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ABSTRACT

The interpretation of data-driven experiments in
genomics often involves a search for biological
categories that are enriched for the responder
genes identified by the experiments. However,
knowledge bases such as the Gene Ontology (GO)
contain hundreds or thousands of categories with
very high overlap between categories. Thus, enrich-
ment analysis performed on one category at a time
frequently returns large numbers of correlated
categories, leaving the choice of the most relevant
ones to the user’s interpretation.

Here we present model-based gene set analysis
(MGSA) that analyzes all categories at once by
embedding them in a Bayesian network, in which
gene response is modeled as a function of the acti-
vation of biological categories. Probabilistic inference
is used to identify the active categories. The Bayesian
modeling approach naturally takes category over-
lap into account and avoids the need for multiple
testing corrections met in single-category enrich-
ment analysis. On simulated data, MGSA identifies
active categories with up to 95% precision at a
recall of 20% for moderate settings of noise,
leading to a 10-fold precision improvement over
single-category statistical enrichment analysis.
Application to a gene expression data set in yeast
demonstrates that the method provides high-level,
summarized views of core biological processes and
correctly eliminates confounding associations.

INTRODUCTION

Many studies in functional genomics follow a data-driven
approach. Experiments such as transcriptional profiling

with microarrays, ChIP-on-chip or gene knock-out
screens are done at the scale of the whole genome without
specifying a prior hypothesis. Instead, one seeks to discover
new phenomena and generate new hypotheses from the
data. Loosely formulated, the main question driving the
analysis of data-driven experiments is: what is going on?
Although for technical and biological reasons the

nature of the data differs between these types of experi-
ments, they often can be summarized by a list of genes
which responded to the experiment, e.g. genes found to be
differentially expressed, bound by a particular transcrip-
tion factor or whose knock-down elicits a phenotype of
interest. However, extensive lists of responder genes are
not per se useful to describe the experiment. A practical
way to address the question of what is going on? is to
perform a gene category analysis, i.e. to ask whether
these responder genes (which we will refer to as the
study set) share some biological features that distinguish
them among the set of all genes tested in the experiment
(which we will refer to as the population). Gene category
analysis involves a list of gene categories, such as those
provided by the Gene Ontology (GO) (1) or the pathways
of the KEGG database (2), and a statistical method for
identifying enriched categories such as overrepresentation
analysis using Fisher’s exact test (3), gene set enrichment
(4–7), logistic regression (8), random-set analysis (9) and
Bayesian techniques for analyzing GO terms in a context
where not all annotated genes are observed (10).
Gene category analyses that follow the mentioned

approaches often return a large number of significant
categories, which are related to one another and leave
to the user the task of choosing the most meaningful
categories at the risk of relying on biased judgments.
The reason for the correlation is that genes can belong
to multiple categories, so that if one category is signifi-
cantly overrepresented in the study set, then it is more
likely that other categories with many genes in common
with it will also be significantly overrepresented. While
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these enrichments are correct in a statistical sense, long
lists of results can make it difficult to focus on the most
important ones in a biological sense.
With GO, annotations are understood to follow the

true-path rule, meaning that whenever a gene is annotated
to a term it is also implicitly associated with all parents of
that term. This is an important cause of gene sharing, a
phenomenon which we have termed the inheritance
problem (11). A number of methods have been proposed
to deal with these problems. The elim algorithm exam-
ines the GO graph in a bottom-up fashion (12). Once
a GO term is found to be significantly overrepresented
according to Fisher’s exact test, all genes annotated to it
are removed from further analysis. A variant of this algo-
rithm downweights the genes rather than eliminating them
completely (12). The parent–child algorithm determines
overrepresentation of a term in the context of annotations
to the term’s parents by redefining the groups used to
calculate the hypergeometric distribution (11).
All of the aforementioned procedures successively test

overrepresentation for each of the categories. The above
methods make use of the structure of GO to address sta-
tistical dependencies, but they are limited to ontologies
and do not fundamentally differ from the original
paradigm of term-for-term testing with the exact Fisher
test. More recently, an approach called GenGO was pres-
ented, which fits a model on all the terms simultaneously.
GenGO models the set of responder genes as members of a
set of active GO terms. The objective of GenGO is to
identify the most likely combination of active terms,
while allowing for some false positive and some false
negative responder genes. The fitting procedure optimizes
an objective function that combines the likelihood of the
model with a penalization that tends to limit the overall
number of active terms. This procedure was shown to
outperform other methods for detecting GO-term over-
representation on simulated data and to identify concise
yet biologically relevant sets of significantly overrepre-
sented GO terms when applied to real data sets (13).
Here we present model-based gene set analysis

(MGSA), a model-based approach that significantly
improves over GenGO by scoring terms with their poste-
rior probabilities, leading to more robust results and to
improvements over standard methods across a broader
range of sensitivity cutoffs. Our benchmark on simulated
data confirm the drastic improvements of model-based
approaches over term-by-term methods. MGSA uses a
simple and adaptable Bayesian network that provides a
great deal more flexibility as to the kinds of data that
can be used in the analysis and to extensions of the
model. MGSA is implemented as part of the free and
open-source software Ontologizer (14), a Java appli-
cation that implements a large number of GO enrichment
methods and enables visual exploration of the results.

METHODS

Model

We model gene response in a genome-wide experiment
as the result of an activation of a number of biological

categories. These categories can be pathways as defined
by the KEGG database (2), GO terms (15) or any other
scheme (5,16) that associates genes to potentially
overlapping biologically meaningful categories. Because
we primarily work with GO, we call these categories
terms. Our method does not make use of the graph struc-
ture of GO other than utilizing the true-path rule, which
states that if a gene is associated to a term, then it is also
associated to all of terms along the path up to the root of
the ontology. Apart from that we make no explicit use of
the structure.

We assume that the experiment attempts to detect genes
that have a particular state (such as differential expres-
sion), which can be on or off. The true state of any gene
is hidden. The experiment and its associated analysis
provide observations of the gene states that are associated
with unknown false positive (�) and false negative rates
(�), which we will assume to be identical and independent
for all genes.

For instance, in the setting of a microarray experiment,
the on state would correspond to differential expression,
and the off state would correspond to a lack of differential
expression of a gene. Our model, hence, assumes that dif-
ferential expression is the consequence of the annotation
to some terms that are on.

An additional parameter p represents the prior proba-
bility of a term being in the on state. The probability p is
typically low (<0.5), introducing an effective penalization
for the number of active terms. This ingredient promotes
parsimonious explanations of the data.

More formally, our model is a Bayesian network
with three layers augmented with a set of parameters
(Figure 1):

(1) The term layer T ¼ fT1, . . . ,Tmg consists of Boolean
nodes that represent the m terms. There is a Boolean
variable associated with each node that can have the
state values on (1) or off (0).

(2) The hidden layer H ¼ fH1, . . . ,Hng contains Boolean
nodes that represent the n annotated genes. There are
edges from the terms to their annotated genes. For
instance, if gene H1 is annotated to terms T1 and T2

Figure 1. A Bayesian network to model gene response with gene
categories. Gene categories, or terms (Ti, ellipses) can be either on or
off. Terms that are on activate the hidden state (Hj, rectangles) of all
genes annotated to them, the other genes remain off. The observed
states (Oj, diamonds) of the genes are noisy observations of their true
hidden state. The parameters of the model (light gray nodes) are the
prior probability of each term to be active, p, the false positive rate, �
and the false negative rate, �.
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then there is an edge between T1 and H1 and another
edge between T2 and H1. The state of the nodes
reflects the true activation pattern of the genes.
Each node can have the state values on (1), or off (0).

(3) The observed layer O ¼ fO1, . . . ,Ong contains
Boolean nodes reflecting the state of all observed
genes. The observed gene state nodes are directly
connected to the corresponding hidden gene state
nodes in a one-to-one fashion.

(4) The parameter set contains continuous nodes with
values in ½0,1� corresponding to the parameters of
the model �, � and p. These parameterize the distri-
butions of the observed and the term layer as
detailed below.

For didactic purposes, we will initially explain a
simplified version of our procedure in which the parame-
ters �, � and p are considered to have known, fixed values.
We will then show how the Bayesian network can be aug-
mented to search for optimal values for �, � and p.

The state propagation of the nodes can be modeled
using various local probability distributions (LPDs),
denoted by P. The joint probability distribution for this
Bayesian network can be written as

PðT,H,OÞ ¼ PðTÞPðHjTÞPðOjHÞ

¼ PðTÞ
Yn
i¼1

PðHijTÞPðOijHiÞ:
ð1Þ

We model the state of each Tj 2 T according to a
Bernoulli distribution with hyperparameter p, i.e.
PðTj ¼ 1Þ ¼ p. Denote by mxjT the number of terms that
have state x for a given T, i.e. mxjT ¼ jf j jTj ¼ xgj then

PðTÞ ¼ pm1jTð1� pÞm0jT : ð2Þ

In the following, we denote by TðHiÞ � T the set of
terms to which gene Hi is annotated, i.e. Hi and the
ancestors of Hi. For the T! H links, any node Hi 2 H
is on (Hi ¼ 1) if at least one term in TðHiÞ is on. Otherwise
it is off:

PðHi ¼ 1jTÞ ¼
1 if 9 Tj 2 TðHiÞ : Tj ¼ 1
0 otherwise:

�
ð3Þ

Note that this transition is deterministic. For the
H! O connection, we choose the following two
Bernoulli distributions: PðOi ¼ 1jHi ¼ 0Þ ¼ � and
PðOi ¼ 0jHi ¼ 1Þ ¼ �.

Therefore, � is the probability that a gene i is observed
to be on (i.e. Oi ¼ 1), although its true hidden state is
actually off (i.e. Hi ¼ 0) and thus, none of the terms
which annotate the gene are on. Correspondingly, � is
the probability of a gene being observed to be off,
although at least one term that annotates it is on.

Denote by nxyjT ¼ j ijOi ¼ x ^Hi ¼ y
� �

j the number of
genes having observed activation x and true activation
y according to the states of T. For instance, n01jT corre-
sponds to the number of genes observed to be not
differentially expressed but whose true activation state
is on. Then, by considering the LPDs of nodes, we get

the following product of Bernoulli distributions for
PðOjTÞ ¼

Qn
i¼1 PðHijTÞPðOijHiÞ:

PðOjTÞ ¼ �n10jTð1� �Þn00jTð1� �Þn11jT�n01jT : ð4Þ

Markov Chain Monte Carlo algorithm for marginal
probabilities inference with known parameters

As it is often the case, marginal posteriors for our network
cannot be derived analytically. We estimate these values
using a Metropolis–Hasting algorithm, which is a Markov
chain Monte Carlo (MCMC) method (17–19). The
MCMC algorithm performs a random walk over the
term and parameter configurations, which asymptotically
provides a random sampler according to the target distri-
bution PðTjOÞ.
Given the current configuration of the terms denoted by

Tt, the algorithm proposes a neighbor state Tp according
to a proposal density function QTð�jT

tÞ. We sample a value
r uniformly from the range (0,1). Then, if

r < PacceptðT
t,TpÞ ¼

PðTpjOÞQTðT
tjTpÞ

PðTtjOÞQTðTpjTtÞ
ð5Þ

the proposal is accepted, i.e. Ttþ1 ¼ Tp, otherwise it is
rejected, i.e. Ttþ1 ¼ Tt. Using Bayes’ law, we have

PðTpjOÞ ¼
PðOjTpÞPðTpÞ

PðOÞ
ð6Þ

and similarly for Tt. Substituting these expressions for
PðTpjOÞ and PðTtjOÞ cancels out the normalization
constant PðOÞ. The acceptance probability is then:

PacceptðT
t,TpÞ ¼

PðOjTpÞPðTpÞQTðT
tjTpÞ

PðOjTtÞPðTtÞQTðTpjTtÞ
: ð7Þ

Equation (5) is used iteratively to define a random walk
through the space of configurations. A burn-in period con-
sisting of a certain number of iterations is used to initialize
the MCMC chain (in our implementation, the default is
20 000 iterations). Following this, l further iterations
(default 106) are performed. Let CðTiÞ be the number of
samples in which term Ti was on. Then

PðTijOÞ �
CðTiÞ

l
:

In order to finish the description of the algorithm, we
need to define classes of operations of which a proposal is
chosen, that is, we need to specify QTðT

pjTtÞ. We denote
by Tp $T Tt the binary relation that states that Tp be
constructed from Tt by either

� toggling the on/off state of a single term, or by
� exchanging the state of a pair of terms that contains a
single on term and a single off term.

We denote by NðTÞ the neighborhood of a given config-
uration for T, that is, the number of different operations
that can be applied once to T in order to get a new con-
figuration. At first, there are m terms in total, each of
which can be toggled. In addition, there are m0jTm1jT

possibilities to combine terms that are on with terms
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that are off. Thus, there are a total of
NðTÞ ¼ mþm0jTm1jT valid state transitions. We would
like to sample the valid proposals with equal probability,
therefore the proposal distribution QT is determined by

QTðT
pjTtÞ ¼

1
NðTtÞ

if Tp $T Tt

0 otherwise:

�
, ð8Þ

which we can use to rewrite Equation (7) to:

PacceptðT
t,TpÞ ¼

PðOjTpÞPðTpÞNðTtÞ

PðOjTtÞPðTtÞNðTpÞ
:

The procedure is shown in Algorithm 1. For simplicity,
the burn-in period is omitted from the pseudocode. It is
easy to see that all states of the chain are reachable from
any state, as the Markov chain is finite and it is possible to
reach an arbitrary state from any other state by a fixed
number of operations. This accounts for the reducibility
of the chain. Moreover, the chain is aperodic as it is always
possible to stay in the same state, as any proposal can be
rejected. Therefore, the resulting Markov chain is ergodic,
which is a sufficient condition for a convergence to a sta-
tionary distribution, which matches the desired target
distribution.

MCMC algorithm for marginal probabilities inferrence
with unknown parameters

The estimation of the parameter �, � and p can be easily
integrated directly into the MCMC algorithm. The param-
eters now must be explicitly considered in the joint prob-
ability distribution:

Pðp,T,H,�,�,OÞ

¼ PðpÞPðTjpÞPðHjTÞPð�ÞPð�ÞPðOjH,�,�Þ,
ð9Þ

where PðTjpÞ is given by Equation (2), PðHjTÞ is given by
Equation (3) and PðOjH,�,�Þ corresponds to PðOjHÞ of
the basic model. As p, � and � are now true random vari-
ables, we must define a prior distribution on them as well.
Here, we have used uniform distributions to introduce as
little bias as possible.

We are seeking for a scheme to sample from joint
posterior distribution

Pðp,T,�,�jOÞ ¼
Pðp,T,�,�,OÞ

PðOÞ
:

In order to utilize the Metropolis–Hasting algorithm
for this purpose, we are required to provide an efficient
calculation for the numerator. This is straighforward,
because the numerator factors to

Pðp,T,�,�,OÞ ¼ PðpÞPðTjpÞPð�ÞPð�ÞPðOjT,�,�Þ, ð10Þ

and moreover, PðOjT,�,�Þ can be determined using
Equation (4).

In addition to term state transitions, we also need to
take parameter transitions within the proposal density
into account. We define the new proposal density as a
mixture of the state transition density QT and a parameter
transition density Q�. We denote the current realization of
the parameters by �t ¼ f�t,�t,ptg and by �p $� �t the
relation of whether �p can be constructed from �t.
The fully specified proposal density is then

QsðT
p,� pjTt,� tÞ

¼

QTðT
pjTtÞs if Tp $T Tt and � p ¼ � t

Q�ð�
pj� tÞð1� sÞ if � p $� � t and Tp ¼ Tt

0 otherwise:

8><
>:
The parameter s 2 ð0,1Þ can be used to balance state

transition proposals against parameter proposals. That is
to say, depending on the outcome of a Bernoulli process
with hyperparameter s, we either propose a new state tran-
sition or a new parameter setting. For the experiments
described in this article, s was set to 0.5.

Many possibilities for the proposal density of the
parameter transition Q� and for the relation $� can be
envisaged. We have considered transitions �p $� �p for
which �p differs from �t in the realization of not more
than a single variable.

In contrast with the configuration space of the terms’
activation state, the domain of these new variables is con-
tinuous. However, an internal study revealed that the
algorithm is not overly sensitive to the exact parameter
settings. Therefore, we can restrict the range of the

Algorithm 1: A Metropolis–Hasting algorithm to estimate
PðT1 ¼ 1jOÞ.

Data: O, l (number of steps)
Result: PðT1 ¼ 1jOÞ, . . . ,PðTm ¼ 1jOÞÞ

Tt  ð0, . . . ,0Þ|fflfflfflfflffl{zfflfflfflfflffl}
m times

;

for t 1 to l do
Tp � QTð�jT

tÞ, i.e. choose a neighbor candidate
by either
� toggling a term
� exchanging an active term with an inactive
one

a 
PðOjTpÞPðTpÞNðTtÞ

PðOjTtÞPðTtÞNðTpÞ

r � Uð0,1Þ

if r < a then

Tt Tp

end
end

return
CðT1Þ

l
, . . . ,

CðTmÞ

l

� �
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variables to a set of discrete values. For the experiments
described in this work, we used the restrictions
�,� 2 f0:05kj0 < k < 20g and p 2 f1=m,:::,20=mg, where
m is the number of terms.

At last, we can state the proposal density function for
parameter transitions

Q�ð�
pj� tÞ ¼

1
jAjþjBjþjPj if � p $� � t

0 otherwise,

�
ð11Þ

in which A, B and P stand for the domain of the param-
eters �, � and p respectively. Note that Q� is symmetric,
i.e. Q�ð�

tj� pÞ ¼ Q�ð�
pj� tÞ.

Simulation and evaluation of the performance

The simulations were based on revision 1.846 (dated
October 21, 2009) of the GO term definition file. We
restricted the entire simulation study to genes of
Drosophila melanogaster. Annotations for this species
were taken from revision 1.157 (dated October 19, 2009)
of the gene association file provided by FlyBase (20), using
all annotations regardless of their evidence code. This
results in a total of 12 484 genes that are annotated
directly or by inheritance to 7078 GO terms.

Study sets were generated according to our model as
follows. One value for the false positive rate � and one
for the false negative rate � were set. A number (varying
from one to five) of unrelated terms (i.e. pairs of terms
related by parent–child relationships were avoided) are
randomly picked to be in on state. In the remainder of
this section, we denote by lij the state or label of term
i within study set j, i.e. lij ¼ 1, if term i is on, or lij ¼ 0
otherwise.

Each single study set j is then filled with all genes
that are annotated to the term Ti for all lij ¼ 1. Next,
the noisy observations are simulated by removing
each gene with a probability of � from the study set.
Then, genes from the population not annotated to
any of the active GO terms were added to the study set
with a probability of �. The whole procedure was
repeated 1500 times for each combination of � and �
providing 1500 different study sets of varying sizes for
that combination.

All tested algorithms were then applied to the simulated
study sets. Note that the study set generation procedure
controls merely the expected values of the proportion of
false positive and false negative genes for the study sets,
whereas the actual proportion of each individual study set
may differ. MGSA0 and GenGO0 (which use fixed values
of the parameters �, � and p) were supplied with the values
of � and � used for the simulation and p was set according
to the number of GO terms that were set to on. The appli-
cation of the algorithms results in prediction values
(scores) for lij, denoted by pij. We remark that for poste-
rior marginal probabilities higher values (rather than
lower as with P-values) indicate stronger support for the
state on.

Benchmarking of the methods was done by using
standard measures for the evaluation of discrimination
procedures. We made use of receiver operating character-
istic (ROC) curves and precisison/recall curves, pooling

the results of all study sets with identical parameter com-
binations. In addition to the values of a ROC analysis, we
calculated the k-truncated ROC value for each study
set j via

ROCkðjÞ ¼
1

kP

Xk
i¼1

ti,

in which P ¼
P

i lij is the total number of positives and ti
represents the number of true positives above the i-th false
positive (21,22). We reported the average over k-truncated
ROC values of all study sets for k=10.

Analysis of yeast growth media

Raw tiling array data comparing yeast fermentative
growth (YPD: Yeast extract Pepton Dextrose) and respi-
ratory growth (YPE: Yeast extract Peptone Ethanol) (23)
were processed to provide normalized intensity values
for each probe in each hybridization. The expression
level of each transcript in each growth condition was
estimated by the midpoint of the shorth (shortest interval
covering half of the values) of the probe intensities of the
transcript across all arrays of the growth condition.
Transcripts were called expressed if their expression
level was above the threshold (24). Transcript expression
levels of the two conditions ‘YPD’ and ‘YPE’ were
normalized against each other using the vsn method (25)
as differential expression at the transcript level appeared
to still depend on average expression value. Next, tran-
scripts were called differentially expressed if they showed
at least 2-fold change between the two conditions. We
then compared a study set of 510 differentially expressed
genes to the population of 5308 genes (23) (Supplementary
Table 1). We used GO annotations obtained from the
Saccharomyces Genome Database (26) as of October 22,
2009 and restricted our analysis to the biological process
ontology.

RESULTS

Bayesian networks to model experimental observations

In order to summarize the meaning of a long list of genes
by naming biologically meaningful categories or terms, we
propose a knowledge-based system in form of a Bayesian
network. We model the state of the genes as a function of
the activity of the associated terms. The true state of the
genes is hidden and propagated to corresponding entities
at the observation layer, by which we reflect the noisy
nature of the data. The errors between the observation
and the hidden states are assumed to be independent
and to occur with a potentially unknown false positive
(�) and false negative rate (�), identical for all genes.
Furthermore, an additional parameter p represents the
prior probability of a term being in the on state
(Figure 1). The purpose of this model is to infer the
marginal posterior probability of each term i being
active, i.e. PðTijOÞ, given the observations of the experi-
ment. See the ‘Methods’ section for a formal introduction
of the model and the inference process.
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In practice, the parameters �, � and p are not known.
While the estimation is taken into account by the specifi-
cation of the algorithm, we also run instances in which
these parameters are fixed a priori to the true ones. This
provides an upper bound for the parameter estimation. In
the following, we refer to the general case as MGSA and
to the case with known parameters as MGSA0.

Performance on simulated data

We simulated 1500 study sets in which the number of
active terms varied from one to five (‘Methods’ section).
The simulations were performed with 12 484 Drosophila
genes that are annotated directly or indirectly via
to parent–child relationships to 7078 GO terms. We
followed this approach for each combination of
� 2 f0:1, 0:4g and � 2 f0:25, 0:4g, resulting in a total of
6000 simulated study sets. We then compared MGSA
and MGSA0 against three single-term association
procedures: the standard term-for-term (TfT) GO
overrepresentation analysis by Fisher’s exact test (3),
Parent–Child union (PCU) analysis (11) and topological
weight (TopW) analysis (12), and against the other global
model approach, GenGO (13). Similar to our approach,
GenGO has two parameters that are intended to capture
false positive and false negative responders and an

additional parameter that penalizes superfluous terms. In
the original implementation of GenGO (13), a heuristic
procedure was used to search for the best values of these
parameters. Unfortunately, the full GenGO software is
not applicable for batched runs. We have implemented
the algorithm denoted as GenGO0 in the simple case
where the parameters are known. For the simulations
described here, we follow the authors’ recommendation
to set the penalty parameter to 3, while the remaining
parameters were set to the optimal values. This provides
an upper bound on the performance of the GenGO
procedure with unknown parameters.

GO analyses typically contain a very large number of
terms. Therefore, an important issue is whether a GO
analysis method inflates the number of terms reported as
significant. The most critical measure is therefore the pre-
cision, i.e. the proportion of true positives among the true
and false positives. Comparing the precision of the differ-
ent methods as a function of the recall, which is the pro-
portion of true positives among all positive terms,
demonstrates the drastic improvement of global model
approaches. Both global model methods, GenGO0 and
MGSA, dominate all three single-term association
approaches by a factor of at least 3 (5 for MGSA) in
precision at 20% recall (Figure 2A, B) across all
investigated parameter settings. For a false positive rate
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Figure 2. Benchmarking on simulated data set. Performance of the TfT, PCU, TopW, GenGO
0

, MGSA
0

and MGSA algorithms on simulated data
set with different settings of false positive (�) and false negative (�) rates. In each row, the leftmost panel shows the precision for a recall of 0.2
(A, B), the middle panel precision as a function of recall (C, D) and the rightmost panel the ROC curve (E, F).
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� of 0.1, the improvement reaches even 8- to 10-fold.
Moreover, MGSA largely outperforms GenGO’ in all
settings, for example, with a precision of �95% versus
�80% for GenGO’ in the case of � ¼ 0:1 and � ¼ 0:4.
Values of k-truncated ROC scores (‘Methods’ section
and Table 1) confirm the ranking of these methods when
focusing on stringent cutoffs. Moreover, these improve-
ments of MGSA are seen at any cutoff. MGSA
outperform all other methods for the whole range of
recall cutoffs and with all investigated parameter settings
(Figure 2C, D).

Notably, the performance of GenGO0, which reports
only a single maximum likelihood solution and discards
any alternative solution, even if it is almost as likely, drops
off much earlier than MGSA (Figure 2C, D). This
behavior is more apparent in Receiver Operating
Characteristic curves (ROC curves, Figure 2E, F), which
plot the true positive rate (or recall) as a function of the
false positive rate (proportion of false positives among all
negative terms). Indeed, away from the most stringent
zone, GenGO appears as the least accurate of all tested
methods. See also Supplementary Figures S1–S12 for
results on other parameter combinations

Together these results on simulation confirm the drastic
improvement of global model approaches and demon-
strate that our marginal posterior method, MGSA,
largely outperforms GenGO by showing an accurate
behavior on the whole range of cutoffs.

Dealing with unknown values of the parameters �, �
and p had required a significant extension of our basic
algorithm (‘Methods’ section). The simulation data
allowed us to investigate the ability of the full MGSA
algorithm to cope with unknown parameter values. We
ran the basic version of the algorithm, MGSA0, in which
the parameters are known and fixed a priori. Performance
of MGSA0 are displayed in the precision–recall and the
ROC curves (Figure 2) and represent what MGSA could
reach if the parameters were known. As Figure 2 shows,
the performance of the algorithm is not drastically affected
by this, showing that the full MGSA algorithm performs
reasonably well when dealing with unknown parameter
values.

Analysis of expression data from fermentative and
respiratory respiration in yeast

We applied our method to 510 yeast genes found to be
differentially expressed in fermentative growth compared
with respiratory growth (‘Methods’ section). Respiration
and fermentation are two well-studied growth modes of

yeast, thus facilitating the interpretation of the results.
We ran TfT, PCU and MGSA on the biological process
ontology of GO. Using Benjamini–Hochberg correction
for multiple testing and a cutoff of false discovery
rate of 0.1, the term-for-term method returns 193
significantly enriched terms, many of which are highly
related (Supplementary Table 1). We investigated how
the results of MGSA fluctuate by running 20 independent
Markov chains, each of length 107, using a cutoff of 0.5 on
the posterior probability to call a term on, i.e. a level at
which a term is estimated to be more likely to be on than
to be off. MGSA reports only seven terms with a marginal
posterior probability >0.5 (in at least one of the 20 runs).
Out of these 7 terms, 6 showed a posterior probability
>0.5 consistently across the 20 chains (Figure 3 and
Supplementary Table 1), while the seventh one,
monocarboxylic acid metabolic process, had estimated pos-
terior probability between 0.410 and 0.502. Hence, results
for the most likely terms were reproducible between runs.
We checked the robustness of these results against varia-
tions in the study set by creating 2 000 random subsamples
of the study set containing 90% of the original genes. The
terms identified by the original analysis were consistently
identified in the subsamples (Supplementary Figure 13).
Among the seven terms, oxidation reduction summarizes

the main biological process that distinguishes growth in
these two different media, namely the use of oxidation
phosphorylation during respiration to regenerate ATP.
The other terms, such as, carbohydrate transport, or
monocarboxylic acid metabolic process capture processes
that are linked to the change of carbon source but not
directly involved in the oxidation reduction reactions.
Hence, MGSA provides a high-level, summarized view
of the core biological process, respiration, avoiding redun-
dant results while still keeping the necessary level of
granularity in other branches of the ontology.
The term cell death illustrates very well the difference

between single-term association approaches and global
model approaches. Both tested enrichment-based
approaches, TfT and PCU, report cell death as an
enriched term whereas MGSA does not. It happens that
mitochondria are implicated both in cell death and in res-
piration (27). The differentially expressed genes annotated
to cell death encode mitochondrial proteins and are also
involved in respiration. Hence, it is correct to report cell
death enriched for differentially expressed genes. However,
cells are not dying in any of these two conditions. The
enrichment is due to the sharing of genes with respiration,
a process which is genuinely differentially activated. In this
study set, 113 genes are annotated to oxidation reduction
including 25 out of 28 genes annotated to cell death.
MGSA, which infers the terms that are on and not
simply enriched, does not report cell death. One should
also note that cell death is not a type of respiratory
pathway or vice versa. Methods such as TfT that
examine the statistical significance of each term separately
cannot compensate for correlations between terms due to
gene sharing. Although methods such as PCU and TopW
can compensate for some kinds of statistical correlations
that arise because of the inheritance of annotations from
descendent nodes in the GO graph (11,12), they fail in

Table 1. ROC10 Analysis

� � GenGO0 MGSA0 MGSA TfT PCU TopW

0.1 0.4 0.35 0.44 0.41 0.31 0.24 0.26
0.4 0.25 0.22 0.28 0.25 0.22 0.17 0.15

k-truncated ROC curves were generated for the simulated data shown
in Figure 2 for k ¼ 10. The ROC10 score is the area under the ROC
curve up to the tenth false positive. k-truncated ROC scores range from
0 to 1, with 1 corresponding to the most sensitive and selective result.
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situations such as the one described here because,
oxidation reduction and cell death share some annotated
genes but are not directly connected to one another by
the graph structure of GO.

DISCUSSION

Of trees and forests

Data-driven molecular biology experiments can be used to
identify a list of genes that respond in the context of
a given experiment. With the advent of technologies,
such as microarray hybridization and next-generation
sequencing, which enable biologists to generate data
reflecting the response profiles of thousands of genes or
proteins, gene category analysis has become ever more
important as a means of understanding the salient
features of such experiments and for generating new
hypotheses. By using the knowledge as it is provided by
GO, KEGG or other similar systems of categorization,
these analyses have become a de facto standard for molec-
ular biological research. Almost all previous methods are
based on algorithms that analyze each term in isolation.
For each term under consideration, the methods consider
whether the study set is significantly enriched in genes
annotated to the term compared with what one would
expect based on the frequency of annotations to the
term in the entire population of genes or using other
related statistical models (28).

We suggest that single-term association methods that
determine the significance of each term in isolation essen-
tially do ‘not see the forest for the trees’, by which we
mean that they tend to return many related terms which
are statistically significant if considered individually, but
they are not designed to return a set of core terms that
together best explain the set of genes in the study set.
Although some methods have been developed that
partially compensate for statistical dependencies in GO
(11,12), the work of Lu and colleagues (13) addressed
the problem by modeling the gene responses using all
categories together.

Modeling requires formulating a generative process of
the data. We, and Lu and colleagues (13), considered the
categories as the potential cause of the gene responses.
Fitting the model then enables distinguishing between
the causal categories (according to the model) from the
categories merely associated with gene response.
Although one cannot conclude that the identified
categories are causal in reality (this is only a model and
one only has observational data), this feature of
model-fitting explains why it provides a better answer to
the question what is going on? than testing for associations
on a term for term basis.

Searching for an optimal set of terms that together
explain a biological observation is a more difficult problem
than examining each term for enrichment one at a time. In
particular, the model used to find term sets must specify
how the terms interact with one another. This imposes

...
...

...
...

A B

C

Figure 3. Application on a respiratory versus fermentative growth expression dataset in yeast. (A) Ranked list of the 192 overrepresented terms using
a term-for-term Fisher’s test with Benjamini–Hochberg correction for multiple testing. Many of the top terms are redundant and relate to similar
functions. The term cell death (highlighted in blue) is a spurious association (see text). (B) Ranked list of the top 10 terms identified by a single run of
MGSA (six of them with a posterior >0.5 in green). (C) Error bars (95% confidence intervals) obtained with 20 runs of MGSA. Each of the seven
terms was identified with a posterior >0.5 in at least one of the 20 runs.
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assumptions on the model that must be kept in mind when
the results are interpreted. For instance, the model pre-
sented in this work assumes that activation of a single
term suffices to activate genes, and does not require that
a certain minimum number of genes are annotated by the
term set. The Bayesian framework we present can easily be
adapted for different kinds of models encoding different
biological assumptions by choosing different priors or dis-
tributions. This will be the subject of future research.

A Bayesian framework for inference

In contrast to the method of Lu and coworkers (13), we
embed the model into a Bayesian Network, to which we
apply standard methods of probabilistic inference. This
not only leads to an intuitive derivation of the score, but
also increases the versatility of the framework. That is,
although we have demonstrated our method with simple
classes of LPDs for the nodes, one can easily use more
involved distributions. Moreover, we show that by aug-
menting the Bayesian network, we get a streamlined
approach that includes both the inference of the states
and of the parameters. This in principle also enables the
inclusion of prior knowledge, be it parameters that are
known or estimated in form of Pð�Þ and Pð�Þ, or a
specific term configuration in form of PðTÞ or PðTjpÞ.

Instead of scoring terms by finding the maximum
a posteriori as in the GenGO method (13), we use
marginal posterior probabilities. Finding the maximum
a posteriori provides a single combination of active
terms and is not informative about alternative solutions.
If several solutions show near-maximal likelihood then it
is implausible that the single one with the largest likeli-
hood is always the right solution. In contrast, marginal
posterior as in MGSA associates a natural weight to each
term that reflects a measure of certainty of its involvement
in the process. Importantly, using marginal posterior
probabilities increases the robustness and lowers the sen-
sitivity of the procedure to high variance related to the
multimodality of the problem, i.e. the existence of local
maxima of the likelihood function. As we demonstrated
using simulations, MGSA is indeed more robust than
GenGO.

The Java implementation that we provide in the
Ontologizer estimates the marginal posteriors with a
MCMC algorithm and is fast enough to perform 106

steps in <3 s on a standard 2.5GHz PC. Since runs of
MCMC are not guaranteed to converge in any a priori
defined number of steps, we suggest that users repeat the
analysis in order to see how the reported marginal
probabilities of the top terms fluctuate. If fluctuations
are too large, the number of MCMC steps should be
increased.

Using a Bayesian approach that models the data with
all categories simultaneously, rather than using hypothesis
testing on each category, avoids the issue of multiple
testing. Moreover, the interpretation of the score, which
is simply the probability of a category to be active, might
appear more natural than a P-value. Finally, one should
note that the ranking of the scores is reversed to values

given by hypothesis-based procedures, i.e. high marginals
give high support in the Bayesian setting, while high con-
fidence in the hypothesis-based approach is indicated by
low P-values.

CONCLUSION

We have addressed the question of gene category analysis
using a model-based approach, MGSA. In this Bayesian
model, the genes responding to the experiment are
assumed to belong to a small number of ‘active’
categories. Therefore, to answer the question of what is
going on in an experiment, MGSA infers the ‘active’
categories, among all considered categories, given the
actual gene state observations. We have shown that
under the assumptions of our model our approach is
better in identifying the causal sets than other procedures.
We suggest that considering the forest instead of the trees
is an advantageous strategy for gene category analysis,
and that global model procedures such as the one pre-
sented in this article may be better able to describe the
biological meaning of high-throughput data sets than are
procedures that examine associations of categories one at
a time. We note that the Bayesian network analyzed in this
article is but one of many potential network structures
that are made possible with our framework.
Our methods have been integrated into the Ontologizer

project, an easy-to-use Java Webstart application for per-
forming analysis of overrepresentation. The Ontologizer
as well as the implementation of the described benchmark
procedure have been released under the terms of the
modified BSD licence. The application is available from
http://compbio.charite.de/index.php/ontologizer2.html.
The source code is available from http://sourceforge.
net/projects/ontologizer/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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