A, Hsp70.1 GSE11120 36 Srf GSE13333

17 Il6 GSE411 37 Tgm2 GSE10285

18 Lhx1, Lim1 GSE4230 38 Zc3h12a GSE14891

19 Lhx8 GSE11897 39 Zfp36, Tpp GSE5324

20 Lmna GSE5304 40 Zfx GSE7069

The benchmark consists of 40 publicly available data sets originated from Affymetrix chips on which mice with (simple) knockout genes were tested against
controls.

Nitsch et al. BMC Bioinformatics 2010, 11:460
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Table 2 shows an overview about the global network
properties of underlying databases.
In this study, we have applied network-based strate-

gies to prioritize candidate genes. Further, we have com-
pared the performance of the ranking strategies on both
functional association (STRING network) and PPI net-
works using the BioGRID network and the I2 D network
as representatives.
In Nitsch et al. 2009 we hypothesized that global net-

work-similarity measures capture relationships between
disease proteins better than algorithms based on direct
interactions [9]. We used graph kernels to capture glo-
bal relationships within a graph, computing global simi-
larity of two nodes as the probability of reaching one
node at some time point after a random walk starting
from another node. The resulting graph led to a global
similarity network where an edge between two nodes
did not represent a direct interaction, but rather their
similarity in this network. From this similarity network,
the distance network could be easily derived.
In the Kernel Ridge Regression Ranking, we have

further explored the idea of using graph kernels to
detect global similarities between any genes in the net-
work by implementing different kernels and comparing
their performance. Furthermore, instead of aggregating
the differential expression of neighbors weighted as a
function of distance, we have smoothed a candidate
gene’s differential expression level using kernel ridge
regression, considering its most similar neighbors and
their differential expression.

Candidate genes
For each data set we have selected a set of 100 candi-
date genes, including the knockout gene. For getting the
candidates, we have chosen the knockout genes’ nearest
100 genes on the chromosome based on the BioMart
data mining tool which accesses data from the Ensembl
Genome Browser.
We have then prioritized this set of candidate genes

using four different strategies. Results were evaluated by
retrieving the position of the knockout gene in the rank-
ing list and by calculating the corresponding AUC value.

Evaluation
Evaluation of the different strategies was accomplished
by ranking the candidate genes in each data set using a
number of different parameter and measure settings:
MAS5/RMA/GCRMA combined with log2 ratio/signifi-
cant log2 ratio/test statistic as expression measure using
different kernels in the Kernel Ridge Regression Ranking
strategy, using different preference vector initializations,
iteration numbers and diffusion parameters in the Heat
Kernel Diffusion Ranking, using different thresholds for
the edge weights in the Direct Neighborhood Ranking,

and different initial vectors and iteration numbers in the
Arnoldi Diffusion Ranking.
The performance was assessed based on the position

of the knockout gene in the ranking list. Ideally, the
knockout gene should appear in the top of the ranking
list based on the hypothesis that this gene is causing all
the disruption in the expression of the genes in the
network.
As evaluation measure, we have computed AUC

values and the number of knockout genes that were suc-
cessfully ranked in the top 10% among the candidate
genes.
The AUC (Area Under the ROC Curve) is a standard

measure of the performance of the ranking algorithm
and assesses its ability to separate the two classes “posi-
tive ranked” (genes that are highly ranked) and “negative
ranked” (genes that are lowly ranked). The correspond-
ing ROC (Receiver Operating Characteristic) curve is
achieved by imposing and varying a threshold (from
rank 1 to n) to separate these two classes, which leads
to true positive rates and false positive rates for each
threshold k. To obtain the ROC curve, the FPRs (false
positive rate) are plotted against the TPRs (true positive
rate). Following Fawcett (2006) the AUC is equivalent to
the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen
negative instance [42]. This is equivalent to the Wil-
coxon test of ranks [43]. For instance, an AUC value of
100% indicates that every knockout gene ranks in the
first position, whereas an AUC value of 50% means that
the knockout genes rank randomly.

Ranking Strategies
Simple Expression Ranking as a Baseline
A standard procedure in genetics to analyze candidate
genes is to assess the expression level of a candidate
gene in patient derived material against wild type. Can-
didates for which a significant difference is observed
between the two groups are considered promising (see
for example [20-22]). The higher a candidate’s log2
ratio, the higher is its position in the ranking. This sim-
ple comparison of log2 ratios is our baseline in this
study.
1. Strategy: Kernel Ridge Regression Ranking Consider
a given weighted and undirected graph G With sym-
metric weights wij ≥ 0 between nodes i and j. The
weight wij increases with the importance of the relation
between nodes i and j: the larger its value, the easier the
communication through the edge. Let A be the Adja-
cency matrix with aij = wij if the nodes i and j are con-
nected and aij = 0 otherwise. The Laplacian matrix L Of
G is defined As L = D - A With
D diag a ai ijj

n= = =∑( )
1

. L is symmetric and positive
semidefinite.
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The Laplacian Exponential Diffusion Kernel was intro-
duced by Kondor and Lafferty (2002) [44] as

K I
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whereby a is the diffusion parameter that determines
the degree of diffusion. For a Laplacian matrix, eaL is
always positive definite and can thus be used as a kernel
matrix. It can be seen as a random walk, starting from a
node and transitioning to neighboring nodes with prob-
ability a. In our application we have applied a negative
diffusion parameter, i.e. KLED = e-aL.
The Regularized Laplacian Kernel was introduced by

Smola & Kondor (2003) and Fouss et al. (2006) [45,46]
as
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The Regularized Commute time Kernel was introduced
by Fouss et al. 2006 [46] as

K DRCT = − −( ) A 1. (3)

Following the kernel computation, normalization and
centering procedures are applied to obtain a valid Simi-
larity Network whose values vary between 0 and 1:
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We have defined a neighborhood of a gene as follows.
First, it must contain at least one gene other the
requested gene. Second, we have limited the amount of
neighbors to 50 (see results and parameter tuning in
Table S1a (see additional file 1)). Furthermore, we can
extract the similarities between genes from the Similar-
ity Network. As a consequence, we obtain for each can-
didate gene a neighborhood consisting of the 2 to 50
most similar genes in the network that are considered
to be influenced in their expression by the candidate
gene.
For a given (semi) positive definite kernel matrix K Î

Rn and the vector of response variables Y Î Rn , Saun-
ders et al. (1998) [47] and Cawley et al. (2006) [48] have

defined the regression problem y a K x xi i

n
^ ( , )=

=
∑
i 1

with

weights a Î Rn in the Regularization. Theory as
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 (5)

with l as a parameter defining the degree of smooth-
ness in regression. Taking conditions for optimality Y =
(K +lI)a , the solution vector a* is

a K I Y* ( ) .= + − 1 (6)

For a new given x it follows

y a K x xi

i

n

x i
^ * ( , )=

=
∑

1

(7)

where K x is a n × 1 vector containing the kernel eva-
luations between the candidate point x and n neighbor-
ing points (the neighborhood of x). The resulting value
of y

^ can be seen as a smoothed differential expression
value for the candidate gene x having n neighbors with
expression values Y.
For each data set all candidates were ranked based on

their smoothed differential expression values. A candi-
date gene with a strongly differentially expressed neigh-
borhood will obtain a smoothed differential expression
value that is larger than its original differential expres-
sion level derived from the microarray experiment. On
the other hand, a candidate with a low differentially
expressed neighborhood will obtain a small smoothed
differential expression value, even if its original differen-
tial expression level had been large.
2. Strategy: Heat Kernel Diffusion Ranking The Heat
Kernel Diffusion Ranking approach prioritizes the candi-
date genes by diffusing the differential expression values
of the candidate genes through the network based on the
confidence scores of the associations/interactions. We
have applied the Heat Kernel rank introduced by [10]
and recently used by [25] to unravel relevant regulators
in the Saccharomyces cerevisiae regulatory network.
Given a graph G, the transition probability matrix W

of a random walk on G is defined as W = D-1 A. Con-
sider L = I - W. Given a parameter a, establishing the
diffusion rate, and a preference vector p0 , expressing
the initial relevance score of each node, the ranking pa
is given by

p
k

k
p L p e

k

k L


= − =
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!
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0 0 (8)

We have used the discrete approximation by Yang
et al. (2007):

p p I
N

L
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= + −⎛
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with N being the number of iterations [24]. This itera-
tive diffusion can be regarded as a random walk through
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the network which is comparable to the Laplacian Expo-
nential Diffusion Kernel (see equation (1)). However, the
Heat Kernel rank considers only an initialized prefer-
ence vector, whereas the Kernel Ridge Regression Rank-
ing uses the Exponential Diffusion Kernel to solve a
regression problem.
Following Francisco et al. (2009), performing reduced

number of iterations is usually sufficient for ranking
purposes using the Heat Kernel rank [25]. In fact, we
reach a considerably good performance already after few
iterations in our application (see Results section).
We have initialized the preference vector p0 with the

differential expression levels coming from a data set
from our benchmark. The resulting heat diffusion rank
vector pa contains a score for every candidate gene
based on the heat diffusion random walk of its expres-
sion level through the network.
3. Strategy: Arnoldi Diffusion Ranking Based on a
functional association or PPI network we have com-
puted network diffusion based on a Kyrlov Space
method, namely the Arnoldi algorithm, as presented in
[11]. The Arnoldi algorithm projects the exponential of
a large matrix (here, the STRING network, the BioGRID
network, or the I2 D network) onto a small Krylov sub-
space and approximates the matrix exponential opera-
tion eAv as

e v p vA
m≈ −1( ) ,A (10)

where A is a matrix of dimension N, v is a nonzero
vector and pm-1is a polynomial of degree m-1. Since this
approximation is an element of the Krylov subspace K m

≡ span {v , Av ,..., A m-1v}, the problem was reformulated
by Saad (1992) as that of finding an element of Km that
approximates u = eAv [11]. Based on the Krylov sub-
space Km and the Hessenberg matrix Hm of dimension
n × n , u can be computed by

u e v v e eA
m

Hm= ≈ ⋅V 
1. (11)

In this study, we want to compute the steady state
vector of a random walk based on the STRING network
which will be an approximation of the Laplacian Expo-
nential Diffusion Kernel presented in equation (1) as
K = eaL with L = I-- D-1 A (see above). The kernel
matrix K can be seen as a random walk on the graph
with transition probability a, and its ith column vector
represents the steady state probability of a random
walk starting at node i with a sufficient number of
steps leading to convergence. Then, Kij is the probabil-
ity of stopping at node j having started at node i after
infinite time steps. The column vector i of K can be
written as

Ke e ei i
L=  (12)

where ei = [0,...0,1,0,..., 0]’ is a zero vector with a 1 at
position i.
To compute the approximation of the matrix expo-

nential operation eAv (see equation (12)) considering
expression levels for our application, we have initialized
the starting vector v with differential expression levels
coming from a data set from our benchmark. After run-
ning the Arnoldi Algorithm the resulting vector Vm and
the corresponding Hessenberg matrix H m of dimension
m (coming from the Krylov subspace) lead to the result-
ing vector u = eAv (see equation (13)) reflecting the
steady state probability of reaching node j after infinite
time steps by starting at the same time point from all
nodes that have been initialized in starting vector v. The
parameter m is the dimension of the Kyrlov subspace
and corresponds to the number of iterations in the
Arnoldi approximation of network diffusion. The larger
m, the more accurate is the approximation of network
diffusion.
4. Strategy: Direct Neighborhood Ranking In the
Direct Neighborhood Ranking, we have used a functional
association or PPI network directly to capture a neigh-
borhood for a candidate gene without considering any
diffusion over the network. A candidate’s neighborhood
contains all genes j directly connected to the candidate i
in the network with weight wij , representing the prob-
ability that an association exists in reality.
Let xi be the differential expression level of candidate

gene i, a the weighting parameter that determines the
influence of the candidate’s expression and its neighbor-
hood’s expression, ε the threshold defining the mini-
mum edge weight between the candidate gene and a
neighbor, and N the number of neighboring genes of
candidate gene i for which weight wij is larger then ε.
Then the score is computed by

x
j

a x a
j i wij x

N
i i

^ ( )
{ , : }

= ⋅ + − ⋅
∑ ≠ >

1
j 

(13)

Additional material

Additional file 1: Supplementary Tables. This document contains all
supplementary tables mentioned in the article.
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