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Abstract: Studies on the variation in the particulate matter (PM) content, Saturation Isothermal
Remanent Magnetization (SIRM), and particle grain-size distribution at a high spatial resolution
are helpful in evaluating the important role of urban forests in PM removal. In this study, the trees
located in dense urban forests (T0) retained more PM than trees located in open spaces (T1–T4); the
SIRM and PM weight of T0 were 1.54–2.53 and 1.04–1.47 times more than those of T1–T4, respectively.
In addition, the SIRM and PM weight decreased with increasing distance to the road, suggesting
that distance from pollution sources plays a key role in reducing the air concentration of PM. The
different grain-size components were determined from frequency curve plots using a laser particle-
size analyzer. A unimodal spectrum with a major peak of approximately 20 µm and a minor peak
between 0.1 and 1 µm was observed, indicating that a large proportion of fine air PM was retained
by the needles of the study trees. Additionally, more <2.5 µm size fraction particles were observed at
the sampling site near the traffic source but, compared to a tree in a row of trees, the percentage of
the >10 µm size fraction for the tree in the dense urban forest was higher, indicating that the particles
deposited on the needle surface originating from traffic sources were finer than those from natural
atmospheric dust. The exploration of the variation in the PM weight, SIRM, and grain size of the
particles deposited on the needle surface facilitates monitoring the removal of PM by urban forests
under different environmental conditions (e.g., in closed dense urban forests and in open roadside
spaces), different distances to roads, and different sampling heights above the ground.

Keywords: PM pollution; urban forest; biomagnetic monitoring; grain-size distribution;
environmental conditions

1. Introduction

Atmospheric particulate matter (PM), especially fine PM, has an adverse impact on
human health [1–6]. These studies found that the main sources of ambient PM2.5 globally
are traffic (25%), industry (15%), domestic fuel burning (20%), unspecified sources of
human origin (22%), and natural dust and salt (18%) based on 419 source apportionment
records, and traffic has been targeted as an important contributor to ambient air pollution
in urban areas. Finer particles are more toxic than larger particles with the same chemical
composition and have adverse health effects [2–4] due to their ability to penetrate deep
into the respiratory tract and lungs and then induce respiratory and lung disease, immune
system disorders, and even premature death [7].

The role of urban forests in PM removal has been verified both in experiments [8–12]
and model simulations [13–15]. For instance, approximately 234 tons of PM10 were re-
moved by Chicago’s trees in 1991 [16], 772 tons of PM10 were removed in Beijing [17],
and Santiago’s urban forests were effective in removing PM10 [18]. Selmi et al. [19] found
with an integrated i-Tree Eco model estimate that public trees removed approximately

Int. J. Environ. Res. Public Health 2021, 18, 11964. https://doi.org/10.3390/ijerph182211964 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://doi.org/10.3390/ijerph182211964
https://doi.org/10.3390/ijerph182211964
https://doi.org/10.3390/ijerph182211964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph182211964
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph182211964?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 11964 2 of 14

12 tons of PM2.5–10 and 5 tons PM2 in 2012 [20]. However, urban forests have different
PM removal capacities due to their composition of different tree species [21–24], sampling
heights [22,25], tree configurations [26], ventilation conditions/tree locations [25], leaf
traits [27–29], and exposure times [30]. For instance, coniferous species always have higher
dust removal capacities than broadleaf species [31–33] due to their longer exposure time in
the polluted environment and complex leaf structure. Previous studies have shown that
the evergreen coniferous Juniperus formosana is an effective remover of air PM in arid and
semiarid areas due to its dense canopy and extensive plantings [26,34].

Biomagnetic monitoring is regarded as an effective tool [13,35–41] to evaluate the
capacity of urban plants to remove particulates, and Saturation Isothermal Remanent
Magnetization (SIRM) is one of the most commonly used magnetic parameters. The
distance and intensity of pollution sources are important factors affecting leaf magnetism;
usually, higher leaf SIRM values are observed in high traffic areas [35,42] and industrial
areas [43,44] than in parks or residential areas as well as in soils [45–48], sediments [49],
street dust [50], and falling dust [51,52].

The grain size of particles deposited on the leaf surface showed significant differences
between different species (e.g., the coniferous Pinus mugo showed the largest accumulation
of the PM0.2 fraction) [22] and functional areas [9]. Larger particle size fractions (sum of
>10 µm, 3–10 µm, and 0.2–3 µm size fractions) were found at the bottoms of tree crowns
than in the middle and top areas [53]. Scanning electron microscopy (SEM) [9,40] and
filters [22,53,54] are generally used to measure the concentration of different grain sized
particles on the leaf surface. In this study, a Master size 2000 laser particle-size analyzer
was used to measure the percentage of particle volume weighted means because of the
advantages of a wide measurement range, high precision, fast speed of data collection, and
high precision of small particle measurement associated with this method.

This study reports the variation in the PM weight, SIRM, and grain size of particles
deposited on the surface of Juniperus formosana needles and the possible influencing factors:
for instance, locational, distance to the road, and sampling height (if any). Thus, the aims
of the present study are as follows: (i) to explore the differences in PM weight, SIRM,
and grain-size distribution between an enclosed urban forest and open road environment
and (ii) to evaluate the variation in PM weight, SIRM, and grain-size distribution with
increasing distance to the road and sampling height above the ground.

2. Materials and Methods
2.1. Sampling and Experiment

Lanzhou City is situated in the northwest of China. The topography of Lanzhou City
is a basin surrounded by mountains, and the Yellow River flows through the center of the
city. Five trees (T0–T4) were selected in Lanzhou city to examine the differences in particle
accumulation in different environments. Sampling site T0 was located on the campus of
Lanzhou University (103◦51′29.87′ ′ N, 36◦2′52.96′ ′ E) (Figure 1), which has many green
trees and can be regarded as an enclosed dense urban forest. Sampling sites T1, T2, T3,
and T4 were located along Beibinhe Road (36◦05′25.39′ ′ N, 103◦43′58.79′ ′ E) in the Anning
district in an open road space. T1 and T2 were both approximately 6 m away from the
road, and T3 and T4 were 10 m and 24 m away from the road, respectively. T1 was located
in a row of trees, and T2, T3, and T4 were solitary trees that were unaffected by other
trees in the two directions parallel to the road axis. T0–T4 were approximately 5–6 m high,
and all samples were collected from 120 to 600 cm (T0), 100 to 540 cm (T1), and 100 cm to
560 cm (T2, T3, and T4), respectively, in April 2017 at approximately 20 cm intervals. The
perimeter of the trees is ≈4 m. Fully developed undamaged leaves were collected from the
outer canopy of each tree. In addition, to avoid possible magnetic differences caused by
the maturity of the needles, only mature leaves were collected from the outer canopy.
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Figure 1. Sampling location in Lanzhou.

All mature Juniperus formosana needles were collected before budbreak from four sites
in four directions (NE, SW, NW, and SE). The isothermal remanent magnetization (IRM)
acquired in the maximum field of 1 T is defined as the saturation isothermal remanent
magnetization (SIRM, 10−5 Am2 kg−1) and reflects the contribution of ferrimagnetic and
antiferromagnetic minerals; it is a common indicator of the concentration of magnetic
particulate matter in biomonitoring studies. SIRM was performed with an MMPM10
pulsed magnetizer and remanence was measured after the application of a field of 1 T.
Then, the samples were measured with a JR-6A spinner magnetometer. The magnetism of
the coniferous needles and the weight of the PM deposited over the needles were detected
according to the protocol described in Chen et al. [26]. The SIRM of the particles deposited
on the needles was calculated by the difference before and after washing the needles, and
the weight of the particles deposited on the needles was detected and analyzed following
the elution–filtration method.

Then, the grain-size distribution was measured. A brief description of the grain-size
distribution procedure is as follows: Duplicate needles were washed with 150 mL of
distilled water, brushed carefully, and then placed in an ultrasonicator (KQ-500DE) for
20 min to ensure that the PM was completely removed from the surface. The washings
were passed through a nylon sieve (mesh diameter 100 µm) to remove impurities. Then,
the samples were dispersed in 10 mL of (NaPO3)6 solution. The sample solution was
ultrasonicated for 10 min. The grain-size distribution was measured using a Master size
2000 laser particle-size analyzer (detection range: 0.02–2000 µm).

All of the above analyses were carried out in the Key Laboratory of Western China’s
Environmental Systems (Ministry of Education), Lanzhou University.
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2.2. Statistical Analysis

Data analysis was performed using SPSS 22.0 (IBM, Solutions Statistical Package for
the Social Sciences) and Origin 2018 (OriginLab). Significant differences in the PM weight,
SIRM, and grain size of particles between different sampling sites, sampling directions,
and height ranges were tested using one-way ANOVA. The normality of the data was
evaluated statistically using the Kolmogorov–Smirnov test, and then, the results were
logarithm transformed to meet the normality assumptions.

3. Results
3.1. The Grain-Size Characteristics of the Particles

The grain-size frequency of distribution and cumulative distribution provide refer-
ence information about the particle distribution types [55]. The grain-size frequency of
distribution of the particles deposited on the surfaces of all leaves generally showed a
normal distribution and could be recognized as a unimodal spectrum on a frequency curve,
generally ranging from 0.1 to 100 µm, characterized by a dominant fraction with a major
peak at approximately 20 µm (Figure 2a). In addition, a minor peak between 0.1 and
1 µm was observed (Figure 2a), suggesting that a large proportion of fine particles were
deposited over the surface of Juniperus formosana needles. The particles were dominated by
the >10 µm and the 2.5–10 µm size fractions (62.54% and 27.17%, respectively; Figure 2b),
followed by the 1–2.5 µm and 0.02–1 µm size fractions (6.09% and 4.19%, respectively;
Figure 2b). The <10 µm size fraction accounted for 37.46% of all particles, which is consis-
tent with the previous results reported by Wang et al. [56], who confirmed that the <10 µm
size fraction of the particles deposited on Cedrus deodara needles accounted for 33.97% of
those particles in the central urban area of Nanjing, China, where air pollution is heavy.

Figure 2. (a) The particle size frequency distribution curve of particles deposited on needles. (b) The
percentages of the particle size fractions (0.02–1 µm, 1–2.5 µm, 2.5–10 µm, and >10 µm).

The SIRM, PM weight, and grain-size distribution in the different size fractions
(0.02–1 µm, 1–2.5 µm, 2.5–10 µm, >10 µm) of particles deposited on the surface of needles
at sites T0–T4 are shown in Table S1. The SIRM values ranged from 2.08 × 10−5 to
659.49 × 10−5 Am2·kg−1, and the concentration of the PM ranged from 0.56 to 67.69 g·kg−1.
The SIRM and PM weight at site T0, located on campus, were substantially higher than
those of T1–T4, located in an open roadside space (Table S1). The SIRM of T1, which was
located in a row of trees, was higher than that of T2, which was a solitary tree, even though
these sites were both 6 m away from the road. Simultaneously, decreasing SIRM and weight
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were observed with increasing distance from the road (T2 > T3 > T4). The 0.02–1 µm and
1–2.5 µm size fractions (4.56%, and 6.61%, respectively) were most abundant in T1 but least
abundant in T0 (3.67%, and 5.47%, respectively), and this size fraction was more abundant
in T2 than T3 and T4 (Table S1). The 2.5–10 µm size fractions of T0 and T1 were always
more abundant than those of T2, T3, and T4. Conversely, the >10 µm size fractions of
T0 (63.27%), T2 (63.22%), T3 (63.81%), and T4 (62.33%) were more abundant than that of
T1 (59.93%).

3.2. Variations in Grain-Size Fraction

To determine whether there were statistically significant differences in the SIRM,
the weight of PM, and different grain size fractions (0.02–1 µm, 1–2.5 µm, 2.5–10 µm,
and >10 µm), one-way ANOVA was performed on the results from all sites, and significant
differences (p < 0.05) were observed for the results of T1 and T2 and the 2.5–10 µm size frac-
tion of T1 between the four sampling directions (Tables 1 and S2). However, nonsignificant
differences were found between the four sampling directions at sites T3 and T4, suggesting
that dust retention by the trees near the road (T1 and T2) differs from that of those trees
that are far away from the road and located in the enclosed dense urban forest.

Table 1. Results (SIRM, weight of PM, and different grain-size particles (0.02–1 µm, 1–2.5 µm, 2.5–10 µm, and >10 µm)) of
one-way ANOVA performed between four sampling directions (NE, SW, NW, and SE) at sites T0–T4. Statistically significant
differences (p < 0.05) are highlighted in bold.

T0 T1 T2 T3 T4

F p-Value F p-Value F p-Value F p-Value F p-Value

SIRM 3.795 0.013 17.821 <0.0001 10.785 <0.0001 5.454 0.002 11.540 <0.0001
Weight of PM 1.040 0.378 10.213 <0.0001 5.269 0.002 2.067 0.110 3.714 0.014

0.02–1 µm 0.545 0.653 12.178 <0.0001 3.680 0.015 0.611 0.610 0.126 0.944
1–2.5 µm 3.862 0.012 8.254 <0.0001 2.965 0.036 1.318 0.274 0.584 0.627

2.5–10 µm 4.832 0.004 1.373 0.256 4.609 0.005 2.026 0.116 2.745 0.048
>10 µm 4.305 0.007 4.705 0.004 4.206 0.008 1.823 0.149 1.858 0.143

3.3. Variations among Different Locations

As shown in Figure 3, the SIRM and the weight of PM deposited on the needles at site
T0 in the SW and SE directions were always higher than those at sites T1–T4; the values of
T0 were lower than those of T1 and T2 in the NE direction, while the values of T1 were
higher than those of T2 in the NE direction, but the opposite results were true in the other
directions (SW, NW, and SE). Additionally, the SIRM and weight decreased with increasing
(from T2 to T4) distance in each sampling direction, except in the SW direction. Slight
reductions in the PM weight and SIRM (19.81–26.09% and 22.23–28.57%, respectively)
were observed in the NE, NW, and SE directions at site T3, where the sampling distance
increased to 10 m from the road (Figure 3b). However, greater reductions were observed
at site T4. In the NE direction, the PM weight and SIRM of T4 were 47.01% and 64.10%
less than that of T2 (Figure 3a). The values were 35.49% and 34.10% in the NW direction
(Figure 3c) and 27.20% and 39.53% in the SE direction (Figure 3d). The results showed that
the trees in the enclosed dense urban forest accumulated more airborne particles with their
canopy, and with increasing distance from the road, the weight of PM deposited on the
leaves decreased.

The percentages of the 0.02–1 µm and 1–2.5 µm size fractions decreased in the sequence
of T1/T2 > T3/T4 > T0 (Figure 4a,b); the greatest concentration of 2.5–10 µm size fraction
particles was observed at T1 (Figure 4c). In contrast, the lowest concentration of the >10 µm
size fraction was observed at T1 (Figure 4d). The results showed that more fine particles
were deposited on the surface of needles on the trees close to the road.
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Figure 3. Variation in the SIRM and weight of PM deposited on the needles at different sampling
sites (T0–T4) in four directions ((a)—NE, (b)—SW, (c)—NW, (d)—SE)).

Figure 4. Directional percentages of (a) 0.02–1 µm, (b) 1–2.5 µm, (c) 2.5–10 µm, and (d) >10 µm
particles deposited on needles at sites T0–T4.
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3.4. Variations among Different Sampling Heights

Previous work showed that PM retention on the tree canopy is complex and affected
by sampling height. The hierarchical clustering method was used to test the impact of tree
height on the deposition of PM, and the final cluster members were divided into three
height ranges (low (L): 100–180 cm, medium (M): 200–340 cm, and high (H): 360–600 cm)
at T1 and T2 [26]. In this study, sampling heights were divided into the same height ranges
used by Chen et al. [26]. To test the variation in the results at different sampling height
ranges, one-way ANOVA was performed between three height ranges (Table 2). The results
showed that the differences (p < 0.05) of T0 and T1 were significant, and the differences in
the 2.5–10 µm and >10 µm size < fractions between T2 and T3 at different height ranges
were also significant (p < 0.05); in addition, the differences were always significant between
every two height ranges (Table S3).

Table 2. Results (SIRM, PM weight, and different grain-size particles (0.02–1 µm, 1–2.5 µm, 2.5–10 µm, and >10 µm)) of
one-way ANOVA performed between three height ranges (L, M, and H) at sites T0–T4. Statistically significant differences
(p < 0.05) are highlighted in bold.

T0 T1 T2 T3 T4

F p-Value F p-Value F p-Value F p-Value F p-Value

SIRM 13.349 <0.0001 14.142 <0.0001 0.054 0.948 3.364 0.039 1.935 0.150
PM weight 31.777 <0.0001 27.794 <0.0001 0.288 0.751 1.218 0.300 4.509 0.014
0.02–1 µm 7.185 0.003 1.588 0.210 0.411 0.664 4.334 0.016 6.137 0.003
1–2.5 µm 3.613 0.031 3.218 0.045 2.388 0.097 8.811 <0.0001 4.712 0.011

2.5–10 µm 4.852 0.010 19.351 <0.0001 16.465 <0.0001 8.274 <0.001 1.566 0.215
>10 µm 6.941 0.002 14.186 <0.0001 11.456 <0.0001 11.844 <0.0001 1.615 0.205

The concentrations of different size fractions (0.02–1 µm, 1–2.5 µm, 2.5–10 µm, and
>10 µm) in each height range are shown in Figure 5. The concentrations of fine particles
(0.02–1 µm and 1–2.5 µm) did not change significantly with the increasing sampling height
range for all trees; nevertheless, decreasing concentrations of 2.5–10 µm size fraction
particles and increasing concentrations of >10 µm size fraction particles were found with
increasing sampling height ranges for T0–T3 but not for T4.
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Figure 5. Box and whisker plots showing the percentage of different size fractions at different sampling height ranges (L, M,
and H) for T0–T4.
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4. Discussion
4.1. Effect of Enclosed/Open Environment

The potential of urban forests to reduce PM from the atmosphere and improve the
quality of the urban environment has been confirmed in numerous studies. However, there
is a difference in the PM retention capacity between trees located in the dense closed urban
forest and trees in the open environment. There were significant differences in the weight
of PM deposited on leaves, the SIRM, and the particle grain-size distribution between trees
on the campus of Lanzhou University and those in the open road space. As shown in
Table 1, the SIRM and weight of the PM of T0 were significantly higher than those of T1, T2,
T3, and T4. In dense urban forests, the accumulation of PM on the leaf surface is high due
to poor ventilation, long-term accumulation of PM, and limited cleaning conditions. Those
trees surrounded by the crowns of adjacent trees experience reduced air circulation [25]
and thus retain more atmospheric particles. In comparison, lower weights of PM and
SIRM were observed at T1–T4, which were located in an open road space, where leaves
are often washed by humans or by natural precipitation. Wang et al. [57] confirmed that a
considerable proportion of the accumulated PM (28–48% of PM), especially most of the
large and coarse particles [57,58] and the smallest size fraction (21–30%) [58] on leaves are
easily removed by rainfall events. Simultaneously, as mentioned before, trees located in
open spaces experienced good ventilation, which lead to more PM being removed from
leaves by winds [59,60], especially high-speed winds [57].

A higher percentage of fine particles (0.02–1 µm, 1–2.5 µm, and 2.5–10 µm) was found
at sites T1 and T2, which were close to the main road, suggesting that more fine particles
produced by traffic activities were captured by needles, especially particles of the <2.5 µm
size fraction. Robert et al. [61,62] and Zhu et al. [63,64] confirmed that most of the fine PM
emitted from vehicle exhaust is in the size range of <1 µm, and Sgrigna et al. [9] found that
traffic-related particle size distributions averaged 2.6 µm.

The lowest percentage of the >10 µm size fraction was observed at T1, indicating that
fewer coarse particles were accumulated at T1, whereas fine particles deposited on the
surface of needles mainly came from traffic activities, and natural dust fall deposited on
the surface of needles included more >10 µm size fraction particles.

According to the results of ANOVA, significant differences (p < 0.05) in the weight of
PM, SIRM, and particles in different grain-size fractions (0.02–1 µm, 1–2.5 µm, 2.5–10 µm,
and >10 µm) were found in the four directions of T1 and T2, which were mainly due to the
large amount of pollutants generated by traffic activities and the fact that roadside trees
reduced air circulation. Simultaneously, roadside trees act as pollutant filters that influence
the process of diffusion and accumulation of road PM derived from traffic activities, which
can be verified by the SIRM and weight of particles in the NE direction, where the highest
SIRM and weight of particles was found at T1, and those values decreased from T1 to T4
(from 6 to 24 m). In conclusion, dense urban forests are effective collectors of urban PM,
and more particles with fine grain-size fractions (0.02–1 µm, 1–2.5 µm, and 2.5–10 µm)
were captured by roadside trees were that were easily affected by traffic emissions. The
rows of roadside trees act as effective filters for traffic PM, especially for finer particles.

4.2. Effect of Distance to the Road

The accumulation of PM on the leaf surface showed obvious changes with distance
from pollution sources. As shown in Figure 3, a decreasing PM weight and SIRM were
found with increasing distance from the road except for the SW direction. In this case, com-
pared with the leaf magnetism at 6 m from the road, significant reductions were observed
in the SIRM of up to 19.82% and 35.63% at 10 m and 24 m from the road, respectively, which
indicated a significant decrease in the concentration of magnetic particles with increasing
distance from the road where traffic activities (emission and disturbance) are the main
source of magnetic pollution. Similarly, Szönyi et al. noted that the distance from the source
(i.e., the vehicular traffic) is a crucial factor that increases the concentration-dependent
magnetic parameters, ranging from the highest values closest to congested roads with
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stop and go traffic to low values within several meters [65]. Moreno et al. [38] found a
significant decrease in susceptibility (45 to 9 × 10−8 m3/kg moving from 2 to 25 m of
distance to the roadside) and IRM at a 25 m distance from the roadside. The weight of
PM decreased 20.21% and 29.13% as the distance increased to 10 m and 20 m, respectively,
which is consistent with the results near a large park, El Retiro, in Madrid (Spain) found
by Gomez-Moreno et al. [66], with reductions in PM10 and PM2.5 of up to 25% at 20 m
from the street both in summer and winter surveys, which indicated a positive impact
from the vegetation via the reduction in traffic-induced PM10 and PM2.5 concentrations.
In this study, the 0.02–1 µm size fraction decreased 6.02% and 5.36% at distances of 10 m
and 24 m from the road, respectively, and the 1–2.5 µm size fraction decreased 4.46% and
2.55% at different distances, respectively. However, no significant reduction was observed
in the 2.5–10 µm and >10 µm size fractions. This characteristic of variation was opposite to
that reported by Gomez-Moreno et al. [66], who confirmed that PM10 and PM2.5 fractions
were more easily removed by inertia mechanisms when tree canopies experienced wind,
producing a stronger decrease than that seen for the fraction of PM1 in the largest park
in Madrid with dense plants. This could be caused by the differences between the closed
park and open space. In the closed park, PM is removed and diluted by dense trees via
accumulation or absorption [67]. However, fine particles derived from traffic activities ac-
cumulate more easily than other particles on the Juniperus formosana needles, as mentioned
in Sections 3.1 and 4.1 (Figure 2).

Obvious differences in the PM weight and SIRM were observed with increasing
distance between the four directions. The decreases were the largest in the NE direction
both for the SIRM and PM weight, which were mainly caused by the important role of
roadside trees, which removed a portion of traffic pollutants, especially those trees in
the NE direction that directly faced traffic pollution sources and were on the windward
side of the prevailing wind [26]. Moreover, it is worth noting that the PM weight and
SIRM did not decrease but increased slightly in the SW direction, which could have been
caused by the presence of a small concrete square, where residents take part in recreational
activities that lead to dust resuspension and accumulation on the surface of needles, so that
a slightly higher PM weight and SIRM were measured. In conclusion, roadside trees play
an important role in the process of accumulation and sink of PM; with increasing distance
from the road, decreasing PM was deposited on the needles.

4.3. Effect of Height

The differences in PM weight and SIRM between the three height ranges were signifi-
cant for T0 and T1 (p < 0.0001) but not for T2, T3, and T4 (p = 0.109–0.999), indicating that
the deposition of PM that might be caused by anthropogenic activities near the ground
on the needles of trees in closed urban forests and rows of roadside trees is affected by
sampling height. Nonsignificant differences in the 0.02–1 µm and 1–2.5 µm size fractions
were found between different height ranges (Table S3), which may have been caused by
the penetrability of fine particles through the entire sampling height of the tree crowns.
However, significant differences (p < 0.0001 and 0.001–0.047, respectively) were found
between the L and H height ranges and the L and M height ranges for T1, T2, and T3, and
significant differences (p = 0.004, 0.023) were also found between L and H for T0. Under the
influence of human activities near the ground, a number of fine particles are resuspended,
which increases the percentage of fine particles deposited on the leaves. Simultaneously,
as mentioned above, due to the penetrability of the finer particles, the distributions of the
0.02–1 µm and 1–2.5 µm size fractions were homogeneous throughout the entire tree crown,
and decreasing concentrations of the 2.5–10 µm size fractions and increasing concentrations
of the >10 µm size fractions were found with increasing height due to reduced human
activities and the deposition of natural dust on the tops of tree crowns.
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5. Conclusions

The analysis of magnetic variability and grain-size distribution of particles deposited
on leaves at different distances from the road showed the impact of pollution sources on the
leaf magnetic properties and particle deposition. The results showed that the trees located
in dense urban forests retained more PM than trees located in an open space. In addition,
the SIRM and PM weight decreased with increasing distance to the road, suggesting that
distance from traffic pollution sources plays a key role in reducing the air concentration
of PM. The grain-size frequency distributions of the particles deposited on the surfaces
of all leaves showed a unimodal spectrum on a frequency curve with a main peak of
approximately 20 µm and a minor peak between 0.1 and 1 µm, indicating that the particles
deposited on the Juniperus formosana needles were mainly fine particles. Urban forests
play an important role in the removal of PM, and the characteristics of PM (SIRM, weight,
and grain size) deposited on leaves change with the distance of trees from the road, wind
direction, and the planting combination of trees.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph182211964/s1, Table S1: Descriptive statistics for SIRM, PM weight and grain-size
distribution of particles deposited on the surface of needles, Table S2: results of one-way ANOVA
performed of every four sampling directions (NE, SW, NW and SE) at sites T0–T4. Statistically
significant differences (p < 0.05) are highlighted in bold, Table S3: Results of one-way ANOVA
performed of every three sampling height ranges (L, M and H) at sites T0–T4. Statistically significant
differences (p < 0.05) are highlighted in bold.
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