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ABSTRACT

Understanding the relationship between genetic vari-
ations and variations in complex and quantitative
phenotypes remains an ongoing challenge. While
Genome-wide association studies (GWAS) have be-
come a vital tool for identifying single-locus associa-
tions, we lack methods for identifying epistatic inter-
actions. In this article, we propose a novel method for
higher-order epistasis detection using mixed effect
conditional inference forest (epiMEIF). The proposed
method is fitted on a group of single nucleotide poly-
morphisms (SNPs) potentially associated with the
phenotype and the tree structure in the forest fa-
cilitates the identification of n-way interactions be-
tween the SNPs. Additional testing strategies further
improve the robustness of the method. We demon-
strate its ability to detect true n-way interactions via
extensive simulations in both cross-sectional and
longitudinal synthetic datasets. This is further illus-
trated in an application to reveal epistatic interac-
tions from natural variations of cardiac traits in flies
(Drosophila). Overall, the method provides a gener-
alized way to identify higher-order interactions from
any GWAS data, thereby greatly improving the detec-
tion of the genetic architecture underlying complex
phenotypes.

INTRODUCTION

Over the past few decades, there has been a growing interest
in phenotype to genotype association and Genome-Wide
Association Studies (GWAS) have proven to be ‘the stan-
dard tool’ for identifying these associations (1,2). GWAS
have attained tremendous success in identifying causal vari-
ants that exhibit independent, additive, and cumulative ef-

fects on the investigated phenotype trait (3). However, test-
ing for associations via a single-locus test is an oversimpli-
fied approach to tackle the complexity of underlying bi-
ological mechanisms (4). Complex phenotypes and their
variations within a population are speculated to be caused
by multiple genetic variations and their interactive effects,
which are referred to as epistatic interactions (5–8). How-
ever, the exhaustive evaluation of all possible epistatic in-
teractions among millions of single nucleotide polymor-
phisms (SNPs) raises several issues, otherwise known as
the ‘curse of dimensionality’(9). Given a dataset with n
SNPs, the exhaustive epistasis search with the order of m

(number of interactive SNPs) requires (
n
m) combinations

of SNPs to be tested, resulting in a complexity of O(nm)
(10). Indeed, due to the exponential complexity involved
in the higher-order exhaustive search algorithms, they are
not applicable to large datasets. To address the above is-
sues, several parametric modelling approaches (11,12), ma-
chine learning algorithms (8,10), and combinatorial opti-
mizations (13,14) have been explored. But they are exclu-
sively designed/used for detecting binary or higher-order
interactions in case–control studies. There exist some ap-
proaches (15–18) that can detect pairwise interactions in
cross-sectional studies with quantitative traits but they are
simply not scalable to higher-order interactions. More-
over, current methods for detecting epistasis do not ad-
dress the complexities and challenges involved in longi-
tudinal datasets that allow studying the natural trajec-
tory of traits and/or disease progression. As a solution,
we propose a novel approach of epistasis detection, called
epiMEIF, using a mixed-effect conditional inference forest
(MEIF). The goal of our approach is to reveal higher-order
interactions of genetic variants for complex quantitative
phenotypes.

Recursive partitioning approaches or tree-based algo-
rithms like random forest have already proven to be ef-
fective for detecting the genetic loci and their interactions
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Figure 1. Global overview of epiMEIF: 1) The method begins with a set of SNPs potentially associated with the phenotype obtained from a single-locus
association test (via LMM). SNP markers that have a nominally significant effect on the phenotype are selected. 2) The mixed effect conditional inference
forest (MEIF) is applied to the phenotype, selected SNPs, and other additional covariates that might explain the variability of the phenotype. 3) Identified
SNP interactions from MEIF are subjected to additional statistical testing (ANOVA and Max-T test) that helps in filtering the stable interactions. 4) The
final set of interactions can be visualized in two ways: a) the interaction score table that captures the different sets of interaction and their associated
score from epiMEIF and b) as an interaction network where the nodes denote the different variants, and the edges denote the interactions from epiMEIF.
Different order interactions are illustrated by different coloured edges in the network.

that impact the phenotypic outcome in case–control stud-
ies (7,8,19,20). Nevertheless, MEIF extended the applica-
tion of tree-based algorithms beyond case-controls studies.
It is particularly an improvement over existing methods be-
cause it (i) demonstrates how tree-based algorithms can be
adapted for detecting higher-order interactions from com-
plex phenotype datasets (both cross-sectional and longitu-
dinal) using conditional inference forest (cforest), (ii) simul-
taneously account for missing/censored genome data us-
ing cforest, and other confounding factors like population
structure in the GWAS datasets using mixed effects model.
Moreover, we propose to substantiate the epistatic interac-
tions obtained from MEIF using two additional statistical
testing approaches: Max T-test and ANOVA test (see Fig-
ure 1 and Materials and Methods, for more details). Overall,
epiMEIF provides a generalized way to obtain genetic vari-
ants and their higher order interactions from any GWAS
data.

To the best of our knowledge, an alternative approach
that can detect higher-order interactions in both cross-
sectional and longitudinal datasets does not exist, there-
fore preventing us from evaluating our method via bench-
marking. Hence, to evaluate our method, we applied it
to an extensive simulation study and illustrated the power
performance of the method under several practically rel-
evant scenarios. We then analysed its performances on a
real dataset: natural variation of heart period in young flies
(Drosophila) and heart period during aging in Drosophila,
where heart period measures the duration of a com-
plete cardiac contraction/relaxation cycle. We evaluated the
method’s performance based on its ability to validate in an
independent cohort and to recover previously published ge-
netic data associated with cardiac functions. We demon-
strate that the obtained networks of statistical interactions
provide insightful information with respect to cardiomy-
ocytes’ structure and functions. These analyses illustrate the
high performance of the method to identify higher-order in-
teractions from both cross-sectional and longitudinal data.
The proposed statistical methods are implemented in R and

the source codes can be found in the Github repository
(https://github.com/TAGC-NetworkBiology/epiMEIF).

The manuscript is organized as follows: a precise
overview of the Materials and Methods is presented in Sec-
tion Materials and Methods and more details pertaining to
Materials and Methods can be found in the Supplementary
Materials. Section DGRP Cardiac Dataset presents details
on the Drosophila Cardiac Dataset on which the epiMEIF
method is applied. The results obtained from the implemen-
tation of the method on real and synthetic datasets are pre-
sented in Section Results, where the inferences from cross-
sectional data applications are presented in Section Appli-
cations on cross-sectional Data, and longitudinal data ap-
plications in Section Applications on longitudinal data. The
paper concludes with a discussion in section Discussion.

MATERIALS AND METHODS

We propose an approach for epistasis detection using a
mixed effect conditional inference forest to identify the ge-
netic variants and their epistatic interactions responsible
for the complex quantitative traits. The novelty of this ap-
proach lies not only in the epistasis detection but also in
the amalgamation of the mixed effects model and condi-
tional inference forest (cforest). We have divided the ex-
planation of the method into four parts: (i) we explain
the MEIF model, (ii) we illustrate how the tree structure
in the conditional inference forest (cforest) is utilized to
detect high-order SNP interactions that impact the varia-
tion of the phenotype, (iii) we explain how MEIF can be
adapted to weighted MEIF, this is particularly useful for
cross-sectional datasets and (iv) we show how the interac-
tions from the MEIF can be validated using independent
statistical tests. Cforests, developed by Torsten Hothorn
et al. (53), can be considered as an alternative to the ran-
dom forests where the ensemble algorithms use conditional
inference trees as base learners. More details on the usage of
cforests can be found in the Supplementary Materials where

https://github.com/TAGC-NetworkBiology/epiMEIF
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we present an extended/detailed version of the Material and
Methods.

Mixed effect conditional inference forest (MEIF)

Our method is primarily inspired by the mixed effect ran-
dom forest (MERF) proposed by Hajjem et al. (21). It is
a combination of random effects model and random for-
est where the application of random forest is extended to
clustered data for a continuous outcome. Note that they did
not consider any fixed effects outside the random forest in
their model. We aim to implement MERF on genomic data
where some of the variants may not be properly sequenced
for all the samples and often suffer from missing data is-
sues. To fit a random forest on genotype data with miss-
ing values one usually needs to impute the genotype data
and then apply the above method. To avoid that, we pro-
pose MEIF, where we combine the mixed effects model with
cforests instead of random forests and we have elaborated in
the supplementary materials on how we have extended the
MERF model to the generalized MEIF model for our ap-
plication (section S1.1). MEIF can simultaneously account
for missing/censored genome data using cforest, and other
additional covariates or confounding factors like popula-
tion structure in the GWAS datasets using the mixed ef-
fects model. The mixed effects conditional inference forest
(MEIF) used in our method can be defined as follows:

yi = ∑
a j Xi j + Zi bi + f (Si1, Si2, · · · , Si N, Ti ) + εi ,

bi ∼ Nq (0, D) , εi ∼ Nni (0, Ri ) ,
i = 1, . . . , K j = 1, · · · , p,

∑
ni = n

(1)

where

• i is the cluster index. Assume that there are Kclusters in
the training data (e.g. in the Drosophila cardiac genetic
dataset, cluster denotes the Drosophila strain where all
flies within a strain have the same genotype data and are
assumed to have a same phenotype distribution),

• yi is the response variable. yi = [yi1, yi2, · · · , yini ]
T is the

ni × 1 vector of responses for the ni observations in clus-
ter i (e.g. in the Drosophila cardiac genetic dataset, yi is
the phenotype of interest corresponding to all the flies ob-
served within a particular strain i ),

• Xi j = [X1
i j , X2

i j , · · · , Xni
i j ]

T
is the ni × 1 vector of

jth fixed-effect covariate for cluster i, and X j =
[X1 j , X2 j , · · · , XK j ]T is the n × 1 vector of jth fixed-effect
covariate over all clusters (e.g. in the Drosophila cardiac
genetic dataset, Xi j comprises the variables like the date
on which fly is dissected),

• Zi is the ni × q matrix of random-effect covariates for
cluster i that we do not intend to include in the
cforest (e.g. in the Drosophila cardiac genetic dataset,
Zi comprises strain covariate to which the fly belongs).

• S1, S2, · · · SN are the marker variables in our study
and T capture the time or the longitudinal compo-
nent of the data (Ti denotes the time at which yi
is observed). f (Si1, Si2, · · · , Si N, Ti ) is ideally estimated
using conditional inference forest (cforest). The covariate
time (T) can be omitted for cross-sectional data.

• a j is fixed effect of the jth covariate,

• bi is the q × 1 unknown vector of random effects for clus-
ter i . bi follows normal distribution with mean 0 and vari-
ance covariance D, for cluster i = 1 . . . K.

• εi is independent, identically distributed (i id) noise. εi fol-
lows normal distribution with mean 0 and variance co-
variance Ri , for cluster i = 1 . . . K.

Note that we incorporate the cforest on the markers and
time covariate only as we would like to capture the non-
linear effects of the genotype on the phenotype and ex-
tract the interacting genotype components that might im-
pact the phenotype. Similar to GWAS methods like GCTA
(22), EMMAX (23), MEIF can also incorporate the popu-
lation structure in GWAS data with the random effects com-
ponent shown in Equation (1). The model in Equation (1)
can be modified as follows to incorporate population struc-
ture in GWAS data:

yi =
∑

a j Xi j + g + f (Si1, Si2, · · · , Si N, Ti ) + εi , (2)

Here, g is a n × 1 vector of the total genetic effects of the
individuals with g ∼ N(0, Aσ 2

g ), and A is interpreted as the
genetic relationship matrix (GRM) between individuals. We
can therefore estimate σ 2

g by the restricted maximum likeli-
hood (REML) approach as in other GWAS.

Pooling data across all the clusters in equation (1), we
have the following MEIF model for cross-sectional dataset:

Y = Zb + a′ X + f (S1, S2, · · · , SN) + ε

⇒

⎛
⎜⎜⎜⎜⎜⎝

y1

:
yi

:
yK

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

Z1 · · · 0
...

. . .
...

0 · · · ZK

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

b1

:
bi

.

bK

⎞
⎟⎟⎟⎟⎟⎠

+ 〈X1 |..| XL〉

⎛
⎜⎜⎜⎜⎜⎝

a1

:
a j

.

aL

⎞
⎟⎟⎟⎟⎟⎠

+ f (S1, S2, · · · , SN) + ε

For longitudinal dataset, the above models can be written
as follows:
⎛
⎜⎝

Y1

:
Yt

⎞
⎟⎠ =

⎡
⎢⎢⎣

Z1 · · · 0
...

. . .
...

0 · · · Zt

⎤
⎥⎥⎦

⎛
⎜⎝

b1

:
bt

⎞
⎟⎠ +

⎛
⎜⎝

a1′
X1

:
at′ Xt

⎞
⎟⎠ + f (S1, S2, · · · , SN, T) + ε

where t denote the total number of time points in the longi-
tudinal data and superscript t for each component denote
the corresponding response and predictors at time point t.
Note that we have adopted the approach of the original arti-
cle (21) to fit the above model (an expectation-maximization
(EM) technique is used to fit the different components of
MEIF). We have integrated the cforest function in the par-
tykit R package (24) with the MERF R codes provided by
Hajjem et al. (21) to build MEIF in R. The source codes
of MEIF can be found in the Github repository (https:
//github.com/TAGC-NetworkBiology/epiMEIF). More de-
tails on the MEIF model can be found in the Supplementary
Materials (section S1.1).

Epistatic interactions detection with Epi-MEIF

The random forest technique has been predominantly used
for classification and prediction analyses (25) and as a fea-
ture selection tool (26). Moreover, unlike the single marker

https://github.com/TAGC-NetworkBiology/epiMEIF
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Figure 2. Detecting interaction from tree-based methods. (A) Example tree
generated by the cforest algorithm. SNP pairs A and B, A and C, A and
D, A, and E, C and D, C and E, and D and E represent descendant pairs,
which may indicate epistatic genetic effects, whereas SNP pairs B and C,
B and D, and B and E represent non-descendant pairs, which may indi-
cate independent additive genetic effects. (B) Example tree generated by
the cforest algorithm when applied to a longitudinal dataset.

GWAS model such as GCTA (22) or FastLMM (27), the
phenotype predicted using random forest (RF) or cfor-
est accounts for the combined/interaction effect of various
SNPs (8). In this regard, another unique feature of forest-
based algorithms is that the tree structure in the forest can
be exploited to detect the SNP interactions. The nature of
the trees constructed in the forest allows for interaction de-
tection in the sense that each path through a tree corre-
sponds to a particular combination of values taken by cer-
tain predictor variables, thus including potential interac-
tions between them. If a particular path (or a sequence of
covariates) occurs more often than the others in multiple
trees of the random forest, we can claim the group of vari-
ables in the path are in interactions. We explain in the sub-
sequent sections how to detect interactions from MEIF in
cross-sectional and longitudinal datasets.

It is noteworthy to mention here that MEIF is not scal-
able to an entire genome-wide setting. Hence, to retrieve
the set of SNP inputs for MEIF, we propose to apply
a single-locus association analysis (using a linear mixed
model (LMM)) that helps to filter the SNP markers that
have a significant effect on the phenotype. This can help
in alleviating the computational burden of epiMEIF (illus-
trated in Figure 1). Note that after fitting MEIF (using
the model in Equation (1)) on the above-mentioned SNPs
and the other environmental and population covariates, the
cforest ( f ) component is extracted to detect epistatic inter-
actions.

Detecting epistasis in cross-sectional data. Figure 2A il-
lustrates the mechanism of epistasis set construction from
the random forest/conditional inference forest in the cross-
sectional dataset (28). Precisely, if two SNPs, C and E have a
large epistatic effect then the combination C and E will ap-
pear more often in the same branch of a tree than in other
branches or trees (see Figure 2A). This combination will
thus form a parent/descendant (child, grandchild and so
on) pair. On the contrary, if two SNPs, like B and C, have
large but independent main effects on the response variable,
they will also appear frequently within the same tree, but
in different branches (that are not descendant pairs) (see

Figure 2A). Thus, the descendant pairs that occur most fre-
quently in the forest can be recognized as possible pairwise
epistatic interactions. Similarly, C, D and E are expected to
occur more often in the same branch of the tree if they have
a large epistasis effect (see Figure 2A). The tree structure
thus allows to identify higher-order (more than binary) in-
teractions. Appendix 1 further elaborates the different steps
of the MEIF.

The mechanism illustrated in Figure 2A will finally yield
the list of all potential interaction sets from the forest. We
compute a SNP Interaction matrix (I) that measures the
strength of each interaction set based on their frequency of
occurrence in the same branch of the forest (see Appendix
1). Note that the above mechanism is relevant for identify-
ing interactions in cross-sectional phenotype-genotype as-
sociation studies and it needs to be extended for longitudi-
nal case studies.

Detecting epistasis in longitudinal data. Ideally, the longi-
tudinal aspect of the dataset is captured with the variable
‘Time’. It is worthwhile to point out here that with regards
to the data applications discussed in the current article,
we are essentially interested in those interactions where the
temporal variation of the phenotype changes significantly
from any of the alternative genotype combinations to the
reference genotype combination (reference: genotype com-
bination arising from the combination of major alleles of
multiple SNPs, alternative: all genotype combinations ex-
cept the reference). Hence, the entire process of extracting
interactions from MEIF in the longitudinal data applica-
tion comprises two steps:

1. Remove the longitudinal phenotypic trend of the reference
population: This is done using the following approach.
The MEIF model is fitted and the phenotype Ŷ is pre-
dicted for the genotype data where all SNPs have ma-
jor alleles i.e. SNPi = 0, ∀i ∈ {1, · · · , N}, keeping the
other covariates fixed. The predicted phenotype can be
denoted as Ŷre f erence population and this effect is removed
from the true phenotype (Ỹ = Y − Ŷre f erence population).
Finally, the MEIF is implemented on the resultant phe-
notype Ỹ and the interactions are extracted using the
mechanism discussed below.

2. Extract the interactions from the resultant MEIF: The
mechanism to extract interactions from the trees in the
longitudinal MEIF application is illustrated with the
help of Figure 2B. Since our primary objective is to cap-
ture the epistatic interactions that are responsible for the
change of the phenotype over ‘Time’, we focus on those
branches of the trees that have ‘Time’ in at least one of
the child nodes (see Figure 2B). If A, C and D appear
more often in the same branch of a tree as the ancestor
of ‘Time’, then A, C, and D are expected to have epistatic
effect having an impact on the longitudinal variation of
the phenotype (see Figure 2B). Each path of SNPs from
root to leaf preceding the node having the ‘Time’ covari-
ate is a possible interaction. Certain combinations of the
SNPs that appear more frequently in the same branches
are believed to interact with each other. Adopting this
intuition, we extract all SNP interactions using the com-
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binations of SNPs from the forest that are in the same
branch as ‘Time’ in the forest. Thereafter, we build SNP
Interaction matrix (I) that measures the strength of each
interaction set based on their frequency of occurrence in
the same branch.

Combining 1) and 2) will indeed yield the SNP interac-
tions where at least one of the alternative genotype combi-
nations generates a significantly different longitudinal trend
from the reference genotype combination. As illustrated in
Appendix 1, we fit 10 cforests or MEIFs after removing the
longitudinal trend of the reference population and then ob-
tain the interaction sets that are occurring with high scores
in 90% of the forests (9/10 forest). Further illustrations
on detecting interactions from longitudinal datasets can be
found in the extended Material and Methods in the Sup-
plementary Materials (Section S1.2.2 and Supplementary
Figure S1).

Weighted conditional inference forest

A notable shortcoming of tree-based methods is that they
are dependent on marginal effects (8). The main associ-
ation effect of the SNP on the phenotype is denoted as
the marginal effect here. To address this, we developed
a weighted adaptation of mixed effect conditional infer-
ence forest (weighted epiMEIF). The Linear Mixed Model
(LMM) or any single-locus association test, that we pro-
pose to apply prior to MEIF application provides the sig-
nificance of each variable in the phenotype-genotype as-
sociation dataset. We utilize this to rank the SNPs based
on the size of their marginal effects and the P-value from
the LMM. The weight assigned to each SNP is inversely
proportional to the rank of the SNP (i.e. highly significant
SNPs have lower weights). This ensures that SNPs with
higher marginal effects are drawn less during the tree con-
struction, thereby increasing the chance of capturing inter-
actions involving SNPs that have low marginal effects (29).
More details on the weight design can be found in the ex-
tended Material and Methods section in the Supplementary
Materials (Section S1.3 and Supplementary Figure S2).

One hurdle for the longitudinal data is to decide on the
weight of the ‘Time’ covariate. Assigning a heavy weight can
lead to trees where ‘Time’ is often selected at the root node,
whereas assigning a low weight can end up with trees where
is ‘Time’ is never selected for any node. So, we avoided the
weighted cforest or weighted epiMEIF application for lon-
gitudinal data and have applied it only for cross-sectional
simulated and real datasets.

Epistasis network validation

We propose to perform an independent statistical test on
the interaction lists obtained from the MEIF. The objec-
tive of this testing step is to further substantiate the interac-
tions obtained from MEIF and help to get rid of false posi-
tives if any. Within this statistical validation framework, we
intend to address two primary questions: (i) Do the SNP
combinations in each high-order interaction (selected from
the MEIF) give rise to a significant impact on the variation
of the phenotype? (ii) Is the impact of this SNP combina-
tion better than any random combination of N SNPs, where

N is the size of the high-order interaction (under investiga-
tion)? To address this, we perform the ANOVA and Max-
T test. For each interaction set of size N, ANOVA method
tests if the N-SNP interaction is statistically significant. It is
analogous to the regression-based-test (30,31) where logis-
tic regression or linear regression are used to assess the im-
pact of SNP interactions on diseases or quantitative traits.
They typically compare the saturated model that includes
interactions against the reduced model that omits interac-
tions using likelihood ratio tests. Max-T test, on the other
hand, tests if the SNP combinations in each higher-order
interaction (size N) give rise to a significant impact on the
variation of the phenotype and if the impact of this SNP
combination is better than any random combination of N
SNPs (see Supplementary Box 1). More details on the two
testing approaches can be found in the extended Material
and Methods section in the supplementary materials (Sec-
tion S1.4 and Supplementary Figure S3). Note that while
the Max-T test is scalable to higher order interactions, the
ANOVA test may not be always scalable to high order in-
teractions. Since we obtain interaction of maximum order
4 in the real dataset used in this article (DGRP dataset), we
applied both ANOVA and Max-T test here.

DGRP CARDIAC DATASET

The epiMEIF method has been developed in the frame-
work of a project aiming to identify the genetic architec-
ture of natural variations associated with cardiac aging in
Drosophila. We analysed the cardiac performances in a nat-
ural population of young (1 week) and old (4 week) flies
from the Drosophila Genetic Reference Panel (DGRP (32)),
a population consisting of 205 inbred lines derived by 20
generations of full-sib inbreeding from inseminated wild-
type caught female flies from the Raleigh, USA population.
Whole-genome sequencing data, along with genotype calls,
are available for all 205 lines. Contractility and rhythmic-
ity were measured in females, using ∼2000 flies from 168
DGRP lines at 1 week and 1800 flies from 165 lines at 4
weeks. More details on the phenotype and genotype dataset
can be found in Saha et al., (33) and in the Supplementary
Materials (Section S3 and Supplementary Figure S4). An
additional dataset of 20 DGRP lines was also analysed by
us where the cardiac performance was studied following the
same approach (with 12 flies observed per line) that was
not used in the model development. We treat this dataset
as our validation dataset and utilized it to test if the genetic
interactions predicted from epiMEIF method in the orig-
inal dataset have an impact on the phenotypic variations
in this independent dataset. More details on the DGRP
dataset and the pre-processing and quality control of the
above datasets can be found in the Supplementary Material
(Section S3).

RESULTS

Overview of Epi-MEIF

We have proposed a new method for epistasis detection in
large-scale association studies with complex genetic traits.
The method begins with fitting the MEIF model on a set of
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SNPs potentially associated with the phenotype (and addi-
tional covariates, if any) and exploits the tree structure in
cforest to compute the SNP Interaction matrix (I). It mea-
sures the strength of each interaction set based on their fre-
quency of occurrence in the same path of the forest. There-
after, the interactions in I are verified using additional test-
ing strategies (Max-T test or ANOVA test) leading to the
final SNP Interaction matrix (F). These independent test-
ing strategies increase the reliability of the final interac-
tions and help to get rid of false positives if any. Finally,
the SNP Interaction matrix (F) helps to build the statistical
epistatic network of genetic variants. The complete work-
flow is illustrated in Figure 1. Seldom, the tree-based al-
gorithms are criticized to be biased toward variants with
high marginal effects. To address that caveat, we developed
a weighted adaptation of mixed effect conditional inference
forest (Weighted epiMEIF), where the probability of select-
ing the variant during the root node construction of the tree
depends on the significance of the predictor variable from
the single-locus association; higher the significance, lower
the sampling weight. Note that the novelty of the proposed
epiMEIF approach is 2-fold: extension of MERF proposed
by Hajjem et al. (21) primarily to address the challenges per-
taining to GWAS data, and proposing a new method to ex-
tract high order epistasis, which makes epiMEIF more than
an extension of MERF.

We analysed the performance of epiMEIF on real
datasets: natural variation of heart period in young flies
(Drosophila) and heart period during aging in Drosophila.
To further evaluate our method, we analysed the power per-
formances of epiMEIF under diverse simulation scenarios.
We have presented the simulation scenarios and results from
the simulations and real data analyses in the upcoming sec-
tion. More details on the simulation scenarios can be found
in the Supplementary Materials (Section S4).

Applications on cross-sectional data

Analysis on simulated data. We evaluated the statistical
power of the method with the help of synthetic datasets
where the ground truth genetic architecture is known.
We used the genotypes of the widely used Drosophila
Melanogaster Genetic Reference Panel (DGRP (32)) to de-
sign our simulation scenarios. The genotype data in our sce-
narios comprised 1,000 SNPs with a minor allele frequency
(MAF) >0.1 subsampled from 2 456 752 genome-wide
SNPs of the DGRP genome dataset. We considered three
simulation scenarios where all are additive models contain-
ing four SNPs with marginal effects and 2 to 4 SNPs with
interaction effects (see Figure 3 and Supplementary Mate-
rials Section S4, to better understand the overall schematic
of how the simulations are conducted). The scenarios differ
only in the number of interaction pairs/sets and the number
of SNPs involved in these interactions. Scenario 1 considers
the simplest scenario where there exists only 1 two-SNP in-
teraction in the linear additive model (called SN1), Scenario
2 comprises 2 two-SNP interactions (SN2) and Scenario 3
comprises 1 three-SNP interaction (SN3). Note that SN2 is
so designed such that the set of SNPs involved in the first
binary interaction has a lower marginal effect (5 and 6 in
SN2, see Figure 3) and SNPs involved in the second binary

interaction have a higher marginal effect (7 and 8 in SN2, see
Figure 3). Apart from the 6 to 8 SNPs (1, 2, .., 8, illustrated
in Figure 3) with which the model is built, we randomly
add 30 or 50 other SNPs (from the set of 1000 SNPs) and
conducted 100 simulations for each scenario (see Supple-
mentary Materials Section S4 for more details). Note that
MEIF implementations in R take around a minute for data
with 200 SNPs. More details related to the computation ef-
ficiency of the method can be found in the Supplementary
Materials (Section S2 and Supplementary Figure S5).

We evaluated the performance of our approach based on
the proportion of simulations (out of 100) where the true
interactions (example: two-way interaction 5–6 is the true
interaction in SN1, see Figure 3) are captured. We call it
‘the overall power in capturing the true epistatic interac-
tions’ and explored the overall power for both epiMEIF and
weighted epiMEIF (see Table 1). For both the adaptation,
the overall power in detecting the true interactions is con-
sistently satisfactory ranging between 90 and 100% across
the scenarios SN1 and SN2. The power to detect the binary
interactions in SN2 is higher (2–4% increase) with weighted
epiMEIF compared to epiMEIF. Note that despite the in-
creased complexity in identifying higher order interactions
(non-binary) in SN3, we attain a power of 70–90%.

Since epiMEIF provides a score for each interaction de-
pending on the strength of the interaction sets from the
cforest, we also investigated how often the true interactions
are captured as the top-ranking interactions (based on the
score) in our simulation scenarios (see Supplementary Fig-
ure S6). We observed that the weighted epiMEIF can cap-
ture the true interaction more efficiently compared to the
epiMEIF for the cross-sectional data simulations (weighted
epiMEIF appeared in the top ranks 10–30% more often
than epiMEIF in Supplementary Figure S6). The power
gain is more prominent for the simulation results with 30 ad-
ditional SNPs. It is noteworthy to mention here that though
the ‘overall power’ of weighted epiMEIF (71%-86%) is lower
than epiMEIF (80–90%) in SN3 (see Table 1), the power to
detect the true interactions in the top ranks is much higher
in weighted epiMEIF (45–80%) compared to epiMEIF (37–
45%) (see Supplementary Figure S6c). Overall, weighted
epiMEIF is more effective than epiMEIF as it gives com-
paratively robust results across all the scenarios and more
often selects the true interactions as top-ranking.

Furthermore, to demonstrate that the mechanism to
explore high order epistasis interactions (elaborated in
Appendix 1) is also applicable for other tree-based al-
gorithms like MERF, we have implemented the adapted
MERF model in Equation (1), but without replacing
the randomForest R function with the cforest R func-
tion (R codes are provided in https://github.com/TAGC-
NetworkBiology/epiMEIF). We have conducted simula-
tions to compare the performance of MEIF with the MERF
model in extracting higher-order interactions. We have com-
pared epiMEIF and weighted epiMEIF with MERF for sim-
ulation scenarios SN1 and SN3 with 50 additional SNPs
and found MERF has highly comparable performance with
the weighted epiMEIF (see Supplementary Figure S7). Note
that MERF is easily applicable for the simulated datasets
as there was no missing genotype information in the sim-
ulated data. However, despite the comparable performance

https://github.com/TAGC-NetworkBiology/epiMEIF
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Figure 3. Step-by-step schematic diagram illustrating the simulation pipeline: 1) Select a simulation scenario Scenario 1 (SN1), Scenario 2 (SN2), or
Scenario 3 (SN3) involving the SNPs 1 to 8. 2) The set of SNPs for fitting epiMEIF in the simulated data is prepared using the SNPs with which the
simulation scenario is built, and randomly selected SNPs from the set of 1000 SNPs that are not associated with the simulated phenotype (highlighted in
red). These additional markers in Step 2 act as noise and help to evaluate the power of the method. 3) Fit epiMEIF (or weighted epiMEIF) and obtain the
set of interactions. Repeat steps 1 to 3, 100 times. 4) Detect the proportion of times epiMEIF can capture the true interaction (e.g. Interaction between 5
and 6 in Scenario 1) amongst the 100 iterations.

Table 1. Proportion of simulations (out of 100) capturing the true interac-
tions for the different Age 1 simulation scenarios under the two additional
sample size cases (30 and 50)

#Captured (%)*

#Additional SNPs 30 50

Method MEIF WMEIF MEIF WMEIF

SN1 100 100 100 100
SN2 (SNP 5: SNP 6) 93 95 90 94
SN2’ (SNP 7: SNP 8) 90 94 92 94
SN3 91 86 80 71

*#Captured (%):
∑

i I(interaction detected in i th simulation)
100 , where I is an indi-

cator variable.

between MEIF and MERF we prefer MEIF because it can
handle well missing genotype data and data imputation is
not necessary. Hence, MEIF is more suitable for the data
applications (GWAS data) discussed in this article.

Analysis on real data: epiMEIF network construction for nat-
ural variations of heart period in flies. Testing epiMEIF
on simulated data showed its power for capturing both bi-
nary and higher order interactions among SNPs potentially
associated with the phenotype. We, therefore, tested the
method’s ability to detect statistical interactions from the
GWAS data on cardiac performance traits in Drosophila.
Drosophila is an ideal model to study heart development
and adult cardiac function (34–36). We recently investigated
the genetic architecture of cardiac performance in young (1
week) flies from the DGRP population and gained insights
as to the molecular and cellular processes affected (33). Im-
portantly, correlations observed between identified genes
and cardiac dysfunction suggested a conserved genetic ar-
chitecture of cardiac function in both flies and humans
(33). Leveraging this dataset, we investigated how weighted
epiMEIF would detect epistasis interactions among vari-
ants associated with natural variations of heart period (HP).
To accommodate computational requirements of weighted
epiMEIF, interactions were tested on variants that show
significant association with the quantitative trait from the
single GWAS LMM, with a nominal significance threshold

of 10−5 (3484 SNPs, see Supplementary Materials). Finally,
weighted epiMEIF application on HP dataset led to a dense
network of 35 interacting SNPs (Figures 4 and 5A). We have
first illustrated the statistical interaction network obtained
from weighted epiMEIF (Figure 4) and then illustrated the
biological significance of the corresponding network with
the most connected nodes (Figure 5A). Binary and higher-
order statistical interactions were combined to illustrate the
interaction network obtained from the weighted epiMEIF
(Figure 4A) and some of the four-way and three-way in-
teractions are highlighted in Figure 4B and C. We have
also illustrated how different allelic combinations of SNPs
involved in a selected higher-order interaction are associ-
ated with significant HP variations (see Figure 4D). On
the contrary, the allelic combinations of SNPs randomly
selected in the network (and not participating in a de-
tected interaction) have no effect on the phenotype (see
Figure 4E).

Remarkably, many genes in the network have known
cardiac functions, in flies and/or in mammals, and the
network connects variants in genes whose function
and/or subcellular localization are highly correlated
(Figure 5A, Supplementary Table S1). In particular,
it includes several genes encoding proteins known to
interact with actin - either sarcomeric (cheerio (cher,
human orthologue FLNC)- denoted by cher/FLNC
henceforth-, Zormin/MYPN) or non sarcomeric
(Src oncogene at 42A (Src42A)/FRK, cher/FLNC,
CG32264/PHACTR1-2, Paxillin(Pax)/PXN,
Rho GTPase activating protein at 71E
(RhoGAP71E)/ARHGAP20)––and with myosin
(smog/GPR158). In tight interaction with the extra-
cellular matrix (ECM), cytoskeletal proteins play a central
role in the mechanical and signalling properties of the car-
diomyocytes (37). From this perspective, it is remarkable
that two genes encoding ECM components––multiplexin
(mp)/Col15-18 and tenectin (tnc)/ AKAP12––have a
central place in the network and share many interactions.
A third collagen containing ECM constituent, mspondin
(mspo)/SPON2, also participates in the network. Im-
portantly, mspo––whose mammalian orthologue has a
cardioprotective activity (38)––, is known to interact
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Figure 4. Weighted epiMEIF high-order statistical interactions detected on natural variation of heart period in flies: (A) illustrates the network obtained
by accumulating the detected high-level interactions obtained when weighted epiMEIF is fitted on the cardiac heart period of the DGRP population at
1 week. The different nodes denote the variants from the DGRP genotype data that are detected with the epiMEIF. Whenever the variants are mapped
to a gene, the nodes are annotated with the corresponding gene name (instead of the variant name). The edge joining two nodes denotes an interaction
and the thickness of the edge quantifies the number of common interactions shared by the two nodes. (B) and (C) respectively highlight (in red) some of
the four-way and three-way interactions detected by epiMEIF. (D) The boxplot shows how the phenotype distribution varies across the different genotype
combinations arising from the selected 4-way interaction: sm-mp-tnc-Sh (in red). Max-T test/ANOVA test is performed to verify the selected high-order
interaction obtained from MEIF. The P-value for the selected interaction in both tests is <0.001. (E) shows how the three-way interaction generated from
a group of SNPs selected randomly from the epiMEIF network (not sharing edges/interactions) does not have any effect on the variation of the phenotype.
The P-value from the anova test is 0.71, reporting an insignificant effect of the genotype on the phenotype.
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Figure 5. Weighted epiMEIF high-order statistical interactions detected on natural variation of heart period in flies with biological annotations: (A) shows
the network obtained when weighted epiMEIF is fitted on the cardiac heart period of the DGRP population at 1 week. The different nodes denote the
different variants in the weighted epiMEIF network, and wherever possible, they are annotated based on the genes to which the variants are mapped. The
nodes are coloured according to their cellular and molecular functions, and the colour legend on the right denotes the different cellular and molecular
processes (BP: biological process, CC: cellular component, MF: molecular function) expressed in the epiMEIF network. The coloured boundary of the
node denotes if the annotated genes have mammal orthologs associated with the cardiac phenotype. (B) Part of the network in (A) that can be validated
with the validation cohort using ANOVA/Max-T test.

genetically with Pax. Pax encodes an adaptor protein that
couples integrins to the actin cytoskelon (39). epiMEIF
interactions may thus point to a central role of the
collagen-containing ECM in the mechanisms leading to
the variability of HP phenotype, probably by impacting
cytoskeleton dynamics. In addition, the activity of the
non-receptor tyrosine kinase Src42A, which is involved
in several cellular processes including cell adhesion and
cytoskeleton organization, was shown to be regulated by
Ankyrin-repeat, SH3-domain and Proline-rich-region con-
taining protein (ASPP)/PPP1R13B (40). Of note, several
SNPs in both ASPP and Src42A are present in the network.
Moreover, the network highlights other important features
of natural variations of cardiac function, such as variants in
easily shocked (eas)/ETNK1, an ethanolamine kinase with
essential cardiac function (41), in Shaker (Sh)/KCNA1, a
voltage-gated potassium channel encoding gene involved in
setting the cardiac rhythm (42). Finally, it is worth noting
that variants in tnc and mp interact with variants within
smooth (sm)/HNRNPL and poly-glutamine tract binding
protein 1 (PQBP1), two genes involved in mRNA splicing,
suggesting that regulation of ECM components through
mRNA splicing impinges on natural variation of HP.

Validation of the results. We then tested if the epiMEIF
network for heart period was replicated in an indepen-
dent cohort. Twenty DGRP lines––not included in the first
dataset and therefore not used in building the statistical in-
teraction network––were analysed for cardiac phenotypes
at 1 week. We used Max-T and ANOVA tests to test whether
epiMEIF interactions were replicated in this independent
population. Note that the interaction network comprised
45 binary interactions that are not part of any higher or-
der interactions, 33 three-way interactions that are not part
of any four-way interactions, and 2 four-way interactions

(see Supplementary Figure S8a and Supplementary Table
S2). We retained those interactions which performed well
either with the ANOVA test or Max-T test. Note that ap-
proximately 18% (8/45) two-way and 5% (2/33) 3-way in-
teractions could not be tested with the validation cohort
due to a lack of observations. Amongst the one tested 14%
(5/37) two-way interactions, 42% (13/31) 3-way interac-
tions, and 100% (2/2) four-way interactions could be vali-
dated (see Supplementary Figure S8b and Supplementary
Table S2). The biological significance of the part of the
epiMEIF network that can be validated with the validation
cohort is represented in Figure 5B. Note that only a part of
the network could be validated because the reduced num-
ber of lines in the validation cohort made it less powered to
test all the interactions. Nevertheless, the main character-
istics of the network (in Figure 5A) are found reproduced
in this independent population, including the centrality of
multiplexin (mp) and its interactions with tenectin (tnc)
and Shaker (Sh) (see Figure 5B). More details on the in-
teractions in the network can be found in Supplementary
Table S3.

Applications on longitudinal data

We have shown the efficacy of our approach with cross-
sectional datasets. Noticeably, the epiMEIF method is also
applicable for detecting genetic interactions from longitu-
dinal datasets. We have rarely encountered genetic inter-
actions being tested on longitudinal datasets in literature.
Malzahn et al., (43) tested for gene-gene interaction using
a longitudinal non-parametric association test on Framing-
ham Heart Study (FHS) cohorts, but they did not test for
higher-order interactions. Our approach is particularly in-
teresting because it also presents a way to explore higher-
order interactions in longitudinal data. Similar to the cross-
section data above, we have tested the efficacy of our ap-
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proach in longitudinal datasets via simulations and real data
applications.

Analysis on simulated data. We evaluated the statistical
power of the method on longitudinal datasets using simula-
tion scenarios similar to those used with cross-section data.
Here as well, we have three simulation scenarios––AS1,
AS2 and AS3. While AS1 considers the simplest scenario
with 1 binary interaction, AS2 considers a comparatively
complicated scenario with 2 binary SNP interactions. AS2
is designed as earlier; one set of SNPs involved in the in-
teraction has a lower marginal effect and the other set of
SNPs has a higher marginal effect. AS3 comprises 1 three-
SNP interaction (see Supplementary Materials for more de-
tails). For longitudinal data, we performed two sets of sim-
ulations. The first set of simulations comprises aging data
for two-time points (1 week and 4 weeks) and the second
set comprises aging data for three-time points (1 week, 4
weeks and 7 weeks). The latter is added to demonstrate that
the method is applicable for complex longitudinal datasets
as well (with more than two time points). We have con-
ducted our simulations 100 times for each scenario, and we
run each scenario with 30 or 50 additional variants, ran-
domly chosen from the genome data (with 1000 SNPs), as
performed earlier for cross-sectional data simulations. Note
that we have conducted the longitudinal simulations only
with epiMEIF. Calibrating weighted epiMEIF for the lon-
gitudinal dataset can be tricky as deciding a weight for the
‘Time’ covariate is challenging, as discussed earlier.

As in the previous simulations, we evaluated the perfor-
mance of epiMEIF on longitudinal data based on ‘the over-
all power in capturing the true epistatic interactions’ (see
Table 2) and the power to capture the true interactions as
top-ranking (see Supplementary Figure S9). The ‘overall
power’ is quite high (95–98%) across all the scenarios (see
Table 2). Both the ‘overall power’ and the ‘power to capture
the true interactions in the top ranks’ are similar across the
two situations- with 30 and 50 additional variants (see Ta-
ble 2, Supplementary Figure S9). However, epiMEIF is less
efficient in capturing the interactions involving SNPs with
lower marginal effect (power to capture the true interactions
in top ranks is as low as 10–20% for the interaction pair 1–2
in scenario AS2 in Supplementary Figure S9). For the lon-
gitudinal simulations with three-time points, we evaluated
the performance of epiMEIF for scenarios AS1 and AS3
based on the power to capture the true interactions as top-
ranking (see Supplementary Figure S10). Here as well, the
‘overall power’ and the ‘power to capture’ the top ranks are
similar across the two situations–with 30 and 50 additional
variants. The ‘overall’ power is ∼90–93% for AS1 and 60%
for AS3.

Overall, the power to capture true interactions is quite
satisfactory across all the scenarios and exploring higher-
order interactions with synthetic longitudinal data pre-
sented here is novel in GWAS.

Analysis on real data: epiMEIF network construction for
natural variations of heart period aging in flies. To fur-
ther evaluate our method for identifying epistatic interac-
tions from longitudinal data, we analyzed the aging of the
heart function in the DGRP population. Several cardiac ag-

Table 2. Proportion of simulations (out of 100) capturing the true interac-
tions for the different Aging simulation scenarios under the two additional
sample size cases (30 and 50)

#Captured (%)

#Additional SNPs 30 50
Method MEIF MEIF

AS 1 97 97
AS 2 (SNP 1:SNP 2) 98 98
AS 2 (SNP 5:SNP 6) 97 98
AS 3 96 94

*#Captured (%):
∑

i I(interaction detected in i th simulation)
100 , where I is an indi-

cator variable.

ing studies in Drosophila have revealed striking similarities
with mammals, both in terms of heart physiology and tran-
scriptional changes (34,35,44,45). This highlights the con-
served nature of cardiac aging across organisms. We anal-
ysed 165 of the DGRP fly lines included in the previous
dataset for the heart period at 4 weeks of age (12 individ-
uals per line). Overall, there is a marked increase in heart
period in the DGRP from 1 week to 4 weeks, in agreement
with the previous observation (see Supplementary Figure
S4). Both 1-week and 4-weeks data on the 165 DGRP lines
were used to identify epistatic interactions between variants
associated with natural variations of heart period during
aging. Similar to the previous 1-week study, epiMEIF in-
teractions were identified on variants that show significant
association with the aging of HP from the single GWAS
longitudinal LMM, with a nominal significance threshold
of 10−5 (1682 SNPs). Finally, epiMEIF application on HP
aging dataset led to a dense network of 26 interacting SNPs;
comprising 47 two-way that are not part of any three-way
interactions and 12 3-way interactions (Figure 6A, Supple-
mentary Table S4). Strikingly, the epiMEIF network com-
prises tightly interconnected variants within genes involved
in diverse biological processes, many of which have char-
acterized cardiac function, either in flies or in mammals.
In particular, the network includes variants in 3 genes en-
coding signalling pathway components, namely Allatostatin
C receptor 2 (Astc-R2), the somatostatine receptor ortho-
logue; red dog mine (Rdog), an ATPase-coupled transmem-
brane transporter orthologous to ABCC4; and CG15611,
the Rho guanine nucleotide exchange factor ARHGEF25
orthologue. Noticeably, rdog and CG15611 orthologues
have known autocrine or paracrine cardiac functions ei-
ther in humans or mice (46–48). This suggests a primary
role of natural variations of cardiac signalling properties
in heart senescence. In addition, the numerous interactions
that these SNPs engage in within the network suggest their
involvement in relation to the other variants associated with
the aging of cardiac function. Among these, one SNP into
Dpr-interacting protein κ (DIP-kappa)––encoding a cell ad-
hesion protein orthologous to LSAMP- interacts with 13
variants into 12 genes. One SNP into CG4704, which en-
codes the fly orthologue of the human MCU1 (Mitochon-
drial Calcium Uptake 1)––interacts with 10 variants into 9
genes. MCU1 is a regulatory subunit of the Mitochondrial
Calcium Uniporter, which plays a central role in calcium im-
port into the mitochondrion and in mitochondrial calcium
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Figure 6. epiMEIF high-order statistical interactions detected on natural variation of heart period aging in flies: (A) network obtained when epiMEIF
is fitted on the cardiac heartperiod aging data of the DGRP population (flies at 1 and 4 weeks). The different nodes denote the different variants in the
epiMEIF network, annotated based on the genes to which the variants are mapped. The nodes are coloured according to their cellular and molecular
functions. The colour legend on the right denotes the different cellular and molecular processes (BP: biological processes, CC: cellular component). The
coloured boundary of the node denotes if the annotated genes have mammal orthologs associated with cardiac phenotype. (B) Part of the epiMEIF network
in (A) that can be validated with the validation cohort using ANOVA/Max-T test. (C) A 3-way interaction between DIP-kappa-CG15611-CG12004 is
highlighted here. The boxplot distribution of the phenotype at 1 and 4 weeks against the different genotype combinations shows the aging effect of the
three-way interaction on the cardiac phenotype. The P-value from the Max-T test is <0.001.

ion homeostasis (49). This suggests a central function of
these components in the heart period aging. The most con-
nected node corresponds to a SNP that is more than 10 kb
away from any gene, precluding its annotation. The network
additionally includes SNPs in genes involved in cytoskele-
ton organization (Myosin binding subunit (Mbs), bitesize
(btsz)), carbohydrate transport (CG12004/TMEM184),
energy metabolism (CG7329/LIPM) and mRNA splicing
(CG7879/RBM12). Strikingly, five variants within 150 bp
upstream of the lncRNA CR45506 are retrieved in the net-
work, suggesting a major involvement for this lncRNA
in the process, throughout interactions with several other
members of the network. Taken together, these SNPs and
their interactions allow us to draw some characteristics of
the genetic architecture of natural variations in the aging
of cardiac function. More details on the interactions in the
network can be found in Supplementary Table S5.

Validation of the results. The twenty DGRP lines not in-
cluded in the first dataset were also analyzed at 4 weeks
of age, thus providing a validation set for cardiac aging
which was used to test for replication of the interaction us-
ing Max-T/ANOVA test in this independent cohort. 75%

(35/47) two-way interactions and 58% (7/12) three-way in-
teractions could be analysed in this validation cohort (see
Supplementary Table S6). Of them, 43% two-way (15/35)
and 43% three-way (3/7) were replicated (Figure 6B). Sev-
eral features of the network were replicated in the indepen-
dent cohort, including the involvement of rdog, CG15611
and Astc-R2. This also confirmed the central positioning of
DIP-kappa, whose implication in natural variations of car-
diac aging, therefore, warrants further investigations.

DISCUSSION

A new method is proposed here for epistasis detection in
large-scale association studies with complex genetic traits
using mixed effect conditional inference forest (epiMEIF).
This method captures higher-order SNP interactions based
on the tree structure in the cforest, and combined with
mixed models, can handle a wide range of complex GWA
studies. The effectiveness of epiMEIF is verified in exten-
sive simulation scenarios reflecting a wide spectrum of com-
plex models and with real datasets, illustrating its power
for epistasis detection from both cross-sectional and lon-
gitudinal data. The additional testing strategies applied a
posteriori to the conditional inference forest in epiMEIF
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not only safeguards the method from detecting false pos-
itive interactions but also increases the reliability of the
final selected interactions. The ability of the approach to
validate part of the higher-order interactions in an inde-
pendent cohort also supports its’ competency in detect-
ing higher-order interactions. Additionally, for the cross-
sectional datasets, we proposed an adaptation of epiMEIF,
named weighted epiMEIF that allows identifying genes as-
sociated with weak marginal effect variants. This is an im-
portant addition to the ‘traditional’ epistasis approaches
that are biased towards variants with strong marginal effects
(7,8,50). Similar to LMM, a major advantage of epiMEIF
is its’ ability to effectively account for unwanted correlation
between samples, thereby correcting for confounding fac-
tors such as population structure (51) or hidden covariates
(52) and making it easily applicable for human GWAS stud-
ies as well. However, unlike the standard LMM, epiMEIF
can jointly model the genetic effects of multiple loci or
markers on the readout. This is particularly important be-
cause recent works have revealed that often, the single-
locus association models are insufficient to explain the her-
itable component of complex traits (53,54). The proposed
approach has proven to overcome the caveats of existing
GWAS approaches and though we have shown its applica-
bility for identifying associations and epistasis detection, it
can be also used for prediction (55,56) and feature selection
(50,57). We however acknowledge that the method is not
scalable to the entire genome dataset and does not provide
an exhaustive list of interactions from the entire list of vari-
ants. Interestingly, the epiMEIF generates dense genetic in-
teraction networks that are creating hubs around some focal
genes. Part of this distinctive topology may be attributable
to the nature of tree formation in the cforest algorithm. It
is difficult to determine if this topology is also due to the
nature of the genetic interactions that may underlie this sta-
tistical network. The analysis of the networks obtained from
the study of natural variation in cardiac function undoubt-
edly sheds light and should indicate that the statistical in-
teractions reveal an underlying biological functionality. In-
deed, the vast majority of the interactions identified affect
genes whose products are involved in the cytoskeleton (sar-
comeric and non-sarcomeric) and its dynamics and, in in-
teraction with the extracellular matrix, must participate in
the mechanical and signalling properties of cardiomyocytes.

In systems biology, there is an emerging interest in un-
derstanding the genetic mechanisms underlying the study of
longitudinally measured phenotypes (58,59). Additionally,
it has been often discovered that complex diseases are the
results of interaction between a large number of units, and
therefore, are more likely to be associated with genes that
are well connected in the network (60). epiMEIF can com-
prehensively model the dynamics of longitudinal data and
cross-sectional data and offer to reveal the relationships be-
tween multiple variants, revealing the extensive networks of
genetic interactions that are causing the complex diseases.
The possibilities offered by epiMEIF will allow approach-
ing questions that were previously difficult to address, as
tools for the identification of epistatic interactions in com-
plex datasets were lacking. In particular, we do not know
when biomolecular interactions produce patterns of statis-
tical epistasis, nor do we know how to biologically interpret

statistical evidence of epistasis, since statistical interaction
likely does not automatically entail interaction at a biolog-
ical or mechanistic level. Progress towards these important
questions will provide a framework for using genetic infor-
mation to improve our ability to diagnose, prevent and treat
common human diseases (61). Hence, our approach pro-
vides the foundation for extracting higher-order statistical
interactions flexibly from any type of dataset, that will guide
the biologists in formulating their hypothesis. Eventually,
network analysis tools (62) may be useful to biologically in-
terpret the statistical evidence of epistasis and bridge the
gap between statistical and biological epistasis networks.
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APPENDIX 1. MEIF ALGORITHM

• Step 1: Fit the MEIF as shown in equation (1).
• Step 2: Extract the cforest component f̂ (S1, S2, · · · , SN)

from the fitted MEIF model, where in each forest the
decision is taken based on the cumulative decision from
n trees. Following the mechanism in Figure 2A each
tree gives rise to a potential interaction set {Qt, t ∈
1, 2, · · · , n}. Compiling all the interactions sets from the
n trees {Qt, t ∈ 1, 2, · · · , n}, SNP Interaction Matrix (I)
is computed, that measures the strength of each inter-
action set based on their frequency of occurrence in the
cforests.

• Step 3: Since cforest is a bagging algorithm where the in-
dividual trees are built from bootstrap samples, different
iteration of cforest may give rise to different SNP Interac-
tion Matrix (I). Hence, to enhance the stability of the final
interactions sets, we propose to fit the MEIF/cforest 10
times and then obtained the interaction sets that are oc-
curring with high scores in 90% of the forests (9/10 for-
est).

• Step 4: The interaction sets along with their pooled inter-
action score from the 10 forests are utilized to construct
statistical epistatic clusters (see Figure 1).


