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adaptations contributing to the development of l-DOPA-induced 
dyskinesia, virtually nothing is known about the acute expression 
of dyskinetic movements after a single dose of l-DOPA.

Parkinson’s disease is also a disorder marked by an imbalance 
of non-dopaminergic transmitters (Jenner, 2008; Barone, 2010). 
Nitric oxide (NO) is a neurotransmitter formed from l-arginine 
and molecular oxygen by the action of three highly homologous 
isoforms of nitric oxide synthase (NOS): neuronal (nNOS), endothe-
lial (eNOS), and inducible (iNOS; for review see Guix et al., 2005; 
Garthwaite, 2008). Within the striatum, endogenous NO is produced 
by a subclass of aspiny interneurons containing nNOS (Kubota et al., 
1993; Morello et al., 1997; Kawaguchi, 1997; Tepper and Bolam, 2004) 
partly controlled by dopaminergic input (Kawaguchi, 1997; Calabresi 
et al., 2000; Centonze et al., 2001; West and Grace, 2002, 2004).

The production of NO and superoxide have been implicated in 
neurodegenerative disorders such as PD (Ebadi and Sharma, 2003). 
For example, in the striatum in Parkinsonian animal models and 
humans, NOS has been described as either depressed (rodents – 
De-Vente et al., 2000; Barthwal et al., 2001; Sancesario et al., 2004; 
humans – Böckelmann et al., 1994; Eve et al., 1998) or increased 
(rodents – Ponzoni et al., 2000; Gomes and Del Bel, 2003; Gomes 
et al., 2008; humans – Hunot et al., 1996; Eve et al., 1998). Additionally, 

IntroductIon
The impairments of Parkinson’s disease (PD) can be con-
trolled by treatment with the dopamine precursor l-DOPA 
(l-3,4-dihydroxyphenylalanine). Regardless of treatment, the disease 
continues to progress (Tuite and Riss, 2003). Chronic treatment with 
l-DOPA causes abnormal involuntary movements (AIMs/dyskine-
sia) in both animals and humans (Marsden and Parkes, 1977; Iancu 
et al., 2005, for review see Jenner, 2008). The emergence of AIMs 
with repeated l-DOPA treatment of 6-hydroxydopamine (6-OHDA) 
lesion rats has allowed for the examination of the mechanisms 
responsible for treatment-related dyskinesia in PD and the detec-
tion of molecules that are able to prevent or reverse their appear-
ance (Cenci et al., 1998). Despite intensely investigated, long-term 
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in the 6-OHDA-lesioned striatum, a considerable population of 
medium spiny neurons presented an excitatory response induced 
by the NO donor 3-morpholinosydonimine (SIN-1; Di Giovanni 
et al., 2003; Galati et al., 2008) instead of the inhibition observed 
in non-lesioned animals. Because NO may worsen PD symptoms 
(Gomes et al., 2008), several NOS inhibitors have been suggested 
for pharmacological treatment (Calabrese et al., 2000; Del-Bel et al., 
2005; Aquilano et al., 2008; Jenner, 2008; Kavya et al., 2008).

Nitrergic mechanisms could contribute to l-DOPA-induced 
dyskinesia (Monville et al., 2006; Lane et al., 2008). In PD patients, 
l-DOPA therapy has been shown to cause a marked increase in 
the production of the NO second messenger cyclic guanosine 
monophosphate (cGMP) within the cerebellum and in the 
serum (Chalimoniuk et al., 2004). Sanchez et al. (2002) showed 
that NO stimulated l-DOPA release in the striatum in a time- 
and concentration-dependent manner. In mice, l-DOPA therapy 
has been shown to induce striatal NO production (Itokawa et al., 
2006). Additionally, Chalimoniuk and Langfort (2007) showed 
that l-DOPA up-regulated the NO/soluble guanilyl cyclase (sGC)/
cGMP pathway to levels found in MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine)-injected mice. Our group had recently 
shown that 7-nitroindazole (7-NI) and N(G)-nitro-l-Arginine 
(l-NOARG), nNOS and nNOS/eNOS inhibitors, respectively, can 
reduce the severity of l-DOPA-induced dyskinesia generated in the 
6-OHDA-lesioned rats (Padovan-Neto et al., 2009; Novaretti et al., 
2010) and mice (Del-Bel et al., 2011). Nevertheless, the mechanism 
of how NOS inhibition decreases l-DOPA-dyskinesias is unknown.

The aim of the present study was to investigate, in hemiparkin-
sonian rats, the effect of NOS inhibition in the l-DOPA-induced 
AIMs achieved following either single or chronic treatment. The 
expression of the nNOS protein and mRNA was analyzed in the 
reactive 6-OHDA-lesioned and contralateral striatum.

MaterIals and Methods
drugs
Apomorphine hydrochloride (Sigma-Aldrich, St. Louis, MO, USA); 
l-DOPA (Prolopa dispersive, Hoffman-LaRoche, Rio de Janeiro, 
RJ, Brazil) plus benserazide–HCl; NG-nitro-l-arginine (l-NOARG; 
Sigma-Aldrich, St. Louis, MO, USA). All drugs were dissolved in 
physiological saline and administered in a volume of 2 ml/kg.

anIMals and 6-hydroxydopaMIne (6-ohda) treatMent
Adult male Wistar rats (200–250 g) were housed in groups of five 
per cage in a temperature-controlled room (23°C), under 12-h 
light/dark cycle with free access to food and water. Behavioral test 
was performed from 2:00 to 6:00 PM. All experiments were con-
ducted according to the principles and procedures described by the 
Guidelines for the Care and Use of Mammals in Neuroscience and 
Behavioral Research (ILAR, USA). The Institution’s housing condi-
tions and experimental procedures were previously approved by 
the local Animal Ethics Committee (protocol number: 101/2009).

Rats were submitted to stereotaxic surgery as described by Padovan-
Neto et al. (2009). Briefly, rats were anesthetized with tribromoethanol 
(0.25 mg/kg i.p., Sigma-Aldrich, St. Louis, MO, USA) and received a 
single injection of either saline or 6-OHDA (16 μg in 3 μl of saline con-
taining 0.05% ascorbic acid Sigma-Aldrich, St. Louis, MO, USA) into 
the right medial forebrain bundle (MFB), coordinates in mm relative 

to bregma: antero-posterior (AP): −4.4; lateral (L): −1.2; dorso-ventral 
(DV): −8.2 (Paxinos and Watson, 1998). The infusion was at the rate of 
1 μl/min and the cannula was left in the place for 3 min before with-
drawal. To limit the damage in noradrenergic neurons, desipramine 
hydrochloride (25 mg/kg i.p., Sigma-Aldrich, St. Louis, MO, USA) 
and pargyline (40 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) were 
administered 30 min before 6-OHDA injection. Brain was removed 
from the animals for western blot, RT-PCR and histopathological 
analyses. Two separate experimental groups of rats each were used for 
behavioral and pathological analyses. Behavioral experiments were 
performed on a separate group of animals.

BehavIoral tests
Stepping test
This is a modified version of the stepping test originally proposed by 
Chang et al. (1999) and Olsson et al. (1995). Rats were held at the rear 
part of the torso by one hand with their hind limbs lifted and one 
forepaw held steady along its trunk by the hand of the experimenter. 
Then, the animal was moved ahead across a table for a distance of 
90 cm in 12 s (Novaretti et al., 2010). During this interval the numbers 
of adjusting steps of the weight-bearing forepaw to compensate for 
the straight ahead movement of the body were counted. For each ani-
mal the test was begun randomly with the right or left forepaw. The 
animal performance was measures pre-drug, 1 and 2 h after l-DOPA 
intake (post-drug). The experimenter was blind to the treatment.

Open field test
The procedure was described by Cools (1980). The rats were placed 
in an open arena which consisted of a circular enclosure (72 cm 
diameter) surrounded by a 49 cm Plexiglas wall with the floor 
divided into 12 sections. Rats were placed in the center of the arena 
and allowed to explore it for 5 min. The following behaviors were 
recorded by observation: number of crossings (i.e., number of floor 
sections traversed, meaning horizontal exploration), the number of 
edge and center squares entered (Sullivan et al., 1994), the number 
of rearing (standing with the forepaws raised in the middle of the 
arena or against the walls, denoting the vertical exploration) and 
grooming.

Rotational behavior test
Rotational behavior was measured after either apomorphine or 
l-DOPA injection by placing the animals in a 40-cm-diameter bowl 
surrounded by a 16-cm wall. The rats were allowed to acclimate to 
the environment for 5–10 min before drug treatment. Contralateral 
rotations, defined as complete 360° turns away from the lesioned 
side of the brain, were counted. For apomorphine (0.5 mg/kg, s.c.) 
the total number of full contralateral turns was counted during 
45 min. Only rats showing >2 turns/min (>90 turns/45 min) were 
included in the study. After l-DOPA treatment (100 mg/kg, gavage), 
the number of contralateral turns was counted for 2 h in periods 
of 5 min at 0, 25, 55, 85, and 115 min after injection.

Abnormal Involuntary Movements (AIMs)
A trained observer blind to treatment assessed each rat for the 
presence of AIMs at 1 and 2 h after saline or l-DOPA accordingly 
to the rat dyskinesia scale (Cenci et al., 1998; Winkler et al., 2002). 
Briefly, rats were videotaped for 1 min and scores ranging from 0 to 
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was processed separately. The homogenates were centrifuged at 
10000 rpm for 25 min at 4°C. The supernatants were recovered for 
protein concentration measurements using Bradford assay (Bio-Rad 
Protein assay, Bio-Rad, Germany). Proteins (30 μg) were resolved 
by sodium dodecyl sulfate polyacrylamide gel electrophoresis (8% 
SDS-PAGE) and semi-dry transferred to a nitrocellulose membrane.

Because the FosB primary antibody recognizes both full-length 
FosB and ∆FosB-related proteins, the staining obtained with this 
antibody is referred to as FosB/∆FosB. Nitrocellulose membranes 
were incubated at 4°C overnight using the following antibodies: 
mouse monoclonal anti-nNOS (1:1000, BD Biosciences, USA), rab-
bit polyclonal anti-FosB/∆FosB (1:1000, Santa Cruz Biotechnology, 
USA), mouse monoclonal anti-ß-actin (1:5000, Santa Cruz 
Biotechnology, USA). Bound antibodies were detected with 
HRP-conjugated secondary anti-mouse or anti-rabbit antibodies 
(1:5000, Jackson Immuno Research Laboratories, USA). Bands were 
visualized by enhanced chemiluminescence (ECL, Amersham, UK) 
and quantified with the software ImageJ2. The integrated density 
(product of the area and mean gray value) of each band of the pro-
teins of interest was normalized to the integrated density of ß-actin 
and used to compare relative levels of the proteins of interest. Each 
experiment was performed at least three times with similar results.

real-tIMe quantItatIve pcr
For RT-PCR (see Bibancos et al., 2007), the brain regions dissected 
were the prefrontal cortex, the striatum, and the hippocampus (con-
tralateral and lesion-reactive), in a similar way described for the west-
ern blot. Frozen samples were immersed in TRIzol (Invitrogen™ Cat. 
No. 15596-026) and homogenized (Polytron PT10/35-Brinkmann, 
Westbury, NY, USA) by 30 s using maximum speed. Total RNA was 
isolated according to the manufacturer’s guidelines and quantified 
by a spectrophotometer. The integrity of RNA was verified on ethid-
ium bromide-stained 1% agarose gel, and the fluorescence intensity 
ratio of 28S/18S rRNA was determined (Eagle Eye; Stratagene, La 
Jolla, CA, USA). Only samples that met our criteria of quality (both 
260/280 nm and 28S/18S > 1.8) were included in the experiments. 
The DNA was removed from RNA samples before reverse transcrip-
tion with a RQ1 RNase-Free DNase (Promega® Cat. No. M6101) at 
37°C for 30 min and the enzyme inactivated at 65°C for 10 min, 
maintaining the integrity of the RNA.

Total RNA (2 μg) was reverse transcribed at the same time using a 
master mix containing oligo (dT; Invitrogen™ Cat. No. 18418-012) 
primer and SuperScript™ III Reverse Transcriptase (Invitrogen™ 
Cat. No. 18080-093) in a final volume of 20 μl. Specific primers 
(Rattusnorvegicus) for the nNOS enzyme, and the control genes 
cyclophilin A (peptidylprolylisomerase A: Ppia), glyceraldehyde-
3-phosphate dehydrogenase (Gapd) and beta-actin (Actb) were 
designed using the Primer3 software3. The following criteria were 
followed: primer size (18–20 nucleotides), G/C content (∼50%), 
annealing temperature (58–60°C), amplicon size (93–221 nucleo-
tides) and proximity of 3′ end, when possible. Forward and reverse 
primers were designed in different exons (with the exception of the 
intron less genes: Drd1a) and specificity was confirmed by a Basic 

4 were given for topographical distribution of axial, limb, orofacial 
and locomotor AIMs. To obtain a more accurate scale, additional 
scores also ranging from 0 to 4 were attributed to the amplitude of 
axial and limb AIMs (Winkler et al., 2002). Each AIM was presented 
separately at 1 and 2 h after l-DOPA.

tyrosIne hydroxylase (th) IMMunorreactIvIty
Dopaminergic depletion was confirmed with TH 
immunohistochemistry.

Tissue processing
Twenty-four hours after last test, rats were deeply anesthetized with 
urethane (25 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) and then 
rapidly perfused transcardiacally with 250 ml of cold saline and 
400 ml of 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO, 
USA) in 0.1 M phosphate buffer (pH 7.4). The tissues were cut at 
25 μm on a freezing microtome. Sections through the striatum and 
SNc were collected in 0.01 M phosphate-buffered saline solution 
containing 0.02% sodium azide and stored at 4°C until use.

Immunohistochemistry reaction
Tyrosine hydroxylase-immunohistochemistry was performed using 
a standard peroxidase based method (Gomes et al., 2008). Briefly, 
the sections were incubated with primary TH antibody (1:2000, Pel 
Freez, Rogers, AR, USA) overnight at 4°C followed by biotinylated 
secondary antibody (Vectastain ABC Kit, Vector Laboratories, 
Southfield, MI, USA) and horseradish peroxidase (HRP)-conjugated 
streptavidin (Vectastain ABC Kit, Vector Laboratories, Southfield, 
MI, USA). The sections were developed using diaminobenzidine 
(Sigma-Aldrich, St. Louis, MO, USA) as the chromogen.

Image analysis
The AP localizations (from Bregma in mm) of the analyzed areas were: 
AP: −5.2 for SNc and AP: −6.03 for ventral and lateral substantia nigra 
(SNV and SNL respectively, Figure 1). Labeling of TH positive cells/fib-
ers in SNc were assessed by measuring optical density of the entire area 
of the structure. Background (corpus callosum) was subtracted from 
all subsequent measurements. Results are presented the percentage of 
the optical density over the area (in mm2) of the ipsilateral side com-
pared to the contralateral one. The number of TH positive neurons in 
the SNL and SNV were counted manually and results are expressed as 
the number of positive stained neurons per mm2 of the structure. For 
each selected area, quantifications were carried out using four sections 
per animal, separated by 125 μm approximately. Quantifications were 
performed blindly, bilaterally, using a light microscope (Leica DMRB) 
equipped with a video camera (Leica DFC420). Neuroanatomical sites 
were identified using the atlas of Paxinos and Watson (1998). The 
analysis was done using the software ImageJ1.

Western Blot analysIs
The animals were decapitated, the lesion-reactive (right) and the 
contralateral (left-control) striatum were microdissected on an ice-
cooled dissection cover, with the help of magnifying lens (Leica 
Zoom 2000), and immediately frozen in liquid nitrogen (−196°C). 
Tissue samples were stored at −80°C until use. Left and right  striatum 

1http://rsb.info.nih.gov

2http://rsb.info.nih.gov
3http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
4http://www.ncbi.nlm.nih.gov/BLAST
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presenting more than two rotations in 1 min were included in the 
study. l-DOPA or vehicle treatment started approximately 1 week after 
apomorphine test. The study consisted of four different experiments.

Experiment 1
Experiment 1 was a behavioral evaluation of control, 6-OHDA 
lesioned and dyskinetic rats to assess spontaneous locomotor activ-
ity, horizontal activity, and forelimb use asymmetry by the open 
field and the stepping tests. Approximately 2 days after the apo-
morphine-rotational behavior test (wash-out time), independent 
groups of 6-OHDA-lesioned (n = 7) and controls (n = 6–7) were 
submitted to the stepping test or the open field test. 6-OHDA-
lesioned rats treated with l-DOPA (n = 6–9) were also tested at the 
15th day of l-DOPA treatment. The open field test was completed 
before l-DOPA intake. The stepping test was performed before 
(pre-test) and after l-DOPA treatment.

Experiment 2
Experiment 2 aimed to compare the molecular effects in the stria-
tum (bilaterally), estimating the nNOS expression (mRNA and 
protein) and FosB/∆FosB (protein). Rats were sacrificed 24 h after 
the last behavioral test for immunohistochemistry, western blot 
or RT-PCR analysis. The RT-PCR analysis was prepared in con-
trols (control/saline, n = 7) and 6-OHDA-lesioned rats (n = 13). 
6-OHDA-lesioned rats matched for the apomorphine-rotational 
behavior score were divided into two groups: 6-OHDA/sal 
(saline 15 days, once a day, gavage, n = 7) and 6-OHDA/l-DOPA 
(l-DOPA + benserazide, 100 and 25 mg/kg, respectively, 15 days, 
once a day, gavage, n = 6). The western blot protein analysis was 
prepared in control/sal (n = 5), 6-OHDA/sal (n = 5) and 6-OHDA/l-
DOPA + benserazide (100 and 25 mg/kg) after either 1 day (acute; 
n = 5) or 15 days (chronic; n = 5) of treatment.

Experiment 3
Experiment 3 was designed to compare the behavioral effects of acute 
l-NOARG on established l-DOPA-induced AIMs. Rats received daily 
administration (for 15 days) of either vehicle (groups: control/sal, 
n = 10 and 6-OHDA/sal, n = 10) or l-DOPA + benserazide (groups: 
control/l-DOPA, n = 11 and 6-OHDA/l-DOPA, n = 17). Rats were 
matched for the AIM scores on day 15 of l-DOPA treatment. On 
day 16, animals were divided into subgroups: control/sal, n = 5; 
6-OHDA/sal, n = 5; control/l-DOPA, n = 5–6; or 6-OHDA/l-DOPA, 
n = 8–9. Animals received (intraperitoneal (i.p.), 30 min before 
l-DOPA) either 50 mg/kg of l-NOARG or saline. The l-NOARG 
effect was calculated by comparing AIM scores, rotational behavior 
and the results of the stepping-test, between days 15 and 16.

Experiment 4
Experiment 4 was designed to compare the behavioral effects of 
acute l-NOARG on acute l-DOPA-induced AIMs. Rats were divided 
into subgroups (control/sal, n = 5; 6-OHDA/sal, n = 5–6; control/
l-DOPA, n = 5; or 6-OHDA/l-DOPA, n = 10–11) and received 
either 50 mg/kg of l-NOARG or saline 30 min before l-DOPA. 
AIMs, rotational behavior and the stepping test were evaluated. 
The l-NOARG effect was calculated by comparing behavioral data 
between the groups.

Local Alignment Search Tool (BLAST)4 software-assisted search 
of a non-redundant nucleotide sequence database for rat, and 
 electrophoresis on an ethidium bromide-stained 3% agarose gel. 
Real-time PCR analysis of gene expression was carried out in an 
ABI Prism 7700 sequence detection system (Applied Biosystems). 
The optimal concentration of cDNA and primers as well as the 
maximum efficiency of amplification were obtained through five-
point, twofold dilution curve analysis for each gene. Each PCR con-
tained 12.5 ng of reverse-transcribed RNA, 200 nm of each specific 
primer, SYBR® GREEN PCR Master Mix (Applied Biosystems Cat. 
No. 4309155), and RNase free water to a 20 μl final volume. cDNA 
samples from each area for all treatments and strain were processed 
at the same time in triplicate for each gene and the negative con-
trols included for each brain area/primer. The PCR conditions were 
10 min at 95°C, followed by 40 cycles at 95°C for 15 s and 60°C for 
60 s, and a melting step (dissociation curve) was performed after 
each run to further confirm the specificity of the products and 
the absence of primer dimers. Real-time data were analyzed using 
Sequence Detector System 1.7 (Applied Biosystems). The relative 
expression in all brain areas was calculated according to a previous 
study (geNorm v 3.4, Vandesompele et al., 2002).

The following pairs of primers for cDNA, from genes available at 
the NCBI-NIH GeneBank, were used to nNOS (NM 052799; prod-
uct of 202 bp): sense 5′-ATT CAA CAG CGT CTC CTC CT-3′ and 
antisense 5′-AAT CCT CTC CCC TCC CAG T-3′. Reference genes: 
Ppia (NM 017101; product of 101 bp): sense 5′-AAT GCT GGA 
CCA AAC ACA AA-3′ and antisense 5′-CCT TCT TTC ACC TTC 
CCA AA-3′; Gapd (NM 017008; product of 162 bp): sense 5′-ATG 
GTG AAG GTC GGT GTG-3′ and antisense 5′-GAA CTT GCC 
GTG GGT AGA G-3′; Actb (NM 031144; product of 174 bp): sense 
5′-CGT TGA CAT CCG TAA AGA CC-3′ and antisense 5′-GCC 
ACC AAT CCA CAC AGA-3′.

statIstIcal analysIs
The effects of l-NOARG on acute and chronic l-DOPA-induced 
AIMs were evaluated, respectively, by Mann–Whitney and Wilcoxon 
non-parametric tests. l-NOARG effects on rotational behavior 
were evaluated by one way repeated measure ANOVA (rANOVA), 
Student’s t-test or Student’s paired t-test as indicated. l-NOARG 
effects on stepping test were obtained on each side (ipsi- and con-
tralateral) with two way ANOVA or one way rANOVA as indicated. 
Stepping test was analyzed on each side by two way rANOVA being 
test session (pre-test and test) and time (day 1 and day 15) the 
repeated measures. When significant interactions were found on 
time, one way rANOVA were performed for each day. Western blot 
and data RT-PCR data was compared by using one and two way 
rANOVA as indicated. Data are presented as mean ± SEM. Post 
hoc analysis was performed by Sidak or Student t-test as indicated. 
Statistical significance level was set at p < 0.05.

experIMental desIgn
Unilaterally 6-OHDA-lesioned rats were assigned to treatment groups 
according to apomorphine-rotational behavior test performance (day 
21 following surgery), to ensure that these measures were matched 
between groups. No ipsilateral rotation (complete 360° turns toward 
the lesion-reactive striatum) was observed. 6-OHDA-lesioned rats 

Padovan-Neto et al. Attenuation of de novo/long-term L-DOPA-induced dyskinesia

Frontiers in Systems Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 40 | 4

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


(approximately 70%, Figure 2A). l-DOPA treatment on day 1 
improved stepping performance (Figure 2B, group: F

(1,26)
 = 112.35, 

p < 0.05; test: F
(1,26)

 = 56.82, p < 0.05; interaction: F
(1,26)

 = 26.15, 
p < 0.05). The effect was maintained through the last day of 
 treatment (Figure 2B, day 15), with no differences between groups 
(pre-test and test, p > 0.05). The ipsilateral paw adjusting steps were 
not changed by lesion or drug treatment (Figure 2A). Finally, there 
was a significant correlation (r = 0.56, p = 0.02, Figure 2C) between 
apomorphine induction of the rotational behavior and forehand 
paw test impairment.

The open field test revealed a decrease in the motor activity 
after 6-OHDA-lesion (rearing and the number of squares crossed 
in comparison with controls, Table 1; p < 0.05). The lesioned 
rats demonstrated a noticeable preference for exploration of the 
right side of the field, but there was no significant difference in 
grooming. l-DOPA treatment did not change these parameters 
(p > 0.05; Table 1).

neuronal nos expressIon In the strIatuM of control, 
6-ohda-lesIoned and l-dopa-treated (dyskInetIc) rats
In the striatum, the expression of nNOS transcript in both hemi-
spheres differed significantly among the groups (Figure 3B; side-
treatment interaction: F

(2,17)
 = 5.06, p < 0.05). There was a modest 

increase (1.5 times) in the ipsilateral striatum of both 6-OHDA-
lesioned and dyskinetic rats. However, in the striatum contralat-
eral to the lesion in the l-DOPA-treated rats, there was a greater 
(10 times) increase in nNOS mRNA expression. A similar result 
was observed in the prefrontal cortex, but the greatest increase 
in nNOS mRNA was observed in the ipsilateral frontal cortex 
(Figure 3A; side-treatment interaction: F

(2,16)
 = 14.91, p < 0.05), 

Figure 3A). No changes were observed in the hippocampus 
(Figure 3C, p > 0.05).

The western blot analysis (Figure 4) indicated a bilateral 
increase in the nNOS protein content in the striatum (treat-
ment: F

(2,6)
 = 82.56, p < 0.05, side: F

(1,6)
 = 17.22; p < 0.05; interac-

tion: F
(1,6)

 = 0.57; p < 0.05). In the striatum of 6-OHDA-lesioned 
and l-DOPA-induced AIMs rats, there was an increase of nNOS 
protein between 19 and 24% (Figure 4; p < 0.05). Additionally, 
FosB/∆FosB protein was visualized bilaterally in the striatum of 
lesioned rats (Figure 5A). Acute and chronic l-DOPA administra-
tion to 6-OHDA-lesioned rats induced a bilateral increase in the 
expression of FosB/∆FosB protein (side: F

(1,4)
 = 757.77, p < 0.05; 

treatment: F
(1,4)

 = 314.46, p < 0.05; interaction: F
(1,4)

 = 201.30, 
p < 0.05). The increase was larger in the striatum ipsilateral to the 
lesion. Chronic l-DOPA treatment induced a more pronounced 
FosB/∆FosB expression in the ipsilateral striatum when com-
pared to the ipsilateral striatum in the acute l-DOPA-treated rats 
(p < 0.05; Figure 5B).

BehavIoral effects of acute l-noarg treatMent on 
estaBlIshed l-dopa-Induced aIMs
l-DOPA chronic treatment, in general, induced an increase in 
the number of turns (time: F

(2,32)
 = 78.27, p < 0.05) and AIMs 

(p < 0.05). l-DOPA treatment in the control rats induced no AIMs 
and no turns. l-NOARG reduced locomotor AIMs (Figure 6A, 
1 h; p < 0.05), limb/orofacial AIMs (Figure 6B; 2 h; p < 0.05) and 
contralateral turns (Figures 6C,D; p < 0.05). l-DOPA treatment 

results
6-OHDA-lesioned rats presented apomorphine-induced rotation 
contralateral to the lesion (317 ± 44 turns/45 min). No rotation 
was observed in the control animals. Quantification of striatal 
TH-positive cells and fibers by optical density was measured in 
the substantia nigra compacta (SNc) and in the SNL and SNV 
(Figure 1). TH-immunostaining (Figure 1A) indicated a dopa-
minergic cell loss >95% in the SNc (Figure 1C), ipsilateral to the 
6-OHDA injection (Figures 1A,B). SNL and SNV also presented a 
reduction in the number of cells and fibers (Figures 1A,B,D). No 
change was observed in control rats (data not shown).

BehavIoral evaluatIon of 6-ohda-Induced lesIon and l-dopa-
Induced aIMs In rats
Due to the lack of statistical difference between tests performed at 
1 and 2 h (p > 0.05, paired t-test) with the stepping test, data were 
presented as the mean of values collected at these times. 6-OHDA-
lesioned rats, but not controls, presented an impairment of the 
contralateral forehand paw when compared to the ipsilateral paw 

Figure 1 | representative microphotographs demonstrating TH-
immunoreactive cell bodies in the substantia nigra of a rat with more 
than 95% cell loss. (A,B) The 6-OHDA-microinjection induced degeneration of 
dopamine neurons in the MFB injection side. Images were captured in 
sections at (A) −5.20 mm and (B) −6.04 mm, AP to Bregma. (C,D) 
Quantification of striatal TH + cells/fibers by optical density were performed at 
SNc (−5.20 mm from Bregma) and in the SNL and SNV (−6.04 mm from 
Bregma). Values are expressed as mean ± SEM (Saline-MFB, n = 6; 
6-OHDA-MFB, n = 11). SNc, substantia nigra pars compacta; SNL, lateral 
substantia nigra; SNV, ventral substantia nigra.
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Pre-treatment with l-NOARG decreased stepping test in the 
contralateral paw performance (Figure 7F; group, F

(1,27)
 = 16.23, 

p < 0.05; treatment: F
(1,27)

 = 5.21, p < 0.05; interaction: F
(1,27)

 = 11.37, 
p < 0.05) with no effect in the ipsilateral paw.

dIscussIon
The main findings of this study were that l-NOARG attenuated 
AIMs induced by acute and chronic l-DOPA treatment. Rotational 
behavior was attenuated only after chronic l-DOPA administra-
tion. l-DOPA improved stepping test performance, and its chronic 
administration did not alter open field behavior. Our results indi-
cated a correlation between apomorphine-induced rotation and 
the decrease in the number of adjusting steps performed with the 
contralateral forepaw in the 6-OHDA-lesioned rats. In the stria-
tum and the frontal cortex, the 6-OHDA lesion and the l-DOPA 
treatment induced a bilateral increase in the nNOS protein, nNOS 
mRNA and the FosB/∆FosB, the FosB/∆FosB being greatest in the 
ipsilateral striatum. In contrast, there was an increase of 10 times in 
the nNOS mRNA in the contralateral striatum and in the ipsilateral 
frontal cortex with l-DOPA-chronic treatment.

improved stepping test performance in the contralateral paw, as 
demonstrated in Figure 2. The adjusting step in the ipsilateral paw 
did not change. l-NOARG before l-DOPA induced no effect in 
the ipsilateral paw (Figure 6E; p > 0.05) but did result in a small 
reduction ( < 20%) in the contralateral paw (Figure 6F; treatment: 
F

(1,11)
 = 3.02, p > 0.05; group: F

(1,11)
 = 1.57, p > 0.05; interaction: 

F
(1,11)

 = 9.01, p < 0.05).

BehavIoral effects of l-noarg on acute l-dopa-Induced aIMs
All subtypes of AIMs were observed 1 and 2 h after the administra-
tion of acute l-DOPA to 6-OHDA-lesioned rats (Figures 7A,B). 
Pre-treatment with l-NOARG reduced AIMs (limb, limb amplitude, 
and orofacial) at the first hour (Figures 7A,B, p < 0.05) and loco-
motor AIMs after 2 h of l-DOPA treatment (Figure 7B; p < 0.05). 
In contrast, l-NOARG did not change l-DOPA-induced rotation 
(Figures 7C,D). Administration of a single l-DOPA treatment to 
6-OHDA-lesioned rats induced a slight increase in the stepping 
test performance of the ipsilateral paw, with no difference in the 
contralateral paw (Figure 7E; group: F

(1,27)
 = 0.38, p > 0.05; treat-

ment: F
(1,27)

 = 2.26, p > 0.05; interaction: F
(1,27)

 = 6.94, p < 0.05). 

Figure 2 | effects of 6-OHDA-lesion and l-DOPA treatment in the 
rodents stepping test. Rats received either saline (n = 17) or 6-OHDA 
(n = 11) microinjections on MFB. (A) For both groups, l-DOPA chronic 
treatment had no effect on the paw ipsilateral to the lesion. (B) 6-OHDA 
microinjection induced deficits in the paw contralateral to lesion (day 1, 
pre-test) that was reversed by l-DOPA administration (day 1, test). l-DOPA 

treatment also improved the akinesia in the contralateral paw until the end of 
the treatment (day 15). (C) Spearman correlation between contralateral 
adjusting steps as a function of indirect striatal dopamine depletion provided 
by apomorphine-induced rotational behavior. *p < 0.05 vs saline-FPM injected 
rats; #p < 0.05 vs pre-test (two way rANOVA). Values are expressed as 
mean ± SEM.

Table 1 | exploratory behavior of rats in open field arena.

 rearings Squares crossed grooming Preference (%)

Control (n = 7) 26 ± 2.58 31.29 ± 2.81 5 ± 0.62 Left: 100

6-OHDA (n = 7) 15.14 ± 3.82* 17.43 ± 2.22* 4.29 ± 1.02 Right: 85.7

    Left: 14.3

6-OHDA/l-DOPA (n = 6)/day 1 10 ± 2.50 14.83 ± 1.89 3 ± 0.58 Right: 83.3

    Left:16.6

6-OHDA/l-DOPA (n = 6)/day 15 5.83 ± 1.74 10.33 ± 1.38 2.67 ± 0.56 Right: 100

Numbers are mean ± SEM. *p < 0.05 vs control (paired t-test).
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Figure 3 | Quantitative real-time PCr analysis of the nNOS mrNA in the 
prefrontal cortex, striatum and hippocampus of control, 6-OHDA-
lesioned and on established l-DOPA-induced AiMs. Treatment is described 
in the Section “Materials and Methods.” Bars represent transcript amount per 
region analyzed, expressed as the mean ± SEM of six to seven animals 
samples/group. Representative distribution patterns of nNOS mRNA 
expression on prefrontal cortex, striatum, and hippocampus are shown in (A), 
(B), and (C) respectively. ♦p < 0.05 vs control; ∗p < 0.05 vs control and 6-OHDA-
lesioned rats; #p < 0.05 vs contralateral side (rANOVA followed by the Sidak 
test, p < 0.05).

Figure 4 | Western blot analysis of nNOS protein in the rat striatum: effect 
of lesion and l-DOPA chronic treatment in control, 6-OHDA-lesioned and on 
established l-DOPA-induced AiMs. Treatment is described in Methods. (A) 
Contralateral and, (B) ipsilateral striatum. Lines indicate specific bands at ∼155 kDa 
(nNOS) and ∼43 kDa of a loading control (β-actin). (C) There was an increment of 
nNOS protein expression in both ipsilateral and contrataleral striatum for 
6-OHDA-lesioned and l-DOPA-treated-6-OHDA-lesioned rats. The values obtained 
from contralateral side were higher than the ipsilateral one. *p < 0.05 vs control; 
#p < 0.05 vs ipsilateral side (rANOVA followed by the Sidak test, p < 0.05).

Figure 5 | Characterization of the expression of FosB/∆FosB after acute 
and on established l-DOPA-induced AiMs. (A) Western blots of proteins 
from extracted striatum of acutely and chronically l-DOPA-treated 
hemiparkinsonian rats; left and right lanes represent proteins from ipsilateral 
(I) and contralateral (C) striatum, respectively. (B) Results of the quantification 
of l-DOPA-induced FosB/∆FosB expression are expressed as the integrated 
density of each band of the proteins of interest was normalized to the 
integrated density of the control loading ß-actin (mean ± SEM; square pixel). 
*p < 0.05 compared with contralateral striatum for either acute or chronic 
treatment with l-DOPA (paired t-test). #p < 0.05 compared with the same side 
for acute or chronic treatment with l-DOPA (t-test).

Individual AIM categories are highly interrelated, but this 
does not imply that each AIM category represents the same 
phenomena. Moreover, there is currently no consensus on the 
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Figure 6 | effects of l-NOArg pre-treatment on AiMs, rotational behavior 
and stepping test on established l-DOPA-induced AiMs. (A) l-NOARG 
pre-treatment significantly reduced locomotor AIM scores at 1 h after l-DOPA. (B) 
Limb and orofacial AIMs scores were significantly reduced by l-NOARG at 2 h after 
l-DOPA. *p < 0.05 (Wilcoxon). (C) l-NOARG pre-treatment reduced contralateral 
turns measured during 5 min at 0, 25, 55, 85, and 115 min after l-DOPA treatment. 

*p < 0.05 (one way rANOVA). (D) l-NOARG reduced total contralateral turns 
measured during 120 min after l-DOPA. p < 0.05 (paired t-test). After chronic 
l-DOPA treatment l-NOARG pre-treatment did not affect (e) ipsilateral adjusting 
steps and (F) slight reduced adjusting steps performed with contralateral paw. 
*p < 0.05 vs Saline-FPM (one way rANOVA). Values are expressed as mean ± SEM 
(6-OHDA-FPM, n = 8–9/group; Saline-FPM, n = 5–6/group).

behavioral  components underlying turning. The interpretation 
of circling behavior has been greatly debated with the introduc-
tion of a rodent rating scale for dyskinesia (Henry et al., 1998; 
Lundblad et al., 2002; Konitsiotis and Tsironis, 2006; Lane et al., 
2006; Cenci and Konradi, 2010). The phenomenon of rotation was 
first described by Ungerstedt and Arbuthnott (1970). The admin-
istration of post-synaptic dopamine agonists, such as l-DOPA, 
induced contraversive rotation through asymmetric striatal recep-
tor stimulation (Zetterstrom et al., 1986; Schwarting et al., 1991). 
The mechanisms by which asymmetry in central dopaminergic 
systems translated into the motor response of turning remains 
unclear (for a review, see Miller and Beninger, 1991; Dunnett and 
Robbins, 1992). Turning has been interpreted as either a lateralized 
expression of sensory hyperattention or as the result of asym-
metries in the dopaminergic control of posture or locomotion 
(for review see Miller and Beninger, 1991; Schwarting and Huston, 
1996; Lundblad et al., 2002). Early reports suggested that the ampli-
tude enhancement of the contralateral rotational response was 
caused by basal ganglia sensitization similar to that thought to 
underlie the development of dyskinesias (Papa et al., 1994; Henry 
et al., 1998; Mura et al., 2002). Our results corroborated findings of 
l-DOPA-induced rotation differences between acute and chronic 
treatment. It reflected a difference in the underlying neural mecha-
nisms revealed by the distinct NO system interference.

The adjusting steps task is used as an index of severe dopamin-
ergic depletion (Olsson et al., 1995; Schwarting and Huston, 1996; 
Chang et al., 1999). In corroboration, adjusting steps correlated 
with apomorphine-induced rotations. l-NOARG per se slightly 

decreased adjusting steps of the contralateral paw, an effect that dis-
appeared with chronic l-DOPA treatment. The impairment in the 
stepping test could be interpreted as motor behavior impairment 
in the unprimed l-DOPA rats. However, previous results (Novaretti 
et al., 2010) have shown no interference of 7-NI in the stepping test 
performance following either acute or chronic l-DOPA treatment. 
The open field test, a test that evaluates exploratory behavior as 
an index of motor activity, was not modified by either acute or 
chronic l-DOPA treatment. Therefore, given that l-NOARG did 
not interfere with acute l-DOPA rotational behavior, our results 
suggested that the effect of the NOS inhibitor could conceivably 
rely on the l-DOPA structural modifications in the Parkinsonian 
brain (Cenci et al., 1998, 2002; Lundblad et al., 2002).

The implications of NO in the response to anti-dyskinetic 
therapy are poorly understood. Substantial evidence has demon-
strated the involvement of NO in the degeneration of dopaminergic 
neurons of the nigrostriatal pathway (Duncan and Heales, 2005). 
There are several possible mechanisms through which NOS inhibi-
tors may influence l-DOPA-induced dyskinesias. NO modulates 
l-DOPA release from the striatum (Sanchez et al., 2002; Abreu-
González et al., 2006). Additionally, in the rat striatum and medial 
preoptic area, NO increased both dopamine and serotonin release 
in a cGMP-dependent manner (Trabace et al., 2004). The develop-
ment of abnormal movements has been associated with changes 
in gene and protein expression in dopamine-denervated striatal 
neurons (Cenci et al., 1998; Andersson et al., 1999; Pavón et al., 
2006). In response to l-DOPA, FosB/∆FosB expression appeared 
to be selectively induced in the nitrergic neurons in the striatum, 
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not result in protein increase. It is possible that nNOS expression 
increase is associated with neurodegenerative rearrangements of 
the remaining neurocircuitries, preserving and/or further impair-
ing the affected functions.

conclusIon
Our study provided further evidence of the anti-dyskinetic effects 
of a NOS inhibitor under acute and chronic l-DOPA treatment. 
Our results revealed an over-expression of the neuronal NOS in 
the frontal cortex and striatum in Parkinsonian and dyskinetic rats 
probably associated with rearrangements of the remaining neuro-
circuitries,. Taken together, these data provide a rationale for further 
evaluation of NOS inhibitors in the treatment of l-DOPA-induced 
dyskinesia.
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where it facilitates the expression of histone acetyltransferase, 
resulting in enhanced local phosphorylated histone and further 
changes in gene expression (Darmopil et al., 2009; Santini et al., 
2009). NO may be involved either in the neurodegeneration/death 
or neuroprotection of dopaminergic neurons (Przedborski et al., 
1996; Dehmer et al., 2000; Zhang et al., 2000; Gomes and Del-Bel, 
2003; Gomes et al., 2008).

l-DOPA-induced dyskinesia has been linked to pathological 
cortico-striatal synaptic plasticity, which is mediated by long-lasting 
molecular changes (for review see Cenci and Konradi, 2010). In 
PD, there is an increase in NADPH-diaphorase-positive glial cells 
in the substantia nigra suggesting up-regulation of iNOS (Hunot 
et al., 1996), but there is also elevated expression of nNOS mRNA 
in other areas of basal ganglia (Eve et al., 1998) and increased nitrite 
levels in the cerebrospinal fluid (Qureshi et al., 1995), all suggesting 
increased NO production. Nevertheless, De-Vente et al. (2000) and 
Sancesario et al. (2004) reported that lesions of the dopaminergic 
innervation also using 6-OHDA resulted in a 50% decrease in NOS 
activity in the injured striatum and frontal cortex. We could not 
explain why NOS mRNA was increased 10 times (approximately) 
in the contralateral striatum and frontal cortex and why it did 

Figure 7 | effects of l-NOArg pre-treatment on AiMs, rotational behavior 
and stepping test on acute l-DOPA-induced AiMs. (A) l-NOARG pre-treatment 
significantly reduced limb, limb amplitude and orofacial AIMs scores 1 h after 
l-DOPA application. (B) Locomotor AIM score was attenuated by l-NOARG 2 h 
after l-DOPA treatment. *p < 0.05 (Mann–Whitney). (C) l-NOARG pre-treatment 
had no effects on contralateral turns measured during 5 min at 0, 25, 55, 85, and 
115 min after l-DOPA treatment p > 0.05 (two way rANOVA) neither on (D) total 

contralateral turns, assessed during 120 min after l-DOPA treatment. p > 0.05 
(t-test) (e) l-DOPA treatment slightly increased the number of the adjusting steps 
of 6-OHDA-lesioned rats in the paw ipsilateral to the lesion. (F) l-DOPA treatment 
completely restored the akinesia in the contralateral-to lesion paw, of 6-OHDA-
lesioned rats but l-NOARG pre-treatment impaired l-DOPA effect. *p < 0.05 vs 
Saline-FPM injected (two way ANOVA). Values are expressed as mean ± SEM 
(6-OHDA-FPM, n = 10–11/group; Saline-FPM, n = 5/group).

Padovan-Neto et al. Attenuation of de novo/long-term L-DOPA-induced dyskinesia

Frontiers in Systems Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 40 | 9

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


in Parkinson’s disease. Neuroscience 
72, 355–363.

Iancu, R., Mohapel, P., Brundin, P., and 
Paul, G. (2005). Behavioral characteri-
zation of a unilateral 6-OHDA-lesion 
model of Parkinson’s disease in mice. 
Behav. Brain Res. 162, 1–10.

Itokawa, K., Ohkuma, A., Araki, N., 
Tamura, N., and Shimazu, K. (2006). 
Effect of l-DOPA on nitric oxide pro-
duction in striatum of freely mobile 
mice. Neurosci. Lett. 402, 142–144.

Jenner, P. (2008). Molecular mechanisms 
of l-DOPA-induced dyskinesia. Nat. 
Rev. Neurosci. 9, 665–677.

Kavya, R., Saluja, R., Singh, S., and Dikshit, 
M. (2008). Nitric oxide synthase regu-
lation and diversity: implications in 
Parkinson’s disease. Nitric Oxide 
15,280–294.

Kawaguchi, Y. (1997). Neostriatal cell 
subtypes and their functional roles. 
Neurosci. Res. 27, 1–8.

Konitsiotis, S., and Tsironis, C. (2006). 
Levodopa-induced dyskinesia and 
rotational behavior in hemiparkin-
sonian rats: independent features or 
components of the same phenom-
enon? Behav. Brain Res. 170, 337–341.

Kub ota , Y. ,  Mikawa , S . ,  and 
K a w a g u c h i ,  Y.  ( 1 9 9 3 ) . 
NeostriatalGABAergicinterneurones 
contain NOS, calretinin or parvalbu-
min. Neuroreport 5, 205–208.

Lane, E. L., Cheetham, S. C., and Jenner, 
P. (2006). Does contraversive circling 
in the 6-OHDA-lesioned rat indicate 
an ability to induce motor complica-
tions as well as therapeutic effects in 
Parkinson’s disease? Exp. Neurol. 197, 
284–290.

Lane, E. L., Soulet, D., Vercammen, L., 
Cenci, M. A., and Brundin, P. (2008). 
Neuroinflammation in the generation 
of post-transplantation dyskinesia in 
Parkinson’s disease. Neurobiol. Dis. 32, 
220–228.

Lundblad, M., Andersson, M., Winkler, 
C., Kirik, D., Wierup, N., and Cenci, 
M. (2002). Pharmacological valida-
tion of behavioural measures of aki-
nesia and dyskinesia in a rat model of 
Parkinson’s disease. Eur. J. Neurosci.15, 
120–132.

Marsden, C. D., and Parkes, J. D. (1977). 
Success and problems of long-term 
levodopa therapy in Parkinson’s dis-
ease. Lancet 1, 345–349.

Miller, R., and Beninger, R. J. (1991). On 
the interpretation of asymmetries of 
posture and locomotion produced 
with dopamine agonists in animals 
with unilateral depletion of stri-
atal dopamine. Prog. Neurobiol. 36, 
229–256.

Monville, C., Torres, E. M., and Dunnett, 
S. B. (2006). Comparison of incre-
mental and accelerating protocols of 

cGMP synthesis. Eur. J. Neurosci. 12, 
507–519.

Di Giovanni, G., Ferraro, G., Sardo, P., 
Galati, S., Esposito, E., and La Grutta, 
V. (2003). Nitric oxide modulates 
striatal neuronal activity via soluble 
guanylylcyclase: an in vivo microion-
tophoretic study in rats. Synapse 48, 
100–107.

Duncan, A. J., and Heales, S. J. (2005). 
Nitric oxide and neurological disor-
ders. Mol. Aspects Med. 26, 67–96.

Dunnett, S. B., and Robbins, T. W. (1992). 
The functional role of mesotelence-
phalic dopamine systems. Biol. Rev. 
Camb. Philos. Soc. 67, 491–518.

Ebadi, M., and Sharma, S. K. (2003). 
Peroxynitrite and mitochondrial 
dysfunction in the pathogenesis of 
Parkinson’s disease. Antioxid. Redox 
Signal. 5, 319–335.

Eve, D., Nisbet, A., Kingsbury, A., 
Hewson, E., Daniel, S., Lees, A., 
Marsden, C., and Foster, O. (1998). 
Basal ganglia neuronal nitric oxide 
synthase mRNA expression in 
Parkinson’s disease. Brain Res. Mol. 
Brain Res. 63, 62–71.

Galati, S., D’Angelo, V., Scarnati, E., 
Stanzione, P., Martorana, A., Procopio, 
T., Sancesario, G., and Stefani, A. 
(2008). In vivo electrophysiology of 
dopamine-denervated striatum: focus 
on the nitric oxide/cGMP signaling 
pathway. Synapse 62, 409–420.

Garthwaite, J. (2008). Concepts of neural 
nitric oxide-mediated transmission. 
Eur. J. Neurosci. 27, 2783–2802.

Gomes, M. Z., and Del Bel, E. A. (2003). 
Effects of electrolytic and 6-hydroxy-
dopamine lesions of rat nigrostriatal 
pathway on nitric oxide synthase and 
nicotinamide adenine dinucleotide 
phosphate diaphorase. Brain Res. Bull. 
62, 107–115.

Gomes, M. Z., Raisman-Vozari, R., 
and Del Bel, E. A. (2008). A nitric 
oxide synthase inhibitor decreases 
6-hydroxydopamine effects on tyros-
ine hydroxylase and neuronal nitric 
oxide synthase in the rat nigrostriatal 
pathway. Brain Res. 1203, 160–169.

Guix, F. X., Uribesalgo, I., Coma, M., and 
Munoz, F. J. (2005). The physiology 
and pathophysiology of nitric oxide 
in the brain. Prog. Neurobiol. 76, 
126–152.

Henry, B., Crossman, A. R., and Brotchie, 
J. M. (1998). Characterization of 
enhanced behavioral responses to 
l-DOPA following repeated admin-
istration in the 6-OHDA-lesioned rat 
model of Parkinson’s disease. Exp. 
Neurol. 151, 334–342.

Hunot, S., Boissière, F., Faucheux, B., 
Brugg, B., Mouatt-Prigent, A., Agid, 
Y., and Hirsch, E. (1996). Nitric oxide 
synthase and neuronal vulnerability 

 neurological deficits: how relevant is 
the rat? Nat. Rev. Neurosci. 3, 574–579.

Centonze, D., Picconi, B., Gubellini, P., 
Bernardi, G., and Calabresi, P. (2001). 
Dopaminergic control of synaptic 
plasticity in the dorsal striatum. Eur. 
J. Neurosci. 13, 1071–1077.

Chalimoniuk, M., and Langfort, J. (2007). 
The effect of subchronic, intermittent 
l-DOPA treatment on neuronal nitric 
oxide synthase and soluble guanylyl-
cyclase expression and activity in the 
striatum and midbrain of normal and 
MPTP-treated mice. Neurochem. Int. 
50, 821–833.

Chalimoniuk, M., Stepie, A., and 
S t roszna jder, J.  B . (2004) .
Pergolidemesylate, a dopaminergic 
receptor agonist, applied with l-DOPA 
enhances serum antioxidant enzyme 
activity in Parkinson disease. Clin. 
Neuropharmacol. 27, 223–229.

Chang, J. W., Wachtel, S. R., Young, D., and 
Kang, U. J. (1999). Biochemical and 
anatomical characterization of fore-
paw adjusting steps in rat models of 
Parkinson’s disease: studies on medial 
forebrain bundle and striatal lesions. 
Neuroscience 88, 617–628.

Cools, A. R. (1980). Role of the neostriatal 
dopaminergic activity in sequencing 
and selecting behavioural strategies: 
facilitation of processes involved in 
selecting the best strategy in a stressful 
situation. Behav. Brain Res. 1, 361–378.

Darmopil, S., Martín, A. B., De Diego, I. 
R., Ares, S., and Moratalla, R. (2009). 
Genetic inactivation of dopamine D1 
but not D2 receptors inhibits LDOPA- 
induced dyskinesia and histone acti-
vation. Biol. Psychiatry 66, 603–613.

Dehmer, T., Lindenau, J., Haid, S., 
Dichgans, J., and Schulz, J. B. (2000). 
Deficiency of inducible nitric oxide 
synthase protects against MPTP 
toxicity in vivo. J. Neurochem. 74, 
2213–2216.

Del-Bel, E., Padovan-Neto, F. E., Raisman-
Vozari, R., and Lazzarini, M. (2011). 
Role of nitric oxide in motor control: 
implications for Parkinson’s disease 
pathophysiology and treatment. Curr. 
Pharm. Des. 17, 471–488.

Del-Bel, E. A., Guimarães, F. S., Bermudez-
Echeverry, M., Gomes, M. Z., 
Schiaveto-De-Souza, A., Padovan-
Neto, F., Tumas, V., Barion-Cavalcanti, 
A. P., Lazzarini, M., Nucci-Da-Silva, L. 
P., and De Paula-Souza, D. (2005). Role 
of nitric oxide on motor behavior. Cell. 
Mol. Neurobiol. 25, 371–392.

De-Vente, J., Van Ittersum, M., Van 
Abeelen, J., Emson, P. C., Axer, H., 
and Steinbusch, H. W. M. (2000). 
NO-mediated cGMP synthesis in cho-
linergic neurons in the rat forebrain: 
effects of lesioning dopaminergic or 
serotonergic pathways on nNOS and 

references
Abreu-González, P., González-Hernández, 

T., Afonso-Oramas, D., Cruz-Muros, I., 
Barroso-Chinea, P., González, M., and 
C. (2006). Tetrahydrobiopterin stimu-
lates l-DOPA release from striatal tis-
sue. Eur. J. Pharmacol. 541, 33–37.

Andersson, M., Hilbertson, A., and Cenci, 
M. A. (1999). Striatal fosB expression is 
causally linked with l-DOPA-induced 
abnormal involuntary movements and 
the associated upregulation of striatal 
prodynorphin mRNA in a rat model 
of Parkinson’s disease. Neurobiol. Dis. 
6, 461–474.

Aquilano, K. Baldelli S. Rotilio G, and 
CirioloMR. (2008). Role of nitric 
oxide synthases in Parkinson’s dis-
ease: a review on the antioxidant 
and anti-inflammatory activity of 
polyphenols. Neurochem. Res. 33, 
2416–2426.

Barone, P. (2010). Neurotransmission 
in Parkinson’s disease: beyond dopa-
mine. Eur. J. Neurol. 17, 364–376.

Barthwal, M. K., Srivastava, N., and 
Dikshit, M. (2001).Role of nitric oxide 
in a progressive neurodegeneration 
model of Parkinson’s disease in the 
rat. Redox Rep. 6, 297–302.

Bibancos, T., Jardim, D. L., Aneas, I., and 
Chiavegatto, S. (2007). Social isolation 
and expression of serotonergic neuro-
transmission-related genes in several 
brain areas of male mice. Genes Brain 
Behav. 6, 529–539.

Böckelmann, R., Wolf, G., Ransmayr, 
G., and Riederer, P. (1994). NADPH-
diaphorase/nitric oxide synthase 
containing neurons in normal and 
Parkinson’s disease putamen. J. Neural 
Transm. Park. Dis. Dement. Sect. 7, 
115–121.

Calabrese, V., Bates, T. E., and Stella, 
A. M. (2000). NO synthase and 
NO-dependent signal pathways in 
brain aging and neurodegenerative 
disorders: the role of oxidant/anti-
oxidant balance. Neurochem. Res. 25, 
1315–1341.

Calabresi, P., Centonze, D., Gubellini, P., 
Marfia, G. A., Pisani, A., Sancesario, 
G., and Bernardi, G. (2000). Synaptic 
transmission in the striatum: from 
plasticity to neurodegeneration. Prog. 
Neurobiol. 61, 231–265.

Cenci, M. A., and Konradi, C. (2010). 
Maladaptive striatal plasticity in 
l-DOPA-induced dyskinesia. Prog. 
Brain Res. 183, 209–233.

Cenci, M. A., Lee, C. S., and Bjorklund, A. 
(1998). l-DOPA-induced dyskinesia 
in the rat is associated with striatal 
overexpression of prodynorphin- and 
glutamic acid decarboxylase mRNA. 
Eur. J. Neurosci. 10, 2694–2706.

Cenci, M. A., Whishaw, I. Q., and 
Schallert, T. (2002). Animal models of 

Padovan-Neto et al. Attenuation of de novo/long-term L-DOPA-induced dyskinesia

Frontiers in Systems Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 40 | 10

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


neurons recorded in vivo. J. Neurosci. 
24, 1924–1935.

Winkler, C., Kirik, D., Björklund, A., and 
Cenci, M. A. (2002). l-DOPA-induced 
dyskinesia in the intrastriatal 6-OHDA 
model of Parkinson’s disease: relation 
to motor and cellular parameters of 
nigrostriatal function. Neurobiol. Dis. 
10, 165–186.

Zetterström, T., Herrera-Marschitz, 
M., and Ungerstedt, U. (1986). 
Simultaneous measurement of dopa-
mine release and rotational behaviour 
in 6-hydroxydopamine denervated 
rats using intracerebral dialysis. Brain 
Res. 376, 1–7.

Zhang, J., Graham, D. G., Montine, T. 
J., and Ho, Y. S. (2000). Enhanced 
N - m e t hy l - 4 - p h e ny l - 1 , 2 , 3 , 6 -
tetrahydropyridine toxicity in mice 
deficient in CuZn-superoxide dis-
mutase or glutathione peroxidase. 
J. Neuropathol. Exp. Neurol. 59, 
53–61.

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential conflict 
of interest.

Received: 23 February 2011; accepted: 
23 May 2011; published online: 10 June 
2011.
Citation: Padovan-Neto FE, Echeverry 
MB, Chiavegatto S and Del-Bel E (2011) 
Nitric oxide synthase inhibitor improves 
de novo and long-term L-DOPA-induced 
dyskinesia in hemiparkinsonian rats. 
Front. Syst. Neurosci. 5:40. doi: 10.3389/
fnsys.2011.00040
Copyright © 2011 Padovan-Neto, 
Echeverry, Chiavegatto and Del-Bel. This 
is an open-access article subject to a non-
exclusive license between the authors and 
Frontiers Media SA, which permits use, dis-
tribution and reproduction in other forums, 
provided the original authors and source are 
credited and other Frontiers conditions are 
complied with.

and their physiological sequelae. Prog. 
Neurobiol. 49, 215–266.

Sullivan, R. M., Fraser, A., and Szechtman, 
H. (1994). Asymmetrical orientation 
to edges of an openfield: modulation 
by striatal dopamine and relationship 
to motor asymmetries in the rat. Brain 
Res. 637, 114–118.

Tepper, J. M., and Bolam, J. P. (2004). 
Functional diversity and specificity of 
neostriatal interneurons. Curr. Opin. 
Neurobiol. 14, 685–692.

Trabace, L., Cassano, T., Tucci, P., Steardo, 
L., Kendrick, K. M., and Cuomo, V. 
(2004). The effects of nitric oxide on 
striatal serotoninergic transmission 
involve multiple targets: an in vivo 
microdialysis study in the awake rat. 
Brain Res. 2008, 293–298.

Tuite, P., and Riss, J. (2003). Recent devel-
opments in the  pharmacological 
 treatment of Parkinson’s disease. Expert. 
Opin. Investig. Drugs 12, 1335–1352.

Ungerstedt, U., and Arbuthnott, G. W. 
(1970). Quantitative recording of rota-
tional behavior in rats after 6-hydroxy-
dopamine lesions of thenigrostriatal 
dopamine system. Brain Res. 24, 
485–493.

Vandesompele, J., De Preter, K., Pattyn, 
F., Poppe, B., Van Roy, N., De 
Paepe, A., and Speleman, F. (2002). 
Accurate normalization of real-time 
quantitative RT-PCR data by geo-
metric averaging of multiple inter-
nal control genes. Genome Biol. 3, 
research0034.1–research0034.11.

West, A. R., and Grace, A. A. (2002). 
Opposite influences of endogenous 
dopamine D1 and D2 receptor 
activation on activity states and 
electrophysiological properties of 
striatal neurons: studies combining 
in vivo intracellular recordings and 
reverse microdialysis. J. Neurosci. 22, 
294–304.

West, A. R., and Grace, A. A. (2004). The 
nitric oxide-guanylylcyclase signaling 
pathway modulates membrane activ-
ity states and electrophysiological 
properties of striatal medium spiny 

Behavioral effects of intra-nigral 
microinjections of manganese chlo-
ride: interaction with nitric oxide. 
Prog. Neuropsychopharmacol. Biol. 
Psychiatry 24, 307–325.

Przedborski, S., Jackson-Lewis, V., 
Yokoyama, R., Shibata, T., Dawson, 
V. L., and Dawson, T. M. (1996). Role 
of neuronal nitric oxide in 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-induced dopaminergic neu-
rotoxicity. Proc. Natl. Acad. Sci. U.S.A. 
93, 4565–4571.

Qureshi, G. A., Baig, S., Bednar, I., 
Sodersten, P., Forsberg, G., and 
Siden, A. (1995). Increased cerebro-
spinal fluid concentration of nitrite 
in Parkinson’s disease. Neuroreport 6, 
1642–1644.

Sancesario, G., Giorgi, M., D’angelo, V., 
Modica, A., Martorana, A., Morello, 
M., Bengtson, C. P., and Bernardi, G. 
(2004). Down-regulation of nitrergic 
transmission in the rat striatum after 
chronic nigrostriataldeafferentation. 
Eur. J. Neurosci. 20, 989–1000.

Sanchez, J. J., Abreu, P., and Gonzalez, 
M. C. (2002). Sodium nitroprus-
side stimulates l-DOPA release 
from striatal tissue through nitric 
oxide and cGMP. Eur. J. Pharmacol. 
438, 79–83.

Santini, E., Alcacer, C., Cacciatore, S., 
Heiman, M., Hervé, D., Greengard, 
P., Girault, J. A., Valjent, E., and 
Fisone, G. (2009). l-DOPA activates 
ERK signaling and phosphorylates 
histone H3 in the striatonigral 
medium spiny neurons of hemipa-
rkinsonian mice. J. Neurochem. 108, 
621–633.

Schwarting, R. K., Bonatz, A. E., Carey, R. J., 
and Huston, J. P. (1991). Relationships 
between indices of behavioral asym-
metries and neurochemical changes 
following mesencephalic 6-hydroxy-
dopamine injections. Brain Res. 554, 
46–55.

Schwarting, R. K., and Huston, J. P. 
(1996). Unilateral 6-OHDA lesions 
of meso-striatal dopamine neurons 

the rotarod test for the assessment of 
motor deficits in the 6-OHDA model. 
J. Neurosci. Methods 158, 219–223.

Morello, M., Reiner, A., Sancesario, G., 
Karle, E. J., and Bernardi, G. (1997). 
Ultrastructural study of nitric oxide 
synthase-containing striatal neurons 
and their relationship with parvalbu-
min-containing neurons in rats. Brain 
Res. 776, 30–39.

Mura, A., Mintz, M., and Feldon, J. (2002). 
Behavioral and anatomical effects of 
long-term l-dihydroxyphenylalanine 
(l-DOPA) administration in rats with 
unilateral lesions of the nigrostriatal 
system. Exp. Neurol. 177, 252–264.

Novaretti, N., Padovan-Neto, F. E., Tumas, 
V., Da-Silva, C. A., and Del Bel, E. A. 
(2010). Lack of tolerance for the anti-
dyskinetic effects of 7-nitroindazole, a 
neuronal nitric oxide synthase inhibi-
tor, in rats. Braz. J. Med. Biol. Res. 43, 
1047–1053.

Olsson, M., Nikkhah, G., Bentlage, C., and 
Björklund, A. (1995). Forelimb akinesia 
in the rat Parkinson model: differential 
effects of dopamine agonists and nigral 
transplants as assessed by a new step-
ping test. J. Neurosci. 15, 3863–3875.

Padovan-Neto, F. E., Echeverry, M. B., 
Tumas, V., and Del-Bel, E. A. (2009). 
Nitric oxide synthase inhibition atten-
uates l-DOPA-induced dyskinesias in 
a rodent model of Parkinson’s disease. 
Neuroscience 159, 927–935.

Papa, S. M., Engber, T. M., Kask, A. M., and 
Chase, T. N. (1994). Motor fluctua-
tions in levodopa treated Parkinsonian 
rats: relation to lesion extent and treat-
ment duration. Brain Res. 662, 69–74.

Pavón, N., Martín, A., Mendialdua, A., 
and Moratalla, R. (2006). ERK phos-
phorylation and FosB expression are 
associated with l-DOPA-induced 
dyskinesia in hemiparkinsonian mice. 
Biol. Psychiatry 59, 64–74.

Paxinos, G., and Watson, C. (1998). The 
Rat Brain in Stereotaxic Coordinates. 
New York: Academic Press.

Ponzoni, S., Guimarães, F. S., Del Bel, E. 
A., and Garcia-Cairasco, N. (2000). 

Padovan-Neto et al. Attenuation of de novo/long-term L-DOPA-induced dyskinesia

Frontiers in Systems Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 40 | 11

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive

	Nitric oxide synthase inhibitor improves de novo and longterml-DOPA-induced dyskinesia in hemiparkinsonian rats
	Introduction
	Materials and methods
	Drugs
	Animals and 6-Hydroxydopamine (6-OHDA) treatment
	Behavioral tests

	Results
	Discussion
	Conclusion
	Acknowledgments
	References


