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Abstract: Sterol regulatory element-binding proteins (SREBPs) play vital roles in fatty acid metabolism
and other metabolic processes in mammals. However, in penaeid shrimp, the repertoire of genes
modulated by SREBP is unknown. Here, RNA interference-mediated knockdown followed by
transcriptome sequencing on the Illumina Novaseq 6000 platform was used to explore the genes
modulated by SREBP in Penaeus vannamei hepatopancreas. A total of 706 differentially expressed
genes (DEGs) were identified, out of which 282 were upregulated and 424 downregulated. Although
gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that
most of the downregulated DEGs were involved in physiological processes related to immunity,
metabolism, and cellular signaling pathways, many of the dysregulated genes have uncharacterized
functions. While most of the dysregulated genes were annotated in metabolic processes, such as
carbohydrate metabolism, lipid metabolism, signal transduction, and immune system, a large number
(42.21%) are uncharacterized. Collectively, our current data revealed that SREBP modulates many
genes involved in crucial physiological processes, such as energy metabolism, immune response,
and cellular signaling pathways, as well as numerous genes with unannotated functions, in penaeid
shrimp. These findings indicated that our knowledge of the repertoire of genes modulated by SREBP
in shrimp lags behind that of mammals, probably due to limited research or because the complete
genome of P. vannamei has just been sequenced.
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1. Introduction

Sterol regulatory element-binding proteins (SREBPs) are transcription factors that
maintain cellular lipid metabolism by controlling the synthesis of fatty acids, triglycerides,
and cholesterol [1]. As well as their role in lipid metabolism and as regulators of cellular
homeostasis [1,2], mammalian SREBPs are involved in immune response [3], metabolic
reprogramming to enhance glycolysis and oxidative phosphorylation [4], reprogramming
of fatty acids metabolism via Toll-like receptor 4 (TLR4) signaling to resolve inflammatory
processes in macrophages [5], and regulation of lipid synthesis in macrophages to stimulate
TLR4-dependent phagocytosis [6]. Similarly, SREBPs modulate the expression of many
genes in various tissues not directly related to fatty acid metabolism and lipogenesis,
including the regulation of other membrane-bound transcription factors such as ATF6
and CREB3 [7,8], energy balance and glucose homeostasis [9], increase in intracellular
triacylglycerols (TAG) levels [10], and insulin resistance [11].
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Mammals express three SREBP family members, i.e., SREBP-1a, SREBP-1c, and
SREBP-2 [12], encoded by Srebf1 or Srebf2 genes [13]. SREBP-1 is more specific to fatty
acid synthesis [14], while SREBP-2 is the master regulator of cholesterol synthesis and
lipogenesis [15]. Two SREBP homologs (Srebp1 and Srebp2) have been reported in fish [16]
and implicated in long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis and reg-
ulation of fatty acid metabolism-related genes [17]. On the other hand, a single SREBP gene
has been identified in invertebrates thus far [18], including one SREBP homolog in the noble
scallop (Chlamys nobilis) [19], Asian marine razor-clam (Sinonovacula constricta) [20], mud
crab (Scylla paramamosain) [21], and pacific white shrimp (Penaeus vannamei) [22]. These
invertebrate SREBP homologs have been implicated in the regulation of various aspects of
lipid metabolism, molting, and ecdysteroidogenesis [22], and immune response [23].

Under normal physiological conditions, SREBPs, which are initially synthesized as
precursors bound to the endoplasmic reticulum (ER), are transported to the Golgi apparatus,
where two-step sequential proteolytic cleavage activation releases the active form that enters
the nucleus to regulate the transcription of target genes [24]. The processing of SREBPs is
generally controlled by cellular sterol content [25]. In mammals, the various SREBP isoforms
can modulate the expression of many genes not necessarily involved in lipid metabolism.
For instance, the attenuation of SREBP-1 expression could result in different physiological
changes, including decrease in the mRNA/protein levels of glucagon-like peptide 2 receptor
(GLP2R) to modulate energy balance and glucose homeostasis [9], increase in intracellular
triacylglycerols (TAG) levels [10], or decrease in ATP and lactate production [26]. Bu
contrast, the overexpression of SREBP-1 increased the mRNA levels of lipogenic enzymes,
including fatty acid synthase (FAS), elongation of very long-chain fatty acids protein 6
(Elovl6), stearoyl-coenzyme A (CoA), glycerol-3-phosphate acyltransferase 1 [11], fatty acid
desaturase 2 (FADS2) [27], and insulin resistance [11]. Thus, given these large number of
genes modulated directly or indirectly by SREBP in mammals, it is conceivable that the
SREBP homolog in penaeid shrimp could also be involved in the regulation of various
important physiological and or pathophysiological functions.

The Pacific white shrimp P. vannamei is the most farmed shrimp species globally,
accounting for almost 80% of the total produce [22]. Despite the huge production output
of P. vannamei, these shrimps easily succumb to pathogenic infections, because most of
the molecular pathways and mechanisms involved in key physiological and cellular func-
tions are not well understood. The hepatopancreas in decapod crustaceans is the central
metabolic organ involved in numerous physiological and pathophysiological functions,
and also the major target organ for toxicants and pathogens in the environment [28,29].
Given that in crustaceans the full repertoire of genes modulated by SREBP is unknown, the
main aim of this study was to profile SREBP-modulated genes in penaeid shrimp using
high throughput sequencing. Thus, the current study used RNA interference-mediated
knockdown of SREBP in the hepatopancreas of P. vannamei followed by RNA sequencing
(RNA-Seq) analysis to profile the genes putatively modulated by SREBP. Gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the
differentially expressed genes (DEGs) identified many candidate genes, a few of which
were randomly picked and further validated by quantitative polymerase chain reaction
(qPCR) analysis. Besides the genes known to be regulated by SREBPs, i.e., genes involved
in lipid metabolism, cellular signaling, and immune response, the majority of the dys-
regulated genes are unannotated or involved in uncharacterized physiological processes.
Thus, these results support the functional diversity of SREBPs, and the large repertoire of
genes modulated across species, although most of these genes are currently unannotated in
penaeid shrimp.

2. Materials and Methods
2.1. Experimental Animals and RNA Interference (RNAi) Experiments

Healthy adult P. vannamei (10 ± 2 g each) obtained from a local shrimp farm (Shantou
Huaxun Aquatic Product Corporation, Shantou, Guangdong, China), were cultured in
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laboratory tanks containing aerated seawater (1% salinity) at 25 ◦C and fed once daily with
commercial feed (Tongwei Feed Co., Ltd., Xiamen, China). Shrimps were acclimatized to
laboratory conditions for 2–3 days before experiments. In the siRNA-mediated knockdown
experiments, siRNA targeting the open reading frame (ORF) sequence of P. vannamei SREBP
(siPvSREBP) and scrambled control siRNA (siNon) were designed, chemically synthesized
and high-performance liquid chromatography (HPLC) purified by a commercial company
(GenePharma, Suzhou, China). Sixty randomly selected pre-acclimatized shrimp were
randomly divided into two groups (30 individuals per group) and the experimental group
shrimps were each intramuscularly injected, as previously described [30], with 2.0 µg
siPvSREBP, while the control group shrimp were injected with an equivalent amount of
siNon. At 48 h post-injection, hepatopancreas samples were collected from three randomly
selected shrimp per group and processed for total RNA extraction and cell lysis prepara-
tion to ascertain successful knockdown of PvSREBP using quantitative polymerase chain
reaction (qPCR) and Western blot analyses. The gene-specific primers used for siRNA
synthesis are shown in Table 1. All animal experiments were carried out in accordance with
the guidelines and approval of the Animal Research and Ethics Committees of Shantou
University, China.

Table 1. The gene-specific primer list.

Primer Name Sequence (5′-3′) Amplicon (bp)

PCR
PvSREBP-F CCATGGCTGATATCGGATCCATGAACTGGCCTGACCTGGACT 1296
PvSREBP-R TGGTGGTGGTGGTGCTCGAGTTAGTCAGCCATGGAACGTGCC 1296

Real-time RT-PCR
q-PvSREBP-R GGAGTTGTTGTTGCCGTGG 134
q-PvSREBP-F TGGCTGAGATGTTGGTAATGG 134

q-MNK-R ATGCACGACTCGGCGAACAGC 109
q-MNK-F ACCATCCCTGGGTCAAGAACG 109

q-NFκBIA-R GTGCCGTCCGACCACTCTT 140
q-NFκBIA-F TGCCGCTGACCTTACCAAC 140

q-FABP-R CTCCTCGCCGAGCTTGATGGT 103
q-FABP-F CGCTAAGCCCGTGCTGGAAGT 103

q-PFKFB2-R CAAAGACAGCCACTTCACCC 200
q-PFKFB2-F CCTCAACTGGATCGGCATAA 200
q-CREB3-R TGGACAGGAAAGCCGTAGCA 218
q-CREB3-F GAACAACACCGCACCCACCC 218
q-lectin-R TGATTCCTCGCTCGCCCTAC 120
q-lectin-F CGCTCTTGCTGTCTGCCTGAT 120
q-COX2-R GTAGGCATTGAGGGTGATGTAG 103
q-COX2-F CCACAAGCGACTGATGACTTA 103
q-HK-R AGCCCATCACCAGGTCCAAT 205
q-HK-F AGTCCAACCCAGAGGCAACC 205

q-NOS1-R TCTCTCCCAGTTTCTTGGCGT 104
q-NOS1-F GAGCAAGTTATTCGGCAAGGC 104
PvEF-1α-R CCTTTTCTGCGGCCTTGGTAG 118
PvEF-1α-F TATGCTCCTTTTGGACGTTTTGC 118

siRNA
siPvSREBP-R UUACGGUGUCGCCAGAAGCTT 21
siPvSREBP-F GCUUCUGGCGACACCGUAATT 21

siNon-R ACGUGACACGUUCGGAGAATT 21
siNon-F UUCUCCGAACGUGUCACGUTT 21

2.2. Western Blot Analysis

To ascertain successful knockdown of PvSREBP using Western blot analysis, hep-
atopancreas cell lysates were prepared and separated by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) followed by Western blot analysis. Briefly,
shrimp hepatopancreas tissues were homogenized on ice in PBS (0.01 M, pH 7.4) containing
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4× phenylmethylsulfonyl fluoride (PMSF) (Beyotime Biotechnology, Shanghai, China), and
hepatopancreatic cells collected by centrifugation at 100× g (4 ◦C for 7 min). Cells were
washed three times with PBS before being lysed for 20 min at 4 ◦C with lysis buffer (25 mM
HEPES, 150 mM NaCl, 1% Triton X-100, 1 mM EDTA-Na2·2H2O, PH 7.4) containing a
mixture of protease inhibitors (Roche, Indianapolis, IN, USA) and 4x PMSF. Next, cell
lysates were centrifuged at 20,000× g (4 ◦C for 20 min) to collect the supernatant before
being mixed with 5x loading buffer (42 mmol/L Tris-HCl, containing 100 mL/L glycerol,
23 g/L SDS, 50 g/L 2-mercaptoethanol and 0.02 g/L bromophenol blue) and boiled for
10 min. Samples were then separated on SDS-PAGE and transferred onto polyvinylidene
fluoride (PVDF) membranes (Millipore, Billerica, MA, USA) with the Mini Trans-Blot cell
wet transfer system (Bio-Rad, Richmond, CA, USA) according to the manufacturer’s in-
structions. Next, the PVDF membranes were blocked for 2 h at room temperature with 5%
skimmed milk dissolved in Tris buffer solution with Tween (TBST) (20 mM Tris, 150 mM
NaCl, 0.1% Tween 20, pH 7.6), followed by incubation at room temperature with 1:1000
dilution of mouse anti-PvSREBP (produced in-house) or 1:1000 dilution of mouse anti-
tubulin (Sigma-Aldrich, St Louis, MO, USA) primary antibodies for 2 h. After being washed
three times (15 min each) with TBST, membranes were incubated at room temperature
with 1:3000 dilution of horseradish peroxidase (HRP)-linked goat anti-mouse secondary
antibodies (Sigma-Aldrich, St Louis, MO, USA) for 2 h. Finally, signals were detected by
chemiluminescence using enhanced chemiluminescence (ECL) reagent (Millipore, Billerica,
MA, USA), and developed by the Amersham Imager 600 (GE, Boston, MA, USA).

2.3. RNA Extraction, cDNA Synthesis, and qPCR Analysis

Total RNA was extracted from pooled hepatopancreas samples of three shrimps per
treatment using Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufac-
turer’s instruction. The RNA concentration and purity were measured using a NanoDrop
2000 spectrophotometer (Nano-drop Technologies, Waltham, MA, USA), while RNA qual-
ity was ascertained by the A260/280 ratio (1.8–2.2) and 1% agarose gel electrophoresis.
All RNA samples were used immediately or stored at −80 ◦C in aliquots for later use.
Only high-quality RNA samples from three biological replicates were used to construct the
cDNA libraries. For cDNA synthesis, 1.0 µg total RNA was used with the TransScript™
One-step gDNA removal and cDNA Synthesis SuperMix kit (TransGen Biotech, Beijing,
China), following the manufacturer’s protocol. The cDNA samples were used immediately
or stored at −20 ◦C in aliquots for later use. In the qPCR analysis, the reaction mixture
contained 2× RealStar Green Power Mixture (GenStar, Beijing, China), 1 µL cDNA template,
0.5 µL each of forward and reverse primers (10 µM), plus ddH2O to a total volume of 20 µL.
Triplicate samples per treatment were analyzed on a qTOWER 3G Real-Time PCR system
(Analytik Jena AG, Überlingen, Germany) with the following program: one cycle at 95 ◦C
for 10 min and 45 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s. The EF1α gene of P. vannamei
(PvEF1α) was used as the housekeeping gene, and the relative gene expression computed
using the 2−∆∆CT method [31] normalized to PvEF1α. The gene-specific primers used are
shown in Table 1.

2.4. Library Construction and Transcriptome Sequencing

The two cDNA libraries (experimental and control) used for the transcriptome se-
quencing were prepared with 1 µg total RNA (pooled from three independent biological
samples per treatment) using the TruseqTM RNA sample prep Kit (Illumina, San Diego, CA,
USA) before being sequenced by a commercial company (Shanghai Majorbio Bio-pharm
Technology Co., Ltd. Shanghai, China) on the Illumina Novaseq 6000 platform. Briefly,
poly-A containing mRNA was isolated from total RNA using oligo (dT) beads, before being
fragmented and reverse transcribed into double-stranded cDNA using random primers
(Illumina, San Diego, CA, USA). Next, sequencing adapters were attached to the short
cDNA fragments and PCR amplified (15 PCR cycles) followed by selection on 2% agarose
gel. After quantification by TBS380 (Picogreen, Invitrogen, Carlsbad, CA, USA), the paired-
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end libraries were sequenced on the Illumina Novaseq 6000 platform [32]. The assembled
sequence data from this article has been submitted to GenBank under accession number
PRJNA756609.

2.5. Transcriptome Data Analysis, Functional Annotation, and qPCR Validation

The raw paired-end reads generated by the Illumina Novaseq 6000 platform were
filtered and trimmed using the SeqPrep (https://github.com/jstjohn/SeqPrep accessed on
13 July 2021) and Sickle (https://github.com/najoshi/sickle accessed on 13 July 2021) pro-
grams. Clean reads were aligned to the Penaeus_vannamei reference genome (ASM378908v1)
at NCBI (https://www.ncbi.nlm.nih.gov/genome/10710?genome_assembly_id=422001 ac-
cessed on 12 October 2022) using TopHat2 v2.1.1 (http://tophat.cbcb.umd.edu/ accessed on
31 August 2021) and/or HISAT2 v2.1.0 (http://ccb.jhu.edu/software/hisat2/index.shtml
accessed on 31 August 2021). Unigenes were identified by BLASTx search and annotated to
six protein databases, including the non-redundant (NR) and Cluster of Orthologous Group
(COG) protein database at GenBank NR v2019.6.26 (ftp://ftp.ncbi.nlm.nih.gov/blast/db/
accessed on 31 August 2021), Swiss-Prot v2019.7.1 (http://www.expasy.ch/sprot accessed
on 31 August 2021), Kyoto Encyclopedia of Genes and Genomes (KEGG) v2020.03 (http:
//www.genome.jp/kegg accessed on 31 August 2021), Gene Ontology (GO) GO v2019.7.1
(http://www.geneontology.org/ accessed on 31 August 2021), Pfam version Rfam v14.1
(http://rfam.janelia.org/ accessed on 31 August 2021), and RSEM v1.3.1 (http://deweylab.
biostat.wisc.edu/rsem/ accessed on 31 August 2021). Differentially expressed genes (DEGs)
were calculated using transcripts per million reads (TPM), while differential expression
analysis used DEseq2 v1.24.0 (http://bioconductor.org/packages/stats/bioc/DESeq2/
accessed on 31 August 2021). Unigenes with Benjamini Hochberg (BH) |log2FC| ≥ 1
and p < 0.05 were chosen as the DEGs. Gene Ontology (GO) enrichment analysis was
performed on DEGs using Goatools v0.6.5 (https://github.com/tanghaibao/GOatools
accessed on 31 August 2021) and also for multiple tests of BH to correct for the p-values.
The GO function was considered significantly enriched when the corrected p-value (False
Discovery Rate, FDR) was <0.05. KEGG pathway enrichment analysis was performed
on DEGs using an R script and KEGG pathway function was considered significantly
enriched when the corrected p-value (Pvalue_uncorrected) was <0.05. Biorender on-
line website (https://biorender.com/ accessed on 29 September 2021) and GraphPad
Prism software (v8.0.2) were used to plot the charts and graphs. Heatmaps showing the
expression levels for selected genes were constructed with TBtools software v1.098696 (https:
//github.com/CJ-Chen/TBtools accessed on 29 September 2021) after log2 transformation.

To validate the RNA-seq results using qPCR, the following nine DEGs were selected:
FABP, NOS1, MNK, NFκBIA, C-type lectin, PFKFB2, CREB3, COX2, and HK for validation.
Gene-specific primers (see Table 1) were designed using Primer 5.0 software and the qPCR
was performed in triplicates as described above in Section 2.3.

2.6. Protein-Protein Interaction Network Construction

A protein-protein interaction (PPI) network of the identified DEGs (353 genes) was
constructed through the STRING database v11.5 (https://cn.string-db.org/ accessed on
28 November 2021) and the Cytoscape software v3.7.1 (https://cytoscape.org/ accessed on
28 November 2021). The minimum required interaction score was ≥0.4. The cytoHubba
plugin in Cytoscape was used to select the top 10 ranked nodes in the PPI network, while
the molecular complex detection (MCODE) algorithm was used to screen subnetworks
(degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and maximum depth = 100), as
previously described [33].

2.7. Shrimp Survival

To determine shrimp survival rate after PvSREBP knockdown, shrimp (30 individuals
per group) were injected with siPvSREBP or siNon as described above in Section 2.1. At 6 h
intervals, the number of dead shrimps in each group was counted and recorded. Shrimp

https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://www.ncbi.nlm.nih.gov/genome/10710?genome_assembly_id=422001
http://tophat.cbcb.umd.edu/
http://ccb.jhu.edu/software/hisat2/index.shtml
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://www.expasy.ch/sprot
http://www.genome.jp/kegg
http://www.genome.jp/kegg
http://www.geneontology.org/
http://rfam.janelia.org/
http://deweylab.biostat.wisc.edu/rsem/
http://deweylab.biostat.wisc.edu/rsem/
http://bioconductor.org/packages/stats/bioc/DESeq2/
https://github.com/tanghaibao/GOatools
https://biorender.com/
https://github.com/CJ-Chen/TBtools
https://github.com/CJ-Chen/TBtools
https://cn.string-db.org/
https://cytoscape.org/


Genes 2022, 13, 2057 6 of 20

survival rate was analyzed using the Kaplan-Meier estimate [34], and the significance was
compared using the log-rank test [35] in GraphPad Prism 8.

2.8. Statistical Analysis and Data Presentation

Data were analyzed and subjected to a one-way analysis of variance (one-way ANOVA)
followed by an unpaired two-tailed t-test with significance considered at p < 0.05 and
presented as mean ± standard deviation (SD). All statistical analyses used Microsoft
Excel 2016 Student Edition. Charts and graphs were drawn using 8.0.2 for Windows,
GraphPad Software, San Diego, CA, USA (www.graphpad.com accessed on 12 Octomber
2022), bioinformatics online website (http://www.bioinformatics.com.cn/ accessed on
28 November 2021), Venny 2.1 online website (https://bioinfogp.cnb.csic.es/tools/venny/
index.html accessed on 28 November 2021), and TBtools software v1.098696 (https://
github.com/CJ-Chen/TBtools/releases accessed on 28 November 2021).

3. Results
3.1. Transcriptome Profiling, and Analysis of Differentially Expressed Genes

To prepare the two RNA libraries for sequencing on the Illumina Novaseq 6000 plat-
form, we first ascertained the successful knockdown of PvSREBP in shrimp hepatopancreas
using Western blot and quantitative polymerase chain reaction (qPCR) (Figure 1A). RNA
sequencing generated a total of 337,337,742 raw reads and after the removal of adaptor
primers and low-quality and very short reads, 334,855,446 clean reads were obtained
(Table 2). After assembly, 41,345 transcripts were obtained for the two groups, with 23,442
unigenes identified. For the functional annotation of the identified genes, 16,084 unigenes
were aligned to the Pfam, NR, Swiss-Prot, KEGG, COG, and GO protein databases using
BlastP (Table 3).
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Table 2. Summary of RNA-seq data for P. vannamei injected with siNon or siPvSREBP.

Samples
siNon siPvSREBP

All
Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

Total raw reads 54,785,178 55,921,570 59,798,448 57,139,776 56,119,540 53,573,230 337,337,742
Total clean reads 54,359,728 55,495,942 59,370,008 56,723,546 55,719,248 53,186,974 334,855,446
Q20 percentage 98.82% 98.89% 98.95% 98.84% 98.90% 98.92%
GC percentage 49.42% 49.40% 49.80% 50.13% 48.21% 49.60%

Table 3. Summary of assembly statistics and functional annotation of unigenes.

Description Number

Assembly statistics
Number of transcripts 41,345
Number of unigenes 23,442

Functional annotation of unigenes
GO 3516

KEGG 9826
COG 14,459
NR 15,572

Swiss-Prot 12,814
Pfam 13,113

Total annotation 16,084

Analysis of the significantly (p < 0.05) expressed genes in the two libraries revealed
that 11,972 genes (95.0%) were expressed in the PvSREBP knockdown group, including
493 genes exclusively expressed in the siPvSREBP group. On the other hand, 12,112 genes
(96.1%) were expressed in the control (siNon) group, with 633 genes only expressed in the
siNon group. The number of genes expressed in both the siPvSREBP and siNon groups was
11,479 genes (Figure 1B) and distributed as shown in Figure 1C,D. When the differentially
expressed genes (DEGs) from the significantly expressed unique and shared genes were
screened using a threshold of |log2 fold change|≥ 1 and p < 0.05, 706 DEGs were identified,
among which 282 DEGs (39.9%) were upregulated, and 424 (60.1%) were downregulated
(Figure 1E).

3.2. Functional Annotation of DEGs

When the protein orthologs of DEGs were analyzed, 552 DEGs were successfully
annotated into 20 clusters of orthologous groups (COGs). Besides function unknown
(267 genes), the largest category was posttranslational modification, protein turnover,
and chaperones (56 genes), followed by intracellular trafficking, secretion, and vesicular
transport (36 genes), and carbohydrate transport and metabolism (35 genes). The functional
categories with the least annotations were RNA processing and modification (three genes),
chromatin structure and dynamics (three genes), and cell cycle control, cell division, and
chromosome partitioning (three genes) (Figure 2A).

Gene ontology (GO) functional classification was used to successfully assign 290 DEGs
into 25 GO terms (Figure 2B), distributed into three categories, i.e., biological process
(106 genes), cellular component (92 genes), and molecular function (92 genes). In the
biological process category, most of the DEGs were distributed in the metabolic process
(46 genes) and cellular process (40 genes) subcategories, while in the cellular component
category, most DEGs were in the cell part (36 genes), membrane (16 genes), organelle
(10 genes), organelle part (nine genes), and membrane part (nine genes) subcategories. On
the other hand, most of the DEGs in the molecular function category were distributed in
the catalytic activity (55 genes) and binding (26 genes) subcategories. When functional
enrichment analysis was used to further annotate the DEGs into the top 20 enriched GO
terms, the highly enriched GO categories were catalytic activity (56 genes), organonitrogen
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compound metabolism (29 genes), small molecule metabolism (23 genes), organic sub-
stance biosynthesis (18 genes), carboxylic acid metabolism (16 genes), oxoacid metabolism
(16 genes), and organic acid metabolism (16 genes) (Figure 2C).

3.3. Pathway Functional Analysis of DEGs

When KEGG pathway classification and functional enrichment analyses were used
to explore the biological pathways of the DEGs, 654 DEGs were mapped to six major
KEGG pathways, i.e., organismal systems, human diseases, metabolism, environmental
information processing, cellular processes, and genetic information processing (Figure 3A).
Most of the DEGs enriched in the KEGG pathway are downregulated, especially genes
involved in signal transduction, endocrine system, cancer, infectious diseases, digestive
system, and the immune system. Among the top 20 KEGG-enriched pathways (Figure 3B),
147 DEGs were highly enriched in metabolism (76 genes), organismal systems (55 genes),
and human diseases (16 genes) (Table S1). The highest enriched KEGG pathways include
pancreatic secretion, drug metabolism-other enzymes, human cytomegalovirus infection,
amino sugar and nucleotide sugar metabolism, cholesterol metabolism, cholinergic synapse,
and Toll and lmd signaling pathways (Figure 3B).

3.4. DEGs with Annotated and Unannotated Functions in Penaeid Shrimp

To identify the physiological and or pathophysiological functions of the DEGs dysreg-
ulated after PvSREBP knockdown, genes with p < 0.05 and | log2 (fold change) | ≥ 2 were
screened (Table S2). We found that many of the significantly downregulated DEGs were
annotated in immune response (Figure 4A), energy metabolism (Figure 4B), and signal
transduction pathways (Figure 4C). Interestingly, the majority of the significantly down-
regulated DEGs are unannotated (Figure 4D and Table S3). Nonetheless, many of these
unannotated genes, such as LOC113818648, LOC113820682, LOC113800798, LOC113807644,
LOC113811284, were predicted using six databases (i.e., GO, KEGG, COG, NR, Swiss-Prot,
and Pfam) and found to be putatively involved in several key cellular functions (Table S3).
To ascertain the RNA-seq data, nine randomly selected DEGs i.e., MNK, NFκBIA, C-type
lectin, FABP, PFKFB2, CREB3, COX2, HK, and NOS1 were validated using qPCR analysis,
and their expression followed similar patterns as the RNA-seq results (Figure 5).

3.5. Protein-Protein Interaction Network between DEGs

To determine the relationship between the DEGs, we examined the protein-protein
interaction (PPI) network using the STRING database. The results (Table S4) revealed
180 nodes and 31 edges, with an average node degree of 0.344 and an average local
clustering coefficient of 0.0986, indicating that the PPI enrichment was statistically sig-
nificant (Figure 6A). Ten top hub genes were identified by CytoHubba among 29 DEGs,
i.e., glycogen phosphorylase-like, phosphoserine phosphatase-like, D-3-phosphoglycerate
dehydrogenase-like, argininosuccinate synthase-like, NF-kappa-B inhibitor cactus-like,
mannose-1-phosphate guanyltransferase β-like, β-glucuronidase-like, 4F2 cell-surface
antigen heavy chain-like, T-complex protein 1 subunit γ-like, and large neutral amino
acids transporter small subunit 2-like (Figure 6B). Among these hub genes, a signifi-
cant subnetwork, comprising glycogen phosphorylase, phosphoserine phosphatase, D-
3-phosphoglycerate dehydrogenase, and argininosuccinate synthase was found to inter-
act independently within the PPI network with an MCODE score of four and six nodes
(Figure 6C).
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Figure 2. Annotation of differentially expressed genes (DEGs). (A) Cluster of orthologous groups
(COG) classification of the putative proteins encoded by the DEGs. (B) Gene ontology (GO) annota-
tions of DEGs. Genes were categorized into three categories: biological process, cellular component
and molecular function. (C) The top 20 GO enriched DEGs.
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Figure 4. Expression and distribution of important DEGs. Heat maps showing DEGs related
to (A) immune response, (B) metabolism, (C) cellular signaling pathways, and (D) DEGs with
unannotated functions. The red arrows point to genes with putatively annotated functions in the NR
database. Three independent samples were analyzed per treatment (siNon and siPvSREBP). Color
legend is on a log2 (TPM + 1) scale.
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Figure 5. Validation of selected DEGs using qPCRs. The relative expression (fold-change) of nine
DEGs was determined by qPCR relative to the expression of the PvEF1α gene (internal control).
MNK, MAP kinase-interacting serine/threonine-protein kinase 1; NFκBIA, Nuclear factor of kappa
light polypeptide gene enhancer in B-cells inhibitor, α; C-type lectin; FABP, fatty acid binding pro-
tein; PFKFB2, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase; CREB3, cyclic AMP response
element-binding protein A; COX2, Cyclooxygenase-2 (prostaglandin G/H synthase 2); HK2, hexoki-
nase type 2; NOS1, nitric oxide synthase 1.

3.6. Effect of PvSREBP Knockdown on Shrimp Survival

Given that a correlation exists between SREBP-1 expression and survival in human
hepatocellular carcinoma patients [36], whereas SREBP-2 is reported to be critical for sur-
vival and limb patterning during mice development [37], we explored whether PvSREBP
has any effects on shrimp survival. When PvSREBP was knocked down and shrimp sur-
vival rates were determined compared with control (siNon), no significant difference was
observed between the survival rates of siPvSREBP and siNon groups (Figure 7). However,
after 36 h of knockdown, the siPvSREBP group shrimp had lower survival rates compared
with control (siNon), although the difference was not significant. These results suggest
that the siRNA targeting PvSREBP does not have an off-target effect or did not affect
genes involved in survival or other physiological functions that are directly linked with
shrimp survival.
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(B) The top 10 Hubba nodes ranked by maximum clique centrality (MCC). (C) Subnetworks with
MCODE score of 4.
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Figure 7. Shrimp (P. vannamei) survival curve after PvSREBP knockdown. Shrimp survival (n = 30
per group) was determined after intramuscular injection with siNon (scrambled siRNA) siPvSREBP
and the number of shrimps recorded at 6 h intervals. The product-limit method of Kaplan-Meier was
used to calculate the shrimp survival rate and the significance compared using the log-rank test.

4. Discussion

As versatile transcription factors, sterol regulatory-element binding proteins (SREBPs)
can integrate multiple cellular signals to control lipogenesis and important pathways
involved in diverse biological processes, including endoplasmic reticulum (ER) stress, in-
flammation, autophagy, and apoptosis [38]. Recent studies have also shown that the SREBPs
play essential regulatory roles in immune response and lipid metabolism in vertebrates,
mollusks, and crustaceans [19,21,23]. The liver plays a central role in lipid metabolism in
mammals, hence studies on SREBPs are mostly performed using the liver and adipose
tissues [39,40]. In decapod crustaceans the hepatopancreas is the central metabolic organ
involved in numerous functions, such as absorption and metabolism of nutrients, synthe-
sis of digestive enzymes, hemolymph proteins, and immune effectors, detoxification of
xenobiotics, storage of energy reverses, and major target organ for toxicants and pathogens
in the environment [28,29]. The hepatopancreas performs synonymous functions with
the mammalian liver, and is a suitable organ to use in exploring the diverse regulatory
functions of SREBP in P. vannamei. Although the SREBP of some decapod crustaceans have
been characterized, most of the genes or physiological processes modulated by SREBP are
unknown. Thus, in the current study, we used RNAi followed by transcriptome analysis
to reveal that besides the genes involved in immune response and lipid metabolism, the
SREBP homolog in P. vannamei (PvSREBP) also modulates many genes involved in en-
ergy metabolism and signal transduction pathways, with the majority of the dysregulated
genes unannotated.

In this study, 706 DEGs were identified, with most of them (i.e., 424) DEGs (60.1%)
downregulated. When the DEGs were subjected to gene ontology (GO) analysis, most
were enriched in terms associated with catalytic activity and metabolism, while KEGG
pathway enrichment analysis showed that the enriched DEGs are mainly involved in key
physiological processes, including signal transduction, endocrine system, digestive system,
immune system, environmental adaptation, and infectious diseases. (Figure 3). Penaeid
shrimp, like other marine invertebrates, leverage a large repertoire of factors to augment
their innate immune response (recently reviewed by [41]. Consistent with our previous
study [23], many genes involved in immune response, such as trypsin, and C-type lectin,
and fatty acids metabolism-related genes, including cyclooxygenases (COX), fatty acid
synthase (FASN), and FABP were dysregulated. But most importantly, genes with multiple
functions or involved in cellular signaling pathways, such as the mitogen-activated protein
kinase (MAPK)-interacting kinase (MNK) and vascular endothelial growth factor (VEGF),
were dysregulated after PvSREBP knockdown, while the majority of the significantly
dysregulated genes are unannotated.
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In crustaceans the hepatopancreas plays a central role in metabolism, hence it is not
surprising that genes involved in metabolism, especially energy metabolism were dysreg-
ulated after PvSREBP knockdown. For instance, in glucose metabolism, the key enzyme,
hexokinase (HK), catalyzes the first rate-limiting step that converts glucose into glucose-
6-phosphate [42]. In this study, HK was downregulated (Figure 5). Although the role of
HK has not been demonstrated in penaeid shrimp, in different mammalian cell models,
insulin induces the expression of SREBP-1c to modulate the expression of glycolytic and
lipogenic enzyme genes [43], including HKII [44], one of the four hexokinase isoforms in
mammalian tissues [42]. Indeed, the effect of insulin on the transcriptional effect of SREBP-
1c on the human HKII gene, which contains a sterol regulatory element (SRE) domain on
its promoter, has been demonstrated in muscle cells [45]. Moreover, the knockdown of
SREBP1 and SREBP2 reduced both the glycolytic potential and mitochondria-mediated
oxidative phosphorylation in colon cancer cells, suggesting that SREBP-dependent lipid
biogenesis has an important role in maintaining overall metabolic activity in cells [46].
In glucose metabolism, the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase (PFKFB) is another important gene that was found to be dysregulated in
this study. PFKFB catalyzes the synthesis and degradation of fructose-2,6-bisphosphate,
a key modulator of glycolysis-gluconeogenesis [47]. Thus, the observed downregulation
of both HK2 (hexokinase type 2) and PFKFB (Figure 5) is consistent with previous studies
where SREBP enhanced glycolysis by activating PFKFB [48]. After all, in the metabolism of
glucose to cytosolic citrate in cytokine-stimulated NK cells, SREBP is required for glycolysis
and oxidative phosphorylation, suggesting that SREBP-dependent metabolism is critical
for cellular immune responses [4] not only in mammals but also in crustaceans. In this
study, the involvement of SREBP in glucose metabolism in shrimp could further be inferred
from the PPI network, which revealed a strong association with glycolysis (Figure 6). It
is, therefore, conceivable that SREBP knockdown attenuated the expression of genes in-
volved in metabolism because silencing of SREBP1 or SREBP2 alters cellular metabolism
by reducing mitochondrial respiration, glycolysis, and fatty acid oxidation [46].

In mammals, the SREBP pathway regulates diverse cellular processes, including
phagocytosis, cell cycle progression, oxygen sensing, and survival in response to bacterial
infection [49]; however, such regulation has not been reported in penaeid shrimps or crus-
taceans. Thus, it was intriguing to observe that several of the dysregulated genes, such as
MNK and VEGF, are involved in cellular signal transduction pathways that modulate many
key metabolic and physiological processes. MNKs are serine/threonine protein kinases
that are activated by the ERK1/2 (extracellular regulated kinase) and p38α/βMAPK path-
ways [50]. Humans and mice express two MNK proteins, MNK1 and MNK2, encoded by
separate genes, Mknk1 and Mknk2, respectively. Mammalian MNK1/2 can phosphorylate
eIF4E (eukaryotic initiation factor 4E) [51,52] to modulate cell proliferation and inflamma-
tion [53] or phosphorylate cytosolic phospholipase A2 (cPLA2) [54] to release arachidonic
acid for the production of eicosanoids [55]. Thus, besides their catalytic activity, MNKs reg-
ulate metabolism in adipocytes by modulating the expression of genes involved in de novo
lipogenesis and triglyceride syntheses, such as carbohydrate response-element binding
protein (ChREBP), SREBP, and hormone-sensitive lipase [50]. The observed downregula-
tion of MNK in this study is, therefore, quite intriguing and requires further examination.
Another noteworthy gene that was downregulated in this study was nuclear factor of
kappa light polypeptide gene enhancer in B-cells inhibitor α (NFκBIA). Although members
of the NF-kappaB family, including cactus, a homolog of IκB (Ikappa B α), have been
identified and characterized in Drosophila [56] and P. vannamei [57], their role in crustaceans
metabolism is unknown. Thus, attenuation of NFκBIA expression in this study upon
PvSREBP knockdown is an interesting observation, which could be further explored to
delineate the relationship between SREBP and the NF-kappaB transcription factor, since
NF-kappaB regulates diverse genes involved in immune function, growth, cell proliferation,
apoptosis, and metastases, while its activity is inhibited by NFκBIA [58].
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In mammals, the membrane-bound transcription factor, CREB3 (cAMP responsive
element-binding protein 3), is involved in the regulation of liver and small intestine lipid
metabolism and controls hepatic triglyceride [59,60] and glucose metabolism through the
activation of plasma fibroblast growth factor 21 (FGF21) and lipoprotein lipase [61]. Among
the five CREB3 family members (i.e., CREB3, CREB3L1, CREB3L2, CREB3L3, and CREB3L4)
described in mammals [62], CREB3 and SREBP share a similar cleavage system for nuclear
transactivation in the endoplasmic reticulum (ER), and therefore functionally inhibit each
other [63,64] to regulate hepatic lipogenesis [65]. Here, the observed downregulation of
CREB3 expression suggest that the relationship between SREBP and CREB3 in penaeid
shrimp or crustaceans might be different, and requires further studies to delineate. Fatty
acid-binding protein (FABP) is another key factor involved in energy metabolism that
was dysregulated in this study. As ubiquitously expressed intracellular lipid chaperones
that coordinate lipid trafficking and signaling in cells, some FABP isoforms are linked to
metabolic and inflammatory pathways in mammals [66]. Thus, the increased expression
of FABP observed in this study suggests that its role in penaeid shrimp could be different
from mammals or under different pathophysiological conditions, given that the expression
of FABP3 and FABP7 in cancer cells decreased under various conditions, such as hypoxia,
when either SREBP1 or SREBP2 was depleted [67].

Our current data indicate that PvSREBP modulates many more genes in penaeid
shrimp than previously thought. For instance, the majority (57.80%) of the downregu-
lated DEGs are unannotated, although gene orthology prediction reveals that most of
these unannotated genes play putative roles in various physiological and pathophysi-
ological functions. For instance, the gene LOC113808628 is predicted as CTLDcp2 (in
NR databases) or Lectin C-type domain/Low-density lipoprotein receptor domain class
A (in Pfam databases), with gene LOC113802130 predicted as caspase 3, whereas genes
LOC113800809 and LOC113800798 are predicted as low-density lipoprotein receptor-related
protein 2 (Figure 4 and Table S3). Similarly, gene LOC113820682 has been predicted as
a heat shock protein (HSP), while LOC113818648 and LOC113800388 are predicted as
G-protein coupled receptors (GPCRs). Given that the inhibition of HSP90 can destabilize
the precursor forms of SREBP [68] to attenuate the expression of its downstream genes,
such as FAS [69], whereas GPCRs are candidate receptors for members of the crustacean
hyperglycemic hormone (CHH) superfamily [70], we contend that PvSREBP might play
regulatory roles in ecdysteroidogenesis, growth, molting, and many other physiological
functions through CHH modulation. Indeed, the gene LOC113811284 was up-regulated
after PvSREBP knockdown, and since this gene is predicted as β-N-acetylglucosaminidase,
a key enzyme involved in chitin degradation [71], it further supports the importance of
PvSREBP in molting. From the foregoing, it is clear that SREBP modulates as many genes
in shrimp as in mammals, but the functions of most of the modulated genes in shrimp are
unknown partly because there has been limited research on SREBP in shrimp or because
the complete genome of P. vannamei has just been sequenced [22]; therefore, most of the
genes have not been annotated. Thus, the true repertoire of SREBP-modulated genes in
penaeid shrimp would only become clear when the annotation of the P. vannamei genome
data is complete or when more studies on SREBP have been carried out. Collectively, the
findings from this study reveal that SREBP modulates many genes involved in crucial
physiological processes, including energy metabolism, immune responses, and cellular
signaling pathways, while the majority of the dysregulated genes are unannotated in
penaeid shrimp.

5. Conclusions

Our current data shows that the SREBP homolog in penaeid shrimp modulates the ex-
pression of many genes, including genes involved in immune responses, energy metabolism,
and signal transduction pathways. Most importantly, most of the genes modulated by
SREBP have multiple cellular functions, while the majority of the downregulated genes
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are unannotated, indicating that the full repertoire of PvSREBP-regulated genes and their
associated physiological functions in penaeid shrimp remains enigmatic.
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