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ABSTRACT Post-traumatic stress disorder is a concerning psychobehavioral disorder thought to emerge
from the complex interaction between genetic and environmental factors. For soldiers exposed to combat,
the risk of developing this disorder is twofold and diagnosis is often late, when much sequela has set in. To
be able to identify and diagnose in advance those at “risk” of developing post-traumatic stress disorder,
would greatly taper the gap between late sequelae and treatment. Therefore, this study sought to de-
termine whether the transcriptome can be used to track the development of post-traumatic stress disorder
in this unique and susceptible cohort of individuals. Gene expression levels in peripheral blood samples
from 85 Canadian infantry soldiers (n = 58 participants negative for symptoms of post-traumatic stress
disorder and n = 27 participants with symptoms of post-traumatic stress disorder) following return from
deployment to Afghanistan were determined using RNA sequencing technology. Count-based gene ex-
pression quantification, normalization and differential analysis (with thorough correction for confounders)
revealed genes associated to PTSD; LRP8 and GOLM1. These preliminary results provide a proof-of-principle
for the diagnostic utility of blood-based gene expression profiles for tracking symptoms of post-traumatic
stress disorder in soldiers returning from tour. It is also the first to report transcriptome-wide expression
profiles alongside a post-traumatic symptom checklist.

KEYWORDS

Post-traumatic
stress

expression
profiling

next-generation
sequencing

soldiers

The intensityandfrequencyofcombatseen inAfghanistansparkedarise
in the rate of post-traumatic stress disorder (PTSD) amongmembers of
the Canadian Armed Forces (CAF); nearly doubling from 2.8% in
2002 to 5.3% in 2013 (Canadian Forces Mental Health Survey 2013)

(Hellmuth et al. 2012). This concerning mental health disorder is
thought to emerge from complex interactions among multiple genetic
and environmental factors. While combat exposure is a risk factor for
the development of post-deployment symptoms of PTSD, one’s psy-
chiatric response to combat as a stressor varies considerably between
individuals (Wald et al. 2013; Breen et al. 2015), ranging in spectrum
from mild to severe. The ability to identify those at risk of developing
PTSD in advance, would greatly taper the gap between late sequelae and
treatment.While great advances have beenmade in our understanding,
assessment and treatment of PTSD, the biological etiology remains
poorly understood. More specifically, precise biological indicators have
yet to be successfully outlined and validated (Tylee et al. 2015; Zannas
et al. 2015).

To address the biological factors underlying this complex psycho-
logical disorder, we have taken a genomics-informed approach and aim
to determine whether symptoms of PTSD among troops immediately
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returning from tour are correlatedwith (and thus could be predicted by)
changes in peripheral white blood cell gene expression. Symptoms of
PTSD were measured using the military version of the posttraumatic
stress disorder Checklist, (PCL), which is traditionally one of the most
widely used self-report measures of PTSD and thus extensively used in
the military (Dickstein et al. 2015; Bovin et al. 2016). PCL scores have
repeatedly been show to correlate highly with total scores from the
diagnostic gold standard – the Clinical- Administered PTSD Scale
(CAPS), with scores over 34 as being optimally efficient at diagnosing
PTSD (Bovin et al. 2016). In our study, we adopted an unbiased
approach and profiled the whole human transcriptome using
RNA-sequence (RNA- seq), as opposed to the targeted approach
adopted in the majority of PTSD studies (Breen et al. 2015). Together
with the PCL-M, the aim was to determine unique expression patterns
associated with symptoms of PTSD in CAF soldiers within one-year fol-
lowing return from tour. This pilot study is the first to report transcriptome-
wide expression profiles alongside a PTSD symptom checklist.

MATERIALS AND METHODS
The study was approved by the Human Research Ethics Committee
(HREC) of Defense Research and Development Canada (DRDC) and
the Surgeon General of the Canadian Forces Health Services (CFHS).
Permission toaccess troopswasgrantedby theChief ofLandOperations
(COS Land Ops).

Participants
Canadian infantry soldiers returning from tour in Afghanistan were
recruited for participation. Participants were briefed on the study’s
protocol and written informed consent was obtained from those who
volunteered to participate. Participants remained anonymous for this
study by creating a personal identification number (PIN) and any
personal information linking the identity of an individual to the PIN
was not collected.

Design and Measures
Soldiers were asked to participate immediately following their return
from deployment and every 4 months following that for up to 1-year.
Upon enrollment soldiers were asked to complete the following series of
questionnaires: a demographic information sheet, theCombat Exposure
Scale from the Deployment risk and Resilience Inventory (DRRI) (Vogt
et al. 2013) and the Posttraumatic Stress Disorder Checklist for military
personnel (PCL-M) (McDonald and Calhoun 2010). Following com-
pletion of the forms,venipuncture was performed by a certified phle-
botomist and 2.5 ml of blood was collected using the PAXgene blood
RNA collection protocol (PreAnalytiX GmbH, QIAGEN or BD) for
gene expression and 4 ml of blood was collected for a complete blood
count (CBC). At subsequent data collection periods, participants were
asked to complete the PCL-M only and provide another 6.5 ml blood
sample. Blood collected for CBC was analyzed by LifeLabs. Blood sam-
ples collected for gene expression were stored at -80� in a secured
medical specimen freezer located within the Defense Research and
Development Canada - Toronto Research Center until further analysis.

RNA-seq: data generation and bioinformatics
Ribonucleic acid (RNA) was isolated from peripheral blood leukocytes
usingQIAsymphonyPAXgeneBloodRNAKit (Qiagen) and sequenced
using the Illumina Hi-Seq 2500. Quality of total RNA samples was
assessed on an Agilent Bioanalyzer 2100 RNA Nano chip following
Agilent Technologies’ recommendation. Concentration was measured
byQubit RNAHSAssay on aQubit fluorometer (ThermoFisher). RNA
library preparation was performed following the Illumina TruSeq RNA

Library Preparation protocol. Briefly, 1000 ng of total RNAwas used as
the input material and enriched for poly-AmRNA, fragmented by heat
and converted to double stranded cDNA; cDNA was end-repaired and
adenylated at the 39 end to create an overhang A to allow for ligation of
Illumina adapters with an overhang T; library fragments were amplified
under the following conditions: initial denaturation at 98� for 30 sec,
followed by 15 cycles of 98� for 10 sec, 60� for 30 sec and 72� for 30 sec,
and finally an extension step for 5 min at 72�; Each sample was pre-
pared with different indexed adapters to allow for multiplex sequencing.
One microliter (ul) of the RNA libraries was loaded on a Bioanalyzer
2100DNAHigh Sensitivity chip (Agilent Technologies) to check for size;
RNA libraries were quantified by qPCR using the Kapa Library Quanti-
fication Illumina/ABI Prism Kit protocol (KAPA Biosystems). Libraries
were pooled in equimolar quantities and paired-end sequenced on a
Rapid Run Mode flowcell with the V3 sequencing chemistry on an
Illumina HiSeq 2500 platform following Illumina’s recommended pro-
tocol to generate paired-end reads of 100-bases in length.

RNA-seq reads were trimmed for low quality read ends and adapter
contamination using ‘Trim Galore!’ version 0.3.7 (http://www.bioinfor-
matics.babraham.ac.uk/projects/trim_galore/); specifically, parameters
were adjusted to trim low-quality ends from reads (Phred score ,20),
remove 1bp from 39 end and retain only reads that have a valid pair after
processing. Trimmed reads were also screened against human ribosomal
and mitochondrial DNA sequences using fastq_screen version 0.4.4
(https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/). Fi-
nally, RSeQC version 2.6.1 was used to calculate percentage coding
exonic reads, estimated insert size and standard deviation (Wang
et al. 2012).

Quality control metrics for trimmed reads were carried out using
FastQC version 0.11.2 (http://www.bioinformatics.babraham.ac.uk/proj-
ects/fastqc/), including read percentage GC content and de-duplicated
read percentage. RNA-seq reads were subsequently aligned to the human
genome reference hg19 (Feb. 2009 assembly of the human genome hg19,
GRCh37 Genome Reference Consortium Human Reference 37 (GCA_
000001405.1) downloaded fromUCSC (http://hgdownload.soe.ucsc.edu/
goldenPath/hg19/database/) on June 02, 2014) using the splicing-aware
alignment TopHat version 2.0.13 (Trapnell et al. 2009) and RefSeq gene
models (downloaded in May 2014 from the Illumina iGenome resource:
http://support.illumina.com/sequencing/sequencing_software/
igenome.html); BAM files (accepted_hits.bam) generated by TopHat
were sorted using samtools version 1.1 (http://www.htslib.org/) for
downstream analysis. Reads were then counted using HTseq version
0.5.4p1 using the ’intersection-nonempty’ option (Anders et al. 2015).
Gene expression data are available at GEO with the accession number:
GSE109409.

Statistical analyses of gene expression
This section describes (1) the procedure followed to select technical and
biological covariates, (2) the differential gene expression analysis per-
formed using one measurement from each participants, with (a) con-
tinuous PCL-M score and (b) dichotomized PCL-M score, and (3)
differential gene expression analysis utilizing all gene expression values
from each participant.

Selection of Covariates: Global gene expression patterns captured by
PCAprincipal components are typically shaped by twomain category of
factors: (a) meaningful biological variation, in this case PTSD; (b)
biological, experimental and technical confounders. Here we used
PCA to determine which biological, experimental and technical con-
founders have a significant contribution to global gene expression
patterns, to avoid fitting a generalized linear model for differential
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expressionwithanunnecessary largenumberof covariates,whichwould
be detrimental for the statistical power of the differential expression
analysis.Toavoidbiased results causedbyconfounders, the following list
of 24 covariates was evaluated in order to select a smaller number of
covariates with low mutual correlation while highly correlated to gene
expression principal components: (A) several covariates representing
different study design and sample collection batches were aggregated
into a single categorical batch covariate (task force of origin, blood
harvesting time during the year, cohort, cohort deployment time, post-
deployment timeandphase); (B)biological anddemographiccovariates:
age, sex, white blood cell count, lymphocyte count and percentage,
neutrophil count and percentage; (C) RNA-seq QC-related covariates:
sequencing batches (2 covariates), mean of the read insert size, standard
deviation of the read insert size, read percentage GC content, number
and percentage of reads lost after trimming, number and percentage of
mapped reads, number and percentage of concordantly mapped reads,
de- duplicated read percentage, percentage of reads not mapping to
human mitochondrial or ribosomal sequences, percentage reads not
exonic (as calculated byHTseq), percentage of readsmapping to coding
exonic sequence (as calculated by RSeqQC). Read counts were normal-
ized in DESeq version 1.18.0 (Anders and Huber 2010) for between-
sample differences. Here, DESeq was used instead of edgeR (Robinson
et al. 2010) for the convenience of exporting normalized reads. Princi-
pal Component Analysis (PCA) was performed using the R ‘prcomp’
function to select the most informative principal components (PCs).
We compared the eigenvalues obtained for the real normalized count
matrix to the eigenvalues obtained for 5 normalized count matrices
after independent permutation of each gene expression vector (corre-
sponding to a matrix row), resulting in the selection of the first 10 PCs.
The most informative covariates were then selected using a greedy
stepdown linear regression analysis. More in detail, (1) for each cova-
riate, the correlation between the covariate and each PC was tested
using a two-sidedMann-Whitney-Wilcoxon test for binary covariates,
a Spearman correlation test for continuous covariates, or ANOVA for
categorical covariates; only covariates with nominal p-value, 0.1 were
selected for the following analysis step. Then (2), for each PC, an in-
cremental linear regressionmodel was constructed by stepwise addition
of significantly-correlated covariates (sorted by nominal p- value); only
covariates passing a model comparison test (log-likelihood test imple-
mented in R anova.glm, nominal p-value , 0.001, corresponding to a
false discovery rate of 2%) were selected. This stepdown procedure
ensures that, if a highly predictive variable is already present, any
correlated variable added afterward will not be significant and thus will
not be selected. Covariates significant for different PCs but highly
correlated were pruned in a final step. The PCL-M score did not cor-
relate with any of the top 10 PCs (p value . 0.1). The full list of
covariates and their correlation to each PC can be seen in Supplemen-
tary Data Set 1.

Differential gene expression analysis without
repeated measurements
Since modeling the presence of multiple correlated measurements per
subject is not possible using state-of-the-art statistical tools for RNA-seq
differential analysis that include a variance shrinkagemodel (e.g., edgeR,
DESeq, DESeq2 (Love et al. 2014)), the first statistical analysis was
performed in edgeR after selecting, for each subject, the measurement
with the highest PCL-M score (thus reducing the number of samples
from 118 to 85). For differential gene expression analysis, we first
modeled PCL-M score as a continuous variable. We then analyzed
the discretized PCL-M score, defining PCL-M score, 34 as the control
group and PCL-M score$ 34 as the symptoms group. Gene expression

results are reported for both analysis models in the Supplementary
Data Set 2.

Read counts were imported after removing genes with low counts
(for each gene, we calculated the 75th percentile of raw counts across
samples; then we calculated the quantile corresponding to the 35% of
that distribution, q35; finally, we discarded genes whose raw count 75th

percentile was lower than q35); note that removing genes with low
expression levels is recommended for edgeR because these genes can
be handled improperly by the model (https://www.bioconductor.org/
packages/devel/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.
pdf). This filtering step resulted in 16,913 genes, from an initial set of
25,369 genes. Sample- wise normalization factors were estimated using
the TMMmethods as provided in edgeR v3.8.6 and differential analysis
was performed also in edgeR v3.8.6 treating each covariate as a block
covariate; Reads Per Kilobase per mappedMillion reads (RPKMs) were
also generated in edgeR v3.8.6 (for data exploration purposes only);
finally, differential p-value multiple test correction was performed us-
ing the Benjamini-Hochberg False Discovery Rate (BH-FDR) as pro-
vided in edgeR v3.8.6.

Differential gene expression analysis with
repeated measurements
To ensure that selecting onemeasurement corresponding to the highest
PCL-M score from each subject does not lead to false positive results, we
repeated the association analyses utilizing all repeated measurements
from each subject. Specifically, we analyzed 111 out of the 118 samples
(7 measurements were excluded due to missing data in one of the
covariates). We used the R package ‘glmmADMB’ to fit a Generalized
Linear Mixed Model (GLMM), assuming the counts follow a Negative
Binomial distribution. A random intercept was included in the model
to account for the correction among multiple measurements from the
same subject. The counts were regressed on the continuous PCL-M
scores, while accounting for selected covariates. We only analyzed a
subset of 400 genes that were statistically significant at the 0.05 level
from the EdgeR analysis with onemeasurement per subject. Substantial
difference in p-values is only observed at LINC00893 (Supplement
Figure 1).

Other statistical analyses
Demographic and questionnaire data were statistically analyzed using
IBM SPSS Statistics V23.0. Statistical significance was set to P , 0.05
(2-sided) for all analyses. Mean and standard deviation (SD) was cal-
culated for all characteristics. Group differences were tested using a
student’s t-test.

Data Availability
The research protocol was accepted under the Human Research Ethics
Committee (HREC) of Defense Research and Development Canada
(DRDC) -Protocol 2017-019.Gene expressiondata are available atGEO
with the accession number: GSE109409. Supplementary data sets 1 and
2 can be found on figshare. Supplemental material available at Figshare:
https://doi.org/10.25387/g3.7501751.

RESULTS
Eighty-five (n= 85)male infantry soldiers, with an average age of 29.86
7.4 years, were sampled within one-year following their return from
deployment toAfghanistan.When the participants were grouped based
on a dichotomized PCL-M score, 58 scored , 34 (Control) and
27 scored $ 34 (Symptoms of PTSD), without significant age differ-
ences between the two groups (Table 1). Furthermore, the same number
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of soldiers had a previous deployment as those whose first deployment
was Afghanistan both within and between groups (Table 1). Based on the
entire cohort, 62.4%were involved in combat of which 38.8%were in the
Control group and 23.5% were in the Symptoms group (Table 1). It is
worth noting that the Symptoms of PTSD group demonstrated a trend (P
= 0.08) in reporting higher combat scores compared to the Control group
(Table 1); 8.1 6 2.7 vs. 6.64 6 3.1, respectively.

Peripheral white blood cell gene expression levels were determined
using RNA-seq and covariates including multiple measurements with
respect to post-deployment time, for a total of 118 samples. More
specifically, out of the 85 participants: 58 provided one sample,
21 provided two samples and 6 provided three samples. To control
for batch effects, biological and technical confounders,we considered
an initial set of 24 covariates and then selected a subset of 7 covariates
significantly correlated to gene expression, using a greedy step-down
regression procedure combined with normalized gene count Prin-
cipal Component Analysis (PCA), as described in the methods
section. The final set of 7 covariates included aggregate batch,
neutrophil count, white blood cell count, read percentage GC con-
tent, percentage of mapped reads, percentage reads not exonic and
de-duplicated read percentage.

The edgeR discretized model resulted in more significant differential
expression: GOLM1, CYP2C8, LINC00943 and LOC100132215 had
BH-FDR , 50%; in contrast, for the continuous model only LRP8 and
LINC00943 had FDR , 75%. The top 5 genes in Table 2 remain asso-
ciated when all repeated measurements were analyzed using GLMM,
with consistent directions of association as detected in the edgeR analysis
(Refer to SupplementaryData Set 2). Since these FDRswere very high, we
attempted at restricting the number of tests by considering only genes
already implicated in behavior and nervous system abnormalities. In
particular, we utilized a list of 3,764 human homologs of mouse genes
with an established neurobehavioral/neurodevelopmental phenotype
(“all neuro”); of these, 2,602 had a neurobehavioral phenotype
(“neurobehav”). These genes have already been demonstrated to
bear a significantly higher burden of rare copy number losses in
neuropsychiatric disorders such as autism and schizophrenia (Pinto
et al. 2014; Engchuan et al. 2015; CNV Schizophrenia Working
Group 2017; Marshall et al. 2017). Only LRP8 and GOLM1 were
included in “all neuro”, and when restricting the FDR calculation to
these genes, their FDRs improved (17% for the discretemodel; 37% and
92% for the continuous model); the FDRs further improved when
restricting to “neurobehav” (12% for the discrete model; 25% and
63% for the continuous model). It is also worth noting that the LRP8
effect size is modest: the symptoms-control expression ratio is �1.2;
more in detail, 2/27 participants with PCLM.= 34 have LRP8 rpkm.
1, whereas none of the controls does; 6/27 participants with
PCLM .= 34 have LRP8 rpkm . 0.9, whereas 4/58 controls do

(see SupplementaryData Set 2 for details). Volcano plots for differential
expression can be visualized in Figure 1.

DISCUSSION
The present study is the first to decipher the relationship between gene
expression and symptoms of PTSD in soldiers returning from tour in
Afghanistan within one-year post- deployment. Our results are consis-
tent with the pathogenesis of PTSD and support the diagnostic value of
gene expression signatures in PBMCs for the development of PTSD
phenotype. RNASeq is able to offer unparalleled insight into the
molecular causes of many complex diseases such as PTSD and yet,
only a limited number of studies using RNASeq on human PTSD
samples exist. Using this platform, we sought to investigate whether
gene expression signatures from the peripheral blood of soldiers fol-
lowing a tour in Afghanistan are informative of the development of
PTSD. Given that this mental health disorder stems from a neuronal
abnormality involving three principal brain regions (the amygdala,
hippocampus and medial prefrontal cortex) (Girgenti and Duman
2018; Zimmerman et al. 2012), brain tissue would be the ideal study
material of choice. However, due to the inherent inability to extract
brain tissue from live patients, this research area is reserved solely to
post-mortem studies. Fortunately, the use of peripheral blood as a
successful surrogate to study expression profiles in complex mental
health disorders such as PTSD (Segman et al. 2005), have been con-
firmed both in animal models of PTSD as well as post-mortem studies
of PTSD brain tissue (Licznerski et al. 2015). In fact, a growing body of
evidence suggests peripheral blood may in fact reflect dynamic tran-
scription changes in the brain, including PTSD, conferring disease
vulnerability (Tylee et al. 2015; Girgenti and Duman 2018; Liew et al.
2006; De Boever et al. 2014). For example, gene association studies have
identified four SNPs in the FKBP5 gene as predictors of adult PTSD
onset, which have been reflected in a transcriptomic study in post-
mortem brain tissue of PTSD patients (Girgenti and Duman 2018).
Furthermore, it has been shown that the pro-inflammatory cytokines
associated with PTSD, penetrate the blood-brain barrier and induce the
expression of genes located within the hippocampus and amygdala
(Zimmerman et al. 2012). Many studies continue to support the use
of peripheral blood for transcriptome research in mental health disor-
ders, and thus we are confident to use PBMCs as ourmaterial of choice.

To measure risk of PTSD, we used the PTSD Checklist Military
Version (PCL-M) (Dickstein et al. 2015; Bovin et al. 2016; Hoge et al.
2014). Risk is determined by the frequency and severity defined by the
Diagnostic and Statistical manual of Mental Disorders (DSM-IV) over
the course of the past month. Without a clinical interview, the PCL-M
is only suggestive of risk of PTSD, however scores have been shown to
strongly correlate with diagnosis. Global scores range from 17 – 85 and
while a cut-off point of 50 has been traditionally used for risk ofmeeting

n Table 1 Demographic, Clinical and Experiential Characteristics of Canadian Armed Forces Soldiers
Returning from Deployment in Afghanistan (n = 85 participants from Task Force 1-10 and Task Force
1-11 - 58 provided one sample, 21 provided two samples and 6 provided three samples, therefore n =
118 samples total). P-value < 0.05 is considered significant

Control Symptoms of PTSD P-value

(, 34) ($ 34 PCL-M)
Sample size (n/85) 58 27 n/a
Age: 30.3 6 6.9 28.67 6 8.5 0.53
Previous Deployment: (29) 50% (14) 51.9%
Afghanistan Only: (29) 50% (13) 48.1%
Combat (%)//DRRI Score: 38.8%// 6.64 6 3.1 23.5%// 8.1 6 2.7 0.08
PCL-M Score 22.73 6 4.46 47.18 6 10.31� , 0.01
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full diagnostic criteria for combat veterans (Forbes et al. 2001), a cut-off
score of 39 (Dickstein et al. 2015) was found to be optimally efficient
at identifying full PTSD. Furthermore, scores between 35 and 49 have
been shown to classify as risk for meeting subthreshold PTSD diagnos-
tic criteria (Hellmuth et al. 2012; Bovin et al. 2016; Dretsch et al. 2016).
Based on this, we examined gene expression levels in soldiers using a
dichotomized PCL-M score of less than (,) 34 and greater than or
equal to ($) 34.

Our findings are similar to that of Segman et al. (2005) in that gene
expression signatures in the PBMCs of trauma-exposed survivors are
informative of the later development of PTSD phenotype. We found
expression levels of the LRP8 (low density lipoprotein receptor (LDL)
receptor related protein 8, or ApoER2) gene, which is highly expressed
in the hippocampus and amygdala, and GOLM1 (golgi membrane
protein 1) gene to be significantly greater in soldiers reporting symp-
toms of PTSD. In contrast, we found CYP2C8 expression levels to be
nominally significantly down-regulated in the symptom group com-
pared to the control group.

Expression levels of both the uncharacterized LOC100132215 non-
coding (nc) RNA gene and long intergenic non-protein coding RNA

943 (LINC00943) were increased in the symptom group compared to
controls. Although LOC100132215 has been shown to be expressed in
many tissue types including the hippocampus and prefrontal cortex in
the brain, the function has yet to be characterized (GTEx Consortium
2013). Similarly with LINC00943; expression levels were found within
testes, however its function is unknown. Although preliminary, our
findings are in concordance with research in that psychological trauma
can alter the function of genes, resulting in short-term and/or long-
lasting effects on neuronal function, brain plasticity and behavioral
adaptations to psychological stressors (Zannas et al. 2015; Segman
et al. 2005; Rampp et al. 2014; Provencal and Binder 2015).

LRP8
It is well known that the Learning andMemory pathway lies at the core
of PTSD (Miller and Sadeh 2014; Kohannim et al. 2012; Pan et al. 2014;
Bouter et al. 2014; Birnie et al. 2013; Donnelly et al. 2015; Telese et al.
2015). The pathways takes place in the brain and are dynamic process-
es; throughout life we are constantly acquiring new knowledge through
learning and storing information through memory. Both processes
are thought to be governed by synaptic plasticity (Telese et al. 2015;

n Table 2 Benjamini-Hochberg-False Discovery Rate (BH-FDR) and Fold-Change (FC) for the top genes significantly dysregulated (with
nominal P < 0.01) in the EdgeR non- repeated measures analysis in Peripheral Blood Mononuclear Cells at Post-Deployment from Soldiers
Returning from Tour in Afghanistan within one-year. �DISC = discretized model; CONT = continuous model

Gene
Symbol

Entrez
Gene ID

edgeR
disc/
cont

edgeR
FC edgeR P-value

edgeR BH-FDR
all genes

edgeR BH-FDR
all neuro

edgeR BH-FDR
neurobeh av

LRP8 7804 DISC 1.19 6.58E-05 48% 17% 12%
CONT 1.01 1.25E-04 74% 37% 25%

GOLM1 51280 DISC 1.22 1.16E-04 48% 17% 12%
CONT 1.01 7.68E-04 100% 92% 63%

CYP2C8 1558 DISC 0.51 6.32E-05 48% NA NA
CONT 0.98 8.04E-04 100% NA NA

LINC00943 100507206 DISC 1.84 1.18E-04 48% NA NA
CONT 1.02 1.31E-04 74% NA NA

LOC1001322 15 100132215 DISC 1.49 1.42E-04 48% NA NA
CONT 1.01 4.26E-04 100% NA NA

Figure 1 Volcano plots displaying log2 fold-change (log2 FC and – Log10 (p-value) for the continuous (CONT) and discrete (DISC) model; LRP8
depicted in magenta and GOLM1 is depicted in green, whereas all other genes are depicted in gray.
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Mahan and Ressler 2012); synaptic connections are remodelled
(changes in the neural circuitry level) based on environmental cues
and the brain learns to recognize and remember danger through a
process known as long-term potentiation (LTP). This process may last
for months or longer and is essential for some forms of learning, the
formation and retention of long-termmemories, and synaptic plasticity
(Mahan and Ressler 2012). The Reelin pathway has been well docu-
mented to regulate synaptic plasticity and memory formation in the
brain (Telese et al. 2015; Lee andD’Arcangelo 2016; Li et al. 2003; Chen
et al. 2010) and LRP8 serves as a classical signaling receptor for Reelin
thereby mediating it’s effect (Telese et al. 2015; Lee and D’Arcangelo
2016; Li et al. 2003; Chen et al. 2010; Gilat-Frenkel et al. 2014; Beffert
et al. 2005). LRP8 is abundantly expressed on neurons in the central
nervous system (CNS). In fact, expression data from GTEX (using
RNA-seq from 150 post-mortem donors with a total of 3,797 tissues
samples) and the Human Brain Transcriptome database confirm that
LRP8 is highly expressed in the hippocampus and amygdala (Li et al.
2016). Downstream effects include the activation of synaptic plasticity
genes involved in the fear conditioning paradigm and memory forma-
tion. For example, in a mouse model of genetically manipulated in-
hibition of the Reelin/LRP8 signaling pathway, mice demonstrated
marked fear-conditioning deficits and Learning disabilities (Beffert
et al. 2005; Weeber et al. 2002). Moreover, the hippocampus and
amygdala are two regions of the brain whose aberrant functions are
associated with mental health disorders (Zimmerman et al. 2012;
Segman et al. 2005). More specifically, a non-synonymous SNP
rs5174 within LRP8 gene was found to be significantly associated with
SCZ and BPD as well as higher LRP8 expression, suggesting the risk of
SCZ and BPD is strongly associated with LRP8 (Li et al. 2016). On the
other hand, mRNA expression levels of LRP8 within The peripheral
blood lymphocytes in patients diagnosed with Major Depressive Dis-
order (MDD) were found to be lower compared to controls. In our
study, we found expression levels of LRP8 to be significantly greater in
soldiers reporting symptoms of PTSD. Although the findings suggest
that LRP8 levels may serve as a peripheral biomarker, the authors did
not find any correlation between expression levels and severity of de-
pression symptoms (Suzuki et al. 2010). At the very least, it supports
that the LRP8 signaling pathwaymay play a role within the pathophys-
iology of this mental health disorder as well.

LRP8 or Apolipoprotein (ApoE) is also known to maintain choles-
terol homeostasis, which is critically important for brain function, i.e.,
neuronal physiology such as, synapse formation and development
(Zhang and Liu 2015; Petrov et al. 2016). In addition, isoforms E2
and E4 have been shown to promote atherosclerosis via Reelin by in-
creasing vascular inflammation (Ding et al. 2016), thereby increasing
the risk for cerebrovascular and cardiovascular pathologies (Lopez et al.
2014) as well as neurological pathologies, specifically Alzheimer’s dis-
ease (Weiner et al. 2014). Interestingly, the link between PTSD and an
increased risk for cardiovascular disease (CVD) was discovered soon
after the Civil War by Dr. Da Costa, who coined the term ‘soldier’s
heart” or “irritable heart”. However, only in the last few years has
genetic evidence linking PTSD with an increased risk CVD been
emerging (Pollard et al. 2016; Guardado et al. 2016; Roy et al. 2015).
In a candidate gene approach, Pollard et al. (2016) identified 106 PTSD
studies that report one or more polymorphic variants in 87 candidate
PTSD risk genes from 83,463 subjects and controls. Among their net-
work analyses, using Ingenuity Pathway Analysis, the nuclear factor -
kB (NF-kB) complex was identified as the principal hub for PTSD and
CVD risk genes. This is not surprising, since NF-kB plays a key role in
cellular stress response, governing the expression of many inflamma-
tory genes (Li et al. 2002), a large number of which have been linked to

PTSD (Feodorova and Sarafian 2012). ApoE came up as an influencing
gene and one of the top 5 hubs for Type 2 Diabete Mellitus (Pollard
et al. 2016). In fact, using genome-wide sequencing in a human ApoE3
and E4 mouse model, the authors found an Increase in the expression
of inflammation-related genes by ApoE4 via greater activation of
NF-kB Genes (Ophir et al. 2005). Numerous studies have linked PTSD
with an elevation in peripheral inflammatory markers and inflamma-
tory-related diseases (Lindqvist et al. 2017). These studies support our
findings of an increase in the expression of the ApoE/LRP8 gene in
soldiers reporting symptoms of PTSD.

GOLM1
Recently there has been a lot of overlap in genes affecting the risk to
developing aging-related Alzheimer’s Disease, Parkinson’s Disease and
other neurodegenerative disorders, with that of PTSD (Kempuraj et al.
2017). This is not surprising considering that PTSD is well-documented
to be a risk factors for Alzheimer’s Disease (Weiner et al. 2014;
Lindqvist et al. 2017). One particular candidate gene for susceptibility,
as it pertains to the findings in this study, is the Golgi membrane pro-
tein or golgi membrane protein 2 or GOLM1 gene (Kohannim et al.
2012). In our study, the expression of GOLM1 was found to be signif-
icantly increased in soldiers reporting symptoms of PTSD, compared to
the control group. GOLM1plays a key role in processing proteins from
the endoplasmic reticulum (ER) and subsequently transporting them
(in vesicles) for release at the synapse. In a mouse model of aged
Alzheimer’s disease, GOLM1 expression levels were significantly ele-
vated (Bouter et al. 2014). Thismay be due to the fact that production of
the beta amyloid (Ab) peptide, which is associated with the onset of
AD, is also associated with the endoplasmic reticulum (ER) and Golgi
(Henriques et al. 2016). Ab accumulation has been associated in hu-
mans with chronic stress as well as animal models of chronic stress,
suggesting that immune disorders with excessive inflammatory reac-
tion, such as PTSD, are key players in this neurodegenerative disorder
(Kempuraj et al. 2017). Accelerated AD pathogenesis also involves an
increase in phosphorylated tau levels, and levels in the cerebrospinal
fluid have been shown to be directly influenced by the APOE locus in
patients with AD (Deming et al. 2017).

Anincrease inoxidativestress isalsoassociatedwithADpathogenesis in
conditions of chronic stress and abnormal inflammatory states (Kempuraj
et al. 2017) and is known to be initiated or potentiated by traumatic stress
such as PTSD (Miller and Sadeh 2014). Oxidative stress is known to
induce a pro-inflammatory state from mast cells, as well as perturb the
endoplasmic reticulum (ER), thereby affecting critical roles such as in-
tracellular calcium homeostasis, lipid biosynthesis, protein folding and
transport. Mast cells have been shown to be dysregulated in combat
soldiers, thereby augmenting inflammation. This may explain the ob-
served increase in peripheral inflammatory markers and total inflamma-
tory scores in combat experienced veterans with PTSD, as compared to
veterans without PTSD (Lindqvist et al. 2017). In our study population,
soldiers reporting symptoms of PTSD also reported higher combat scores.
ER stress has been associated with CVD, diabetes and neurodegenerative
disorders. In fact, b-amyloid plaques were shown to induce ER stress
(Sozen and Ozer 2017), suggesting Possible deposition in our soldiers
reporting symptoms of PTSD. One may therefore hypothesize that an
increase in the expression of GOLM1 is a reflection of high ER stress.

CYP2C8
CYP2C8 is an enzyme and member of the cytochrome P450 (CYP)
family. This enzyme plays an important role in metabolizing retinoic
acid and arachidonic acid into epoxyeicosatrienoic acids (EETs) (Birnie
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et al. 2013; Donnelly et al. 2015). It is thought that EETs may improve
cerebral blood flow and vascular tone in the brain after a brain injury
(Donnelly et al. 2015). Liu et al. (2014) who found an overexpression of
CYP2C in human umbilical vein endothethial cells exerted anti-oxidative
and anti-vascular inflammatory effects via EETs (Liu et al. 2014). In an
animal model using male Sprague-dawley rates, EETs were shown to
exert anti-hypertensive properties (Khan et al. 2014). In our study, we
found CYP2C8 expression levels to be significantly down-regulated in
the symptom group compared to the control group, suggesting a com-
promised state of recovery or quite possibly an increased risk Of athero-
sclerosis (Liu et al. 2014) . Furthermore, knowing that there is strong
association between PTSD and mild TBI in soldiers exposed to combat
(Ruff et al. 2012), there is good reason to tag relevance to this gene
warranting the collection of TBI history in future studies.

CONCLUSION
Troops who have recently returned from tour and were involved in
combat comprise a high-risk population group for developing PTSD.
This pilot study is the first to report transcriptome-wide expression
profiling reflecting PTSD endophenotype in peripheral blood samples
fromCanadianArmedForces soldierswithinone-yearof returningfrom
tour in Afghanistan. Using NGS, this study sought to characterize a
molecular signature that defines risk of PTSD – a complex psychiatric
disorder, from the peripheral blood of soldiers immediately returning
within one-year from tour in Afghanistan. Soldiers reporting symp-
toms of PTSD (symptom group) also reported a trend toward higher
combat scores compared to those in the control group. After correcting
for confounding variables, a handful of top-genes were discovered to be
differentially expressed in the Symptoms of PTSD group.We found the
expression of genes LRP8 and GOLM1 were significantly upregulated
and the expression of CYP2C8 to be significantly downregulated, com-
pared to Control (no symptoms of PTSD). Collectively, these findings
suggest the following: 1) perturbation in the hippocampus and amyg-
dala, possibly due to experiencing a fearful event, thus leading to PTSD
symptoms, 2) a possible decrease in cognitive reserve due to loss or
compromised neural integrity, 3) the progression of early onset
Alzheimer’s Disease, 4) a disruption in cholesterol homeostasis
and quite possibly an increased risk of atherosclerosis and CVD - all
of which has been shown in patients with PTSD.

Albeit preliminary, not only do these findings reflect a genomic
predisposition to developing PTSD, but also demonstrate that gene
expression signatures in PBMCs contain information reflective of
symptoms of PTSD. As such, the results provide proof-of-principle
for the potential diagnostic value of blood-based gene expression
signatures for providing early insight prior to threshold defined
clinical PTSD. Finally, the study highlights the use of genome
information to point out risk of delayed diseases to human health
and well-being. Further validation and replication using a larger
sample size and GWAS dataset, is required for early prediction and
thus focused early intervention.
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