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Simple Summary: The imagery captured by cameras provides important information for wildlife
research and conservation. Deep learning technology can assist ecologists in automatically identifying
and processing imagery captured from camera traps, improving research capabilities and efficiency.
Currently, many general deep learning architectures have been proposed but few have evaluated
their applicability for use in real camera trap scenarios. Our study constructed the Northeast Tiger
and Leopard National Park wildlife dataset (NTLNP dataset) for the first time and compared the
real-world application performance of three currently mainstream object detection models. We hope
this study provides a reference on the applicability of the AI technique in wild real-life scenarios and
truly help ecologists to conduct wildlife conservation, management, and research more effectively.

Abstract: Camera traps are widely used in wildlife surveys and biodiversity monitoring. Depending
on its triggering mechanism, a large number of images or videos are sometimes accumulated. Some
literature has proposed the application of deep learning techniques to automatically identify wildlife
in camera trap imagery, which can significantly reduce manual work and speed up analysis processes.
However, there are few studies validating and comparing the applicability of different models for
object detection in real field monitoring scenarios. In this study, we firstly constructed a wildlife
image dataset of the Northeast Tiger and Leopard National Park (NTLNP dataset). Furthermore, we
evaluated the recognition performance of three currently mainstream object detection architectures
and compared the performance of training models on day and night data separately versus together.
In this experiment, we selected YOLOv5 series models (anchor-based one-stage), Cascade R-CNN
under feature extractor HRNet32 (anchor-based two-stage), and FCOS under feature extractors
ResNet50 and ResNet101 (anchor-free one-stage). The experimental results showed that performance
of the object detection models of the day-night joint training is satisfying. Specifically, the average
result of our models was 0.98 mAP (mean average precision) in the animal image detection and
88% accuracy in the animal video classification. One-stage YOLOv5m achieved the best recognition
accuracy. With the help of AI technology, ecologists can extract information from masses of imagery
potentially quickly and efficiently, saving much time.
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1. Introduction

Nature is degenerating globally at unprecedented rates, and various human-driven
changes have accelerated biodiversity loss [1–3]. The Living Planet Report 2020 reveals
that populations of mammals, birds, fish, amphibians, and reptiles have fallen by 68% over
the past 50 years [4]. There is an urgent need to understand the mechanisms of biodiversity
loss in the context of increasing anthropogenic disturbance [5,6]. Therefore, we have to
obtain timely and exact information on the species’ distribution, richness, abundance, and
community structure.

Camera trap surveys can provide valuable information for ecologists and wildlife
conservation scientists on the species richness distribution [7,8], animal behavior [9], pop-
ulation density [10], community dynamics [11], and so forth [12,13]. As a non-invasive
approach with good concealment, small interference, and 24 h of continuous work, camera
traps prompt wide usage in wildlife management and biodiversity monitoring [14,15].
A camera trap will be automatically triggered to take photos or videos when animals
pass by [16]. However, camera traps are also susceptible to complex environments (e.g.,
vegetation drifting with the wind, sunlight exposure, etc.), resulting in false triggers and
sometimes producing many images or videos with no wildlife [17,18]. The collected images
and videos have to be cleaned and sorted, which are enormously labor-intensive and
time-consuming manual tasks. In addition, with the wide application of camera trap sur-
veys, the size of datasets increases rapidly, and the data preprocessing obstacle brought by
images with no wildlife in them becomes more and more prominent [19,20]. Cost-effective
technologies are urgently needed to aid in ecological monitoring [21,22].

Deep learning, which can process big data automatically and build relational models
in massive datasets, may be a crucial tool to help ecologists organize, process, and ana-
lyze ecological data more efficiently [19,23,24]. Many researchers have tried to use deep
learning to automatically identify species and remove camera trap images without animals,
which greatly saves time and labor costs [17,25,26]. Norouzzadeh used multitask models
to automatically identify, count, and describe wildlife images with a high classification
accuracy of 93.8% [27]. Schneider successfully solved the problem of outputting only one
label for multi-species images by training object detectors with Faster R-CNN [28]. Object
detection can identify the location and class of interest objects in an image and return all
results, so it will further improve the ability of camera data processing [29]. Afterwards,
some studies suggested that in complex natural environments, the detection of the location
of animals first may be the basis for improving the classification ability [15]. Vecvanags
evaluated the performance of RetinaNet and Faster R-CNN, which can provide technical
support for effective monitoring and management of ungulates [30]. Nowadays, many
object detection models have been proposed in the field of deep learning and more and
more articles have focused on these applications in ecology. However, object detection is
still a challenging task in camera trap surveys and few studies have compared the currently
mainstream object detection models in real camera trap monitoring projects.

Meanwhile, the long-term development of deep learning in the ecological field requires
large, diverse, accurately labeled, and publicly available datasets [31]. Many previous stud-
ies trained models using large datasets from open-source databases or citizen science
platforms (e.g., the Snapshot Serengeti dataset, iNaturalist), which were almost always
collected from specific regions [21,27,31]. There are few wildlife datasets for deep learning
training in China. We need to be aware that geographic bias in ecological datasets may
have implications on the practical application of the model [31]. Additionally, the com-
position of different species also shows a noticeable imbalance in some datasets [32]. It is
challenging and costly in time and effort to label masses of imagery from some camera trap
monitoring projects. Therefore, we should consider the actual situations when we apply
automatic identification technologies to actual ecological protections. Additionally, ecology
researchers in China urgently need high-quality wildlife datasets for deep learning to fill
the gap.
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The goals of our study were to build a wildlife dataset for deep learning and evaluate
the applicability of object detection in real infrared camera working scenarios. We can
summarize the main contents and contributions of our work as follows: (1) We constructed
the first Northeast Tiger and Leopard National Park wildlife image dataset (NTLNP dataset).
(2) We verified the performance of the object detection network in recognizing wild animals
in a complex natural background and compared the efficiency of three mainstream detection
networks in wildlife recognition: YOLOv5 (anchor-based one-stage), FCOS (anchor-free
one-stage), and Cascade R-CNN (anchor-based two-stage). (3) We applied the trained
model to videos recorded by the camera traps and evaluated its performance.

The remainder of the paper is organized as follows: Section 2 presents the materials
and methods used in this study; Section 3 presents the experimental results; Section 4
discusses the experimental findings, shortages, and future work; and Section 5 presents
the conclusions.

2. Materials and Methods
2.1. Dataset Construction

The data used in this study was video clips taken by infrared cameras in the Northeast
Tiger and Leopard National Park from 2014 to 2020. We selected 17 main species (15 wild
animals and 2 major domestic animals) as research objects, including Amur tiger (Panthera
tigris altaica), Amur leopard (Panthera pardus orientalis), wild boar (Sus scrofa), roe deer
(Capreolus pygargus), sika deer (Cervus nippon), Asian black bear (Ursus thibetanus), red fox
(Vulpes vulpes), Asian badger (Meles meles), raccoon dog (Nyctereutes procyonoides), musk
deer (Moschus moschiferus), Siberian weasel (Mustela sibirica), sable (Martes zibellina), yellow-
throated marten (Martes flavigula), leopard cat (Prionailurus bengalensis), Manchurian hare
(Lepus mandshuricus), cow, and dog. Figure 1 shows some sample images.
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Figure 1. Examples of some species of the NTLNP dataset.

We used a Python script to extract images from the videos (the frame rate was 50).
Limited by the number of individuals and living habits, the number of images for some
species was relatively small. Except for hibernating species, images of each category
included four different seasons. We carried out uniform standard manual annotation to the
images. All images were labeled in Pascal VOC format using the software labelImg.



Animals 2022, 12, 1976 4 of 16

2.2. Object Detection Network

In the deep learning era, object detection has two main technological development
routes: anchor-based and anchor-free methods while the anchor-based method includes
one-stage and two-stage detection algorithms [29,33]. In the anchor-based algorithms,
one-stage detection directly generates the class probability and position coordinate value
of the object from the predefined anchor box; two-stage detection includes generating a
region proposal from the image and generating the final target boundary from the region
proposal [34]. The anchor-free method, the Keypoint-bsaed detection type such as FCOS,
mainly detects target key points to produce the bounding box [35]. Therefore, the one-stage
object detection algorithms may be faster, but the two-stage object detection algorithms are
generally more accurate.

In this study, we applied three state-of-the-art models to identify, localize, and clas-
sify animals in a complex forest environment, namely YOLOv5, FCOS, and Cascade
R-CNN [35,36]. We set up two experiment groups: one was training on day and night
images jointly, and the other was training on day and night images separately.

2.2.1. YOLOV5

YOLO is an acronym for ‘You only look once’. YOLOv5 is the latest generation in the
YOLO series [37]. It has an anchor-based one-stage detector with a fast inference speed [38].

1. Architecture Overview

We chose three architectures: YOLOv5s, YOLOv5m, and YOLOv5l. Backbone adopts
the Cross Stage Partial Network (CSPNet) [39]. Before entering the backbone network, the
YOLOv5 algorithm adds the Focus module and performs downsampling by slicing the pic-
ture. The neck is in the form of a Feature Pyramid Network (FPN) plus a Path Aggregation
Network (PAN) and combines three different scales of feature information [40,41]. Then,
it uses the Non-Maximum Suppression (NMS) method to remove redundant prediction
bounding boxes (Figure 2).
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2. Implementation Details

We used the YOLOv5 framework for model training based on PyTorch [42]. The
optimizer was Stochastic Gradient Descent (SGD), the momentum was set to 0.937, and
the weight decay was set to 0.0005. The initial learning rate was set to 1 × 10−2 which
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would decrease linearly, the warm-up epoch was 3, and the initial warm-up momentum
was 0.8. Due to the different sizes of the models, the total number of epochs and the batch
size were different. The detailed settings of each model are shown in Table 1. Experiments
were run on RTX A4000 GPU.

Table 1. YOLOv5 parameter settings.

Model Epoch Batch Size

YOLOv5s_day 80 32
YOLOv5m_day 80 32
YOLOv5l_day 80 16

YOLOv5s_night 65 32
YOLOv5m_night 65 32
YOLOv5l_night 65 16

YOLOv5s_togather 60 32
YOLOv5m_togather 60 32
YOLOv5l_togather 45 16

2.2.2. FCOS

FCOS is a one-stage, fully convolutional object detection network that is anchor
free [35]. It uses center points to replace anchor boxes for bounding box regression, which
is more straightforward and flexible.

1. Architecture Overview

The network structure consists of three main parts: backbone, FPN, and output
network. The backbone network used in this experiment was ResNet50 and ResNet101 [43],
which could be divided into 5 parts. It adds FPN for multi-scale feature extraction. The
output network consists of Heads, each of which contains a shared part and 3 branches.
Classification predicts the confidence of the existence of the target at each sampling point
on the feature map, center-ness predicts the distance between the sampling point and the
center of the target, and regression predicts the distance between the sampling point and
the real box of the original image (Figure 3).
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2. Implementation Details

We used the FCOS framework for model training based on PyTorch [35,42]. We
trained 35 epochs under different backbone networks with the batch-size set to 12 and
8, respectively. In the early stage of training, the warm-up strategy was used to increase the
learning rate from 0 to 2 × 10−3 gradually. When the training times reached 20,000 times, it
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reduced the learning rate to 2 × 10−4, and after the training times reached 27,000 times, the
learning rate was reduced to 2 × 10−5. Experiments were run on RTX A5000 GPU.

2.2.3. Cascade R-CNN

Cascade R-CNN stacks several cascade modules in the detector and uses different
Intersection over Union (IoU) thresholds to train [36]. It dramatically improves the accuracy
of the anchor-based two-stage object detection algorithm.

1. Architecture Overview

We chose HRNet32 as the backbone network to perform the task of wildlife object
detection in the manner of Cascade R-CNN [36,44]. HRNet achieves the purpose of strong
semantic information and precise location information through parallel branches of mul-
tiple resolutions and continuous information interaction between different branches [44].
Overall, Cascade R-CNN has four stages, one Region Proposal Network (RPN) and three
for detection with IoU = {0.5, 0.6, 0.7}. Sampling in the first detection stage follows Faster
R-CNN [45]. In the next stage, resampling is achieved by simply using the regression
output from the previous stage. The model structure is shown in Figure 4.
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2. Implementation Details

We used the MMDetection framework for model training based on PyTorch [42,46].
The optimizer was Stochastic Gradient Descent (SGD), the momentum was set to 0.9, and
the weight decay was set to 0.0001. The total number of epochs was 30. The learning rate
was 1 × 10−2 and the batch size was 2. For joint training, the learning rate was 1 × 10−2 and
the batch size was 4. In total, 500 steps were used for the warm-up. The learning rate would
decrease linearly according to the epoch, and the decrease ratio was 10, in epoch 16 and
epoch 19, respectively. Experiments were run on RTX 3090 GPU.

2.3. Evaluation Metrics

This paper used the precision, recall, and mean average precision (mAP) as evalua-
tion metrics:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

where true positive (TP) is the number of correct detections of the ground-truth bounding
box, that is, the number of IoU that exceeds the threshold and is correctly classified; false
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positive (FP) is the number of incorrect detections of a nonexistent object or misplaced
detections of an existing object, that is, the number of IoU not exceeding the threshold or
the number of misclassification errors; and false negative (FN) is the number of missed
detections, that is, the number of boxes that are not predicted [47]:

AP =
∫ 1

0
P(R)dR (3)

mAP =
∑C

i=1 AP(i)
C

(4)

AP (average precision) is obtained by calculating the P-R integral, where P is the
precision and R is the recall. AP is averaged to obtain mAP (mean average precision), where
C is the number of categories and in this paper, C = 17.

When detecting videos, we used accuracy as the evaluation metric. For a clip of the
video, the final label was determined by the most frequently occurring detection results of
all the frames of the target video, which were counted only if its confidence exceeded the
score threshold:

Accuracy =
N
T

(5)

where N is the number of correctly classified videos and T is the total number of videos.

3. Results
3.1. NTLNP Dataset

After checking and cleaning, a total of 25,657 images were selected from 17 species
categories to build the NTLNP dataset, including 15,313 images from during the day and
10,344 images from at night. The image resolution was 1280 × 720 or 1600 × 1200 pixels
(Table 2). According to the ratio of 8:2, the NTLNP dataset was divided into the training set
and test set. The various types of data are shown in Table 3.

Table 2. The main properties of the NTLNP dataset.

Species
Category

No. of
Total Images

No. of
Daytime Images

No. of
Nighttime Images Image Resolution

17 25,657 15,313 10,344 1280 × 720/1600 × 1200

Table 3. NTLNP dataset and per-class training set and test set assignments.

Species
Day and Night Day Night

Training Set Test Set Training Set Test Set Training Set Test Set

Amur tiger 1123 246 676 145 447 101
Amur leopard 1260 314 872 219 388 95

Wild boar 1801 423 1159 291 642 132
Sika dear 1726 466 1216 328 510 138
Red fox 1504 358 802 188 702 170

Raccoon dog 1169 324 248 81 921 243
Asian badger 1052 257 735 176 317 81

Asian black bear 1084 285 772 188 312 97
Leopard cat 1589 385 841 196 748 189

Roe deer 1749 374 1317 293 432 81
Siberian weasel 985 284 554 175 431 109

Yellow-throated marten 779 205 681 178 98 27
Sable 483 129 152 40 331 89

Musk deer 1045 248 216 47 829 201
Manchurian hare 1010 270 17 3 993 267

Cow 1016 284 936 263 80 21
Dog 1150 280 1056 252 94 28
Total 20,525 5132 12,250 3063 8275 2069
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3.2. Experimental Results
3.2.1. Model Performance

Considering that the NTLNP dataset contained color images (day) and gray images
(night), we investigated whether it was better when day and night images were trained
separately or together. The results of each model are shown in Table 4. It was eventually
discovered that the day models’ accuracy outperformed that of the night models, and when
day and night images were trained jointly, all models were more accurate. Both YOLOv5
and FCOS achieved good precision and recall and Cascade_R-CNN_HRNet32 had high
recall but low precision, which was 81.5%, 73.8%, and 80.9% in day, night, and day-night
joint. When using mAP with a threshold of 0.5 IoU as the model evaluation, the average
accuracy of almost all models was above 98%, and YOLOv5 had a higher value compared
to the other two models. The accuracy of FCOS_Resnent50 and FCOS_Resnent101 was
relatively low at night: 94.7% and 96.5%, respectively. Cascade_R-CNN_HRNet32 achieved
a 97.3% accuracy in the daytime images, 97% accuracy in the nighttime images, and 98%
accuracy in the day-night joint training. When using mAP_0.5:0.95 as the metric, the models’
accuracy was between 82.4% and 88.9%.

Table 4. Overall recognition accuracy of different object detection models.

Experiment Model
Metric

Precision Recall mAP_0.5 mAP_0.5:0.95

Day&Night

YOLOv5s 0.981 0.972 0.987 0.858
YOLOv5m 0.987 0.975 0.989 0.880
YOLOv5l 0.984 0.975 0.989 0.878
FCOS_Resnet50 0.969 0.892 0.979 0.812
FCOS_Resnet101 0.963 0.882 0.978 0.820
Cascade_R-CNN_HRNet32 0.809 0.986 0.980 0.840

Day

YOLOv5s 0.981 0.968 0.984 0.867
YOLOv5m 0.981 0.974 0.984 0.880
YOLOv5l 0.982 0.969 0.983 0.889
FCOS_Resnet50 0.909 0.904 0.981 0.825
FCOS_Resnet101 0.928 0.920 0.983 0.832
Cascade_R-CNN_HRNet32 0.815 0.980 0.973 0.845

Night

YOLOv5s 0.956 0.972 0.984 0.850
YOLOv5m 0.976 0.982 0.989 0.867
YOLOv5l 0.971 0.986 0.989 0.874
FCOS_Resnet50 0.940 0.859 0.947 0.678
FCOS_Resnet101 0.970 0.867 0.965 0.796
Cascade_R-CNN_HRNet32 0.738 0.981 0.970 0.824

Note: mAP_0.5 is the average precision calculated when IoU is 0.5, mAP_0.5:0.95 is the average precision calculated
when IoU is 0.5 to 0.95 with steps of 0.05.

3.2.2. Species Detection and Classification

We selected YOLOv5m, FCOS_Resnet101, and Cascade_R-CNN_HRNet32, which had
a better performance, to further evaluate the recognition accuracy of each species.

Since there were only 20 images of hares in the daytime, they were not considered
in the model. The recognition accuracy of the 3 models trained on the daytime dataset
for the 16 species is shown in Figure 5. Cascade_R-CNN_HRNet32, YOLOv5m, and
FCOS_Resnet101 had a 91.6–100%, 94.2–99.5%, and 94–100% accuracy for the 16 species.
Cascade_R-CNN_HRNet32 achieved a 100% recognition accuracy for Amur leopard and
musk deer, and FCOS_Resnet101 for Amur tiger and red fox. The accuracy of YOLOv5m
and FCOS_Resnet101 for raccoon dog reached 96% and 96.4%, respectively, which was
4.4–4.8% higher than Cascade_R-CNN_HRNet32. Sable showed the worst performance,
and YOLOv5m had the relatively best accuracy of 94.2%.
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Figure 6 demonstrates the recognition accuracy of the night models. We found that
the three models exhibited performance differences at night. YOLOv5m had the best
accuracy in recognizing animals at night, reaching 97.7–99.5%. The accuracy of Cascade_R-
CNN_HRNet32 was above 95% for most species but lower for roe deer and dogs at 92.8%
and 88.2%. In contrast, FCOS_Resnet101 performed the worst at night, with significant
differences among species. Amur tiger, Amur leopard, and musk deer achieved a 100%
accuracy while dog and badger were only 87.4% and 91.7% accurate.
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Compared with separate training, the day-night jointly models achieved a better
accuracy for all species (Figure 7). YOLOv5m was the best model, with an accuracy of
97–99.5%. Roe deer, badger, raccoon dog, yellow-throated marten, and dog all achieved a
higher recognition accuracy than the other two models. The accuracy of FCOS_Resnet50
and Cascade_R-CNN_HRNet32 ranged from 94.2–100% and 95.3–99.9%, respectively.
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All models had the ability to detect each object in a single image. Because different
species rarely appeared in front of one camera trap at the same time, there were only
images of one object or multiple objects of the same species in our dataset. Some identified
images are shown in Figure 8 and more results of the different models are reported in the
Supplementary Materials (Figures S1–S3).
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3.2.3. Video Automatic Recognition

We applied the day-night joint YOLOv5m, Cascade_R-CNN_HRNet32, and FCOS_Resnet101
to automatically recognize the videos captured by infrared cameras in the Northeast Tiger and
Leopard National Park. The accuracy of the three models was tested when the score thresholds
were 0.6, 0.7, and 0.8, respectively. The result is shown in Table 5. YOLOv5m showed the most
robust performance among all models. When the threshold was 0.7, the accuracy was 89.6%.
Cascade_R-CNN_HRNet32 was slightly inferior, obtaining the highest accuracy of 86.5% at the
threshold of 0.8. The accuracy of FCOS_Resnet101 showed significant differences at different
thresholds. When the threshold was 0.6, the video classification accuracy reached 91.6%. Never-
theless, when the threshold was 0.8, the recognition rate of the videos dropped sharply, eventually
only reaching 64.7%.

Table 5. Video classification accuracy of the three models.

Videos Model Acc_0.6 Acc_0.7 Acc_0.8

725
YOLOv5m 88.8% 89.6% 89.5%

Cascade_R-CNN_HRNet32 86.3% 86.4% 86.5%
FCOS_Resnet101 91.6% 86.6% 64.7%

Note: Acc represents Accuracy; Acc_0.6, 0.7, 0.8 represent the accuracy of video classification where the score
threshold = {0.6, 0.7, 0.8}.

4. Discussion

Open-source datasets on citizen science platforms boost interdisciplinary research,
where scientists are able to train various models based on these datasets and propose
optimization schemes [26,27]. However, we have to consider the geographic biases of
most ecological datasets in practical applications [31]. In this study, for the first time, we
constructed an image dataset of 17 species in the Northeast Tiger and Leopard National
Park with standard bounding box and annotation (Table 3, NTLNP dataset). This dataset
provides a great resource for exploring and evaluating the application of deep learning in
the Northeast Tiger and Leopard National Park. Our dataset was small compared to large
image recognition projects, but the results were relatively good and could provide a fairly
effective aid in the subsequent data processing process. At the same time, the construction
of the NTLNP dataset also complemented the diversity of ecological data for deep learning.

By comparison, we found that day-night joint training had a better performance
(Table 4), breaking our assumption that separate training would be more effective. YOLOv5,
FCOS, and Cascade R-CNN all achieved high average precision: >97.9% at mAP_0.5 and
>81.2% at mAP_0.5:0.95, which could meet the needs of automatic wildlife recognition
(Table 4). Moreover, all models exhibited similar characteristics, i.e., good performance for
large targets such as Amur tiger and Amur leopard. For small targets such as badger and
yellow-throated marten, the accuracy of predicting borders was reduced due to their fast
movement, which would easily cause blurring in images at night (Figure 9a). Additionally,
the models sometimes misidentified the background as an animal (Figure 9b). We believe
that static backgrounds that closely resembled animal forms might interfere with the
recognition. Additionally, when animals were too close/far or hidden/occluded, the
models might have failed to detect the targets (Figure 9c,d). Some similar morphological
species were prone to misidentification (Figure 9e). Overall, the recognition results were
seriously affected when the image quality was poor.

In this experiment, the accuracy of the anchor-based one-stage YOLOv5 series models
exceeded that of the anchor-free one-stage FCOS series models and anchor-based two-
stage Cascade_R-CNN_HRNet32. Especially, YOLOv5m achieved the highest accuracy,
with 98.9% for mAP_0.5 and 88% for mAP_0.5:0.95 (Table 4). This was inconsistent with
the usual results mentioned in previous literature, where two-stage models were usually
more accurate than one-stage models, and the deeper the network, the better the model
performance [34]. Therefore, when applying artificial intelligence (AI), ecologists should



Animals 2022, 12, 1976 12 of 16

consider the actual situation of each protected area and choose the appropriate model as a
tool to help wildlife monitoring and research.

Animals 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 
Figure 9. Examples of the typical failure cases of the models. (a) False negative or low recognition 
ratio due to poor image quality (blur, etc.); (b) Misrecognition of the background (stump, stone, 
fallen leave, etc.); (c) Inability to detect the target when animals are too close/far; (d) Inability to 
detect the target when animals are hidden or occluded; (e) Similar species are prone to misidentifi-
cation. Red dotted boxes are added manually to show the missing targets. 

In this experiment, the accuracy of the anchor-based one-stage YOLOv5 series mod-
els exceeded that of the anchor-free one-stage FCOS series models and anchor-based two-
stage Cascade_R-CNN_HRNet32. Especially, YOLOv5m achieved the highest accuracy, 
with 98.9% for mAP_0.5 and 88% for mAP_0.5:0.95 (Table 4). This was inconsistent with 
the usual results mentioned in previous literature, where two-stage models were usually 
more accurate than one-stage models, and the deeper the network, the better the model 
performance [34]. Therefore, when applying artificial intelligence (AI), ecologists should 
consider the actual situation of each protected area and choose the appropriate model as 
a tool to help wildlife monitoring and research. 

Moreover, we suggest the threshold setting of the model being tested along a suitable 
gradient in practical applications. When we applied the trained models to the infrared 
camera videos, we found that at different thresholds, the accuracy of FCOS_Resnet101 
showed more significant variation while that of YOLOv5m and Cascade_R-
CNN_HRNet32 was almost constant (Table 5). As can be seen, sometimes setting the 
threshold too high does not improve the accuracy while a problem with a low threshold 
is that it can lead to an increase in false positives of images without wildlife. 

Finally, due to the limitations of the experimental environments, this study only com-
pared the accuracy but failed to compare other parameters such as the running speed of 

Figure 9. Examples of the typical failure cases of the models. (a) False negative or low recognition
ratio due to poor image quality (blur, etc.); (b) Misrecognition of the background (stump, stone, fallen
leave, etc.); (c) Inability to detect the target when animals are too close/far; (d) Inability to detect the
target when animals are hidden or occluded; (e) Similar species are prone to misidentification. Red
dotted boxes are added manually to show the missing targets.

Moreover, we suggest the threshold setting of the model being tested along a suitable
gradient in practical applications. When we applied the trained models to the infrared
camera videos, we found that at different thresholds, the accuracy of FCOS_Resnet101
showed more significant variation while that of YOLOv5m and Cascade_R-CNN_HRNet32
was almost constant (Table 5). As can be seen, sometimes setting the threshold too high
does not improve the accuracy while a problem with a low threshold is that it can lead to
an increase in false positives of images without wildlife.

Finally, due to the limitations of the experimental environments, this study only
compared the accuracy but failed to compare other parameters such as the running speed
of the models. In follow-up studies, it is necessary to perform a comprehensive comparison
before choosing the model that suits the application scenario best. In addition, we found
that the background information strongly influenced the models’ performance. It should
be noted that static infrared cameras are usually fixed on trees in the field, capturing large
numbers of photos or videos with the same background. Beery proposed the Context R-
CNN architecture, which can aggregate contextual features from other frames and leverage
the long-term temporal context to improve object detection in passive monitoring [48]. The



Animals 2022, 12, 1976 13 of 16

seasonal, temporal, and locational variations made the background information vary widely,
so the models were prone to misjudgment for unlearned backgrounds. In the future, the
selection of images of species at different times and in different geographical environments
can enhance the model’s ability to learn the context. Moreover, affected by the light and
geographical environments, the quality of the images and videos captured by the cameras
was different, and the uncertainty of triggering, animals that were too large/small or hidden,
and fast movement increases the difficulty of identification [49,50]. Attempts can be made to
further improve the species recognition accuracy by combining ecological information such
as the sound, activity patterns, and geographical distribution of the animals with image-
based identification systems [51,52]. Furthermore, for ecological studies, distinguishing
individual differences within species is also crucial, and the future incorporation of re-
identification into detection systems will enable the tracking of individuals and counting of
the number of species in a region [53–55].

5. Conclusions

Camera traps provide a critical aid in multifaceted surveys of wildlife worldwide while
they often produce large volumes of images and videos [56]. A growing number of studies
have tried to use deep learning techniques to extract effective information from massive
images or videos. Our paper constructed the NTLNP dataset, which could increase the
diversity of wildlife datasets, and verified the feasibility and effectiveness of object detection
models for identifying wild animals in the complex forest backgrounds in the Northeast
Tiger and Leopard National Park. On the NTLNP dataset, we conducted experiments on
three mainstream object detection models and all models showed a satisfying performance.
Moreover, we proposed that according to the deployment scenario, the dynamic selection
model would achieve better results. Overall, this technology is of great practical value
in helping researchers conduct more effective biodiversity monitoring, conservation, and
scientific research in the Northeast Tiger and Leopard National Park.

As ecology enters the field of big data, deep learning brings a lot of hope to ecolo-
gists [19]. Although it is impossible for the model to achieve 100% accuracy, the technology
will reduce the manual identification work and help ecologists quickly and efficiently
extract information from massive data. In the future, in-depth interdisciplinary cooperation
will further promote technological innovation in ecological research and conservation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12151976/s1, Figure S1 Examples of correct animal detection
and classification usingYOLOV5m network; Figure S2 Examples of correct animal detection and
classification using FCOS_Resnet101; Figure S3 Examples of correct animal detection and classification
using Cascade_R-CNN_HRNet32.
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