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Purpose: This study aims to develop a fully automated algorithm for artery–vein (A-
V) and arteriole-venule classification and to quantify the effect of hypertension on
A-V caliber and tortuosity ratios of nonproliferative diabetic retinopathy (NPDR)
patients.

Methods: We combine an optical density ratio (ODR) analysis and blood vessel
tracking (BVT) algorithm to classify arteries and veins and arterioles and venules. An
enhanced blood vessel map and ODR analysis are used to determine the blood vessel
source nodes. The whole vessel map is then tracked beginning from the source nodes
and classified as vein (venule) or artery (arteriole) using vessel curvature and angle
information. Fifty color fundus images from NPDR patients are used to test the
algorithm. Sensitivity, specificity, and accuracy metrics are measured to validate the
classification method compared to ground truths.

Results: The combined ODR-BVT method demonstrates 97.06% accuracy in
identifying blood vessels as vein or artery. Sensitivity and specificity of A-V
identification are 97.58%, 97.81%, and 95.89%, 96.68%, respectively. Comparative
analysis revealed that the average A-V caliber and tortuosity ratios of NPDR patients
with hypertension have 48% and 15.5% decreases, respectively, compared to that of
NPDR patients without hypertension.

Conclusions: Automated A-V classification has been achieved by combined ODR-BVT
analysis. Quantitative analysis of color fundus images verified robust performance of
the A-V classification. Comparative quantification of A-V caliber and tortuosity ratios
provided objective biomarkers to differentiate NPDR groups with and without
hypertension.

Translational Relevance: Automated A-V classification can facilitate quantitative
analysis of retinal vascular distortions due to diabetic retinopathy and other eye
conditions and provide increased sensitivity for early detection of eye diseases.

Introduction

Retinal microvasculature is known to be affected
by systemic and cardiovascular diseases along with
common eye diseases.1–3 Quantitative fundus photog-
raphy is essential for screening, diagnosis, and
treatment assessment of eye diseases. Objective and
automated classification of vasculature distortions in
fundus images holds great potential to help physician
decision making, foster telemedicine, and explore
early screening of eye diseases in primary care
environments.4

Different diseases and progressing stages may
affect arteries and veins differently. For example,
arterial narrowing is a well-established phenomenon
associated with hypertension, whereas venous widen-
ing is associated with stroke and cardiovascular
diseases.5–8 Artery–vein (A-V) caliber ratio has been
used as a predictor of these diseases.3,5,6,9,10 However,
manual differentiation of arteries or veins is time
consuming. Therefore, a number of algorithms have
been proposed to explore computer-aided classifica-
tion of A-V vessels.11–20 Computer-aided classifica-
tion typically requires multiple steps: extracting the
blood vessel map, differentiating the artery and vein,

1 TVST j 2018 j Vol. 7 j No. 2 j Article 23

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/


quantifying any changes, and assessing the condition
of the patient. Most of the vessel classification
algorithms are based on the color and intensity
information of arteries and veins.13–16,18–20 Because
of the presence of oxygenated blood, the arteries have
lighter color intensity. However, this difference
becomes less significant as the blood vessels propa-
gate toward the fovea due to intensity and contrast
variability. Therefore, the small vessels have to be
tracked to their origin near the optic disk to be
classified reliably.21 Semiautomatic algorithms11,12,17

for supervised classification have also been proposed
based on vessel-tracking techniques. In supervised
classification,16,22,23 the intra- and interimage light
variation make it quite challenging to get high
accuracy in A-V classification. Furthermore, these
algorithms require a large number of training sets
with manual annotations from clinicians. Some
researchers have tried incorporating functional fea-
tures such as optical density ratio (ODR) to identify
arteries and veins in dual-wavelength images obtained
in red and green channels.23–25 However, high
sensitivity was achieved only for large vessels, leaving
reliable A-V classification difficult for small vessels at
the macular area that are vulnerable to many eye
diseases.

In this work, we introduce an automated method
that combines ODR analysis and a blood vessel
tracking (BVT) algorithm to enable A-V classification
at arteriole and venule level. As a functional feature,
ODR is used to identify arteries and veins near the
optic disk, while a BVT algorithm maps veins or
arteries from source to endpoint using vessel curva-
ture and angle information. Incorporating a vessel-
enhancement algorithm with the tracking algorithm
allows reliable A-V classification. We implemented
the method on 50 color fundus images from 35
nonproliferative diabetic retinopathy (NPDR) pa-
tients and validated the results by comparing them to
manual annotation from two independent observers.
The classification performance is validated using
sensitivity, specificity, and accuracy metrics along
with graphical metrics, that is, a receiver operation
characteristics (ROC) curve. We also measured two
quantitative features, A-V caliber and tortuosity, to
evaluate the effect of hypertension on the retinal
vessels of NPDR patients.

Materials and Methods

This section describes the algorithms for the fully
automated classification of veins and arteries in color

fundus images. Figure 1 briefly illustrates the core
steps of the algorithm. The technical details of each
step are described in the following sections.

Data Acquisition

Fifty color fundus images (from 35 patients) with
resolution of 2392 3 2048 pixels were used for this
study. These images were captured with a Cirrus 800
nonmydriatic retinal camera with a 308 to 458 field of
view. The database contains color fundus images
from subjects with NPDR. All the patients were
recruited from University of Illinois at Chicago (UIC)
Retinal Clinic. The study was approved by the
Institutional Review Board of the University of
Illinois at Chicago and was in compliance with the

Figure 1. Core steps of A-V identification.
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ethical standards as stated in the Declaration of
Helsinki. All images were labeled by two experienced
ophthalmologists (authors DT and JIL) to generate a
ground truth to compare the classification results.

Extraction of the Vessel Map

Figure 2 shows the original fundus image, sepa-
rated red, green, and blue channels (Fig. 2A1–A4),
and corresponding intensity histograms of segmented
blood vessels (Fig. 2B) in the three channels. The
green channel is used for the segmentation as it
provides best contrast of the blood vessels.26–29

Various studies, especially those focused on fundus
image analysis, have established that the green
channel provides greater contrast, whereas the red
channel is saturated and blue channel is too noisy.27,30

In green light, both oxygenated and deoxygenated
hemoglobin (A-V) have peaks in their absorption
coefficient spectrum around 500 nm,31 which falls in

the range of green light wavelength (495–570 nm).32

As a consequence, the features that contain hemo-
globin (i.e., blood vessels) absorb more green light
compared to the surrounding tissues. Thus, they
appear darker in contrast to the background in green
channel images. On the other hand, the red light
(which is mostly reflected from choroid) is not
extensively absorbed by the pigments of the inner
eye, which is why red light dominates the reflected
light spectrum and the fundus image appears to have
a reddish glare. Due to the lower absorption
coefficient of red light, structures containing pigments
have lower contrast compared to that of green light.
And as for blue light, the blood vessels have darker
intensity, but the contrast and signal-to-noise ratio is
too low relative to the background. Thus, considering
all these issues, we used green channel images for
extracting the blood vessel map.

Upon extracting the green channel image, we used

Figure 2. (A1) Original fundus image. (A2) Red channel. (A3) Green channel. (A4) Blue channel. (B) Intensity histogram of three channels.
(C) Enhanced green channel. (D) Vessel map. (E) Skeleton.
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a matched filtering method33 to enhance the blood
vessels from the background. Two-dimensional
Gaussian kernels of 12 different orientations and 10
different sizes were used that matched blood vessels.
The kernels cover all blood vessel directions and
diameters and can be defined by the following
equation34–36:

I x; yð Þ ¼ 1

r
ffiffiffiffiffiffi
2p
p e�

y cos h� x sin hð Þ2

2r2 ; ð1Þ

where x and y are pixel coordinates, h is the rotation
angle of the kernel, h ~ [0, p], and r defines the width
of the kernel. A total of 120 kernels are convolved
with the green channel image after subtracting their
means. When the cross-correlation is performed
between the image and the enhancement kernels, the
features in the image that match the enhancement
kernels (which represent blood vessels of different
diameters) produce the largest values. Thus, maxi-
mum values in the results represent blood vessel
structures, and they are selected to produce the final
map of blood vessels. The final blood vessel enhanced
image obtained from the maximum intensity projec-
tion of 120 convolved images is shown in Fig. 2C. A
20 3 20 bottom hat filter is used to reduce the
background variance and correct uneven illumina-
tion. Then, global thresholding was used to generate
the extracted blood vessel map (Fig. 2D). This binary
vessel map was then skeletonized. The skeletonization
process removes pixels on the boundaries of vessels
but does not allow objects to break apart.37,38 The
remaining pixels make up the image skeleton (Fig.
2E). All the endpoints of the skeleton are identified.
The skeleton and the endpoints serve as inputs to the
BVT algorithm.

Identifying Vessel Source Nodes

The vessel-tracking algorithm starts from the
source of veins or arteries. To identify these source
nodes, it is important to identify the optic disk or at
least the area in the fundus image where the optic disk
is located. The optic disk has comparatively lower
pigmentation and hence reflects more light compared
to other retinal areas.39 Therefore, the optic disk area
is always the brightest location in a fundus image. A
30 3 30 shifting window is moved through the
enhanced green channel image (Fig. 3C), and the
mean intensity is calculated for the whole window.
The algorithm then looks for a cluster of neighboring
windows with high intensity values. A customized
MATLAB function is implemented that looks for a

cluster of neighboring windows with high intensity
values. It is a simple decision-making algorithm that
looks at the histogram of the intensity values of each
30 3 30 window and automatically detects the
windows that have intensity values in upper 95%
spectrum. The algorithm then checks the distance
among the centroid of selected windows and identifies
the connected region from clustered centroids. The
selected region is identified as optics disk tissue
(illustrated with orange circle in Fig. 2A1), and the
center of the area is marked. From the center, a
circular path is drawn that has double the diameter of
the approximate optic disk diameter. This path acts
like a gradient line. Whenever there is a blood vessel,
the intensity of those pixels is different from the
background. Using this gradient intensity informa-
tion, the blood vessel spots are identified (illustrated
with green crosses in Fig. 2A1).

Classifying Vein and Artery Source Nodes

The blood vessel source nodes are classified into
vein and artery using a functional feature: ODR.21

Optical density (OD) and ODR were calculated for
each source node. OD is an indicator of light
absorbance of vessel tissues relative to its surrounding
background and is calculated as21

OD ¼ ln
IVessel

IBackground

� �
; ð2Þ

where IVessel is pixel value inside the vessel source
node and IBackground is the pixel value of the
background. ODR is calculated as21

ODR ¼ ODred � ODgreen

ODgreen
: ð3Þ

ODred and ODgreen are ODs at red (oxygen-
sensitive wavelength) and green channels (oxygen-
insensitive wavelength).40 Light at smaller wave-
lengths (green channel) are equally scattered by
oxyhemoglobin (artery) and deoxyhemoglobin (vein)
and thus is insensitive to oxygen difference.21,41 The
red channel is oppositely sensitive to oxygen. Because
of this phenomenon, ODR in veins is lower than in
arteries. The algorithm identifies source nodes with
high ODR as arteries and low ODR as veins
(identified in Fig. 3B with veins as blue crosses and
arteries as red crosses). Figure 3A illustrates ODR of
identified blood vessels (segmented from background)
in a single fundus image. A threshold can clearly
distinguish arterial and venous ODRs from the scatter
plot. From Figures 3B and 3C, we can observe
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significantly larger ODR in arteries compared to veins
in single and multiple (n ¼ 50) fundus images,
respectively (P , 0.001), representing higher oxygen
saturation in arteries.

BVT Algorithm

The skeleton map of the blood vessel and identified
A-V source nodes were incorporated into a BVT
algorithm to obtain the final vein and artery map of
the retinal vasculature. Figure 4 illustrates the
procedures of the BVT algorithm, and Figure 5
illustrates the corresponding images.

The tracking starts from a specific source node
(Fig. 5A). It uses a 333 grid to find vessel pixels in its
way. If it cannot find any vessel pixels, it increases the
size of the grid. The algorithm tracks the main branch
of the blood vessel first. Every time there is an
intersection, it uses curve and angle information to
choose the forward-going main branch. Figure 5B
illustrates a normal intersection scenario in the
associated enlarged window in Figure 5C. P1 is the
current point, and P2 and P3 are the candidate points
for the forward path. A past-visited point P0 is

chosen, and two separate curves are considered to

compare. The first curve is P0-P1-P2, and second is

P0-P1-P3. The curvature can be quantified using the

distance metric42–44 between P0 (x1,y1) and P2 or P3

(x2,y2) which can be calculated as

Curvature ¼ 1

n

Xn
i¼1

Geodesic distance between two
endpoints of a vessel branch

Euclidean distance between two
endpoints of a vessel branch

 !
: ð4Þ

If we define each of the separated curves (i.e., P0-

P1-P2 and P0-P1-P3) with [x(t), y(t)] on the interval

[t0, t1], the geodesic distance between the endpoints,

that is, P0 and P2, P3, can be calculated with the

following equation44:

Geodesic distance ¼
Zt1
t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx tð Þ

dt

� �2

þ dy tð Þ
dt

� �2
s

dt:

ð5Þ

For two endpoints (i.e., P0 [x1, y1] and P2 or P3

[x2, y2]), the Euclidian distance is calculated with

following equation44:

Figure 3. Comparing ODR in arteries and veins. (A) Scatter plot illustrates ODR values of identified blood vessels in perifoveal retina of a
single fundus image. A threshold can be added easily to clearly distinguish arterial and venous ODRs. (B) Average arterial and venous
ODR values in a single fundus image. (C) Average arterial and venous ODR values for 50 fundus images used in this study. The average
values are presented with corresponding standard deviations. ***P , 0.001 from Student’s t-test.
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Euclidean distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2

q
: ð6Þ

Whichever path has smaller curvature value (curve
P0-P1-P2 in Fig. 5C), the algorithm identifies it as the
main branch of the vessel to go forward. The
algorithm also takes into account the angle informa-
tion of the two curvatures. We can observe that the
angle X (corresponding to curve P0-P1-P2) is larger
than Y (corresponding to curve P0-P1-P3), so the
algorithm uses this angle information along with the
curvature feature to make a decision to go forward.

The intersection and all the others along the way
are marked (shown in red dots in Fig. 5B) so that

tracking can be resumed from the intersection nodes
once the main branch is identified until the endpoint.
After the main branch reaches the endpoint, the
algorithm comes back to each intersection and
follows the same procedure to track all vessel
branches associated with the main branch. The four-
way intersections are specially marked as they might
be crossovers from other vessels (red crosses in Fig.
5D). The algorithm first checks if the branches from a
four-way intersection lead to any other vessel
intersection. If not (as shown with orange circles in
Fig. 5D), the branches are identified with the original
main branch. But if they are (as shown with red circles
in Fig. 5D), then algorithm has to decide if it will

Figure 4. Core steps of BVT algorithm.
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assign it to the original vessel or the new vessel. In this
case, several textural parameters (ODR, contrast,
entropy, and edge of the branches) are compared to
the two vessels by the algorithm to decide to which
vessel these branches belong. In a few cases, the
textural parameters of a branch may not be enough to
correctly assign it to a specific vessel. The algorithm
marks that branch as unclassified for the moment and

proceeds to the next branch. After tracking all the
branches (Fig. 5E), the same process starts for the
next source node until all the vessels are tracked (Fig.
5F). All the branches belonging to a tracked vessel are
classified as vein or artery based on the identity of the
respective source node. The only remaining branches
are the unclassified ones and those that are broken
from the vessel skeleton due to various pathologic

Figure 5. Steps of vessel tracking. (A) A source node is identified with the cross. (B) The main branch of the vessel is tracked; the red dots
represent all the possible branch nodes. (C) The process of choosing the forward path in the vessel map is shown in this enlarged
window. (D) All the possible branches are identified; only four-way cross sections are marked with red crosses. (E) The decision taken on
the four-way cross sections and whole vessel is identified. (F) Vein (blue) and artery (red) identified in the skeleton. (G) Classified vein and
artery map.
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reasons. The algorithm measures the textural param-
eters of the A-V map and compares them to all the
unclassified branches. The unclassified branches are
identified as artery or vein based on their similarity to
either artery or vein map features. Once the whole
skeleton map is classified into veins and arteries, it is
used to generate a vessel map with veins and arteries
fully identified (Fig. 5G).

Quantitative Features

For the quantitative analysis of classified veins and
arteries, two features are measured: A-V caliber and
tortuosity ratio. It is known that hypertension causes
arterial narrowing and in some cases causes the veins
to be more tortuous.5,45 With the separation of artery
and vein, A-V ratios are used to identify patients with
hypertension.

For measuring the blood vessel caliber (artery or
vein), both the vessel map and skeleton are used. The
average caliber of the blood vessels is defined as the
ratio of the vascular area (calculated from the vessel
map) and vascular length (calculated from the
skeleton).44,46

Mean vessel caliber ¼
Pn

i¼1;j¼1 B i; jð ÞPn
i¼1;j¼1 S i; jð Þ ; ð7Þ

where B(i,j) represents vessel pixels and S(i,j) repre-
sents skeleton pixels.

For measuring the blood vessel tortuosity, Equa-
tions 4, 5, and 6 are used on the skeleton map with
identified endpoints. A-V caliber and tortuosity ratios
are calculated as the final parameters.

Results

Performance Metrics

A dataset of 50 color fundus images was used to
test and validate the proposed classification method.
The results of the vein and artery classification are
compared to the ground truth vessel map manually
labeled by the two experienced observers. These two
observers had a 94.27% agreement on the identified
vein and artery map. To evaluate the performance of
the proposed method, sensitivity, specificity, and
accuracy metrics are measured. We also incorporated
a graphic method using a ROC curve to assess the
classification performance. In a ROC curve, true-
positive rate (sensitivity) is plotted as a function of
false-positive rate (1-specificity) at different cutoff
points. Thus, the closer the curve is to the upper left

corner, the more accurate is the prediction. The area
under the ROC curve (AUC) is measured to quantify
how well the classifier is able to identify the different
classes. AUC ¼ 1, or 100%, represents a perfect
prediction, and 0.5, or 50%, represents a bad
prediction. These evaluation metrics are measured
separately for arteries and veins with respect to the
labeled ground truths.

A-V Classification

A detailed performance analysis is shown in the
Table. The A-V classification algorithm works well to
differentiate venules and arterioles, which are small
vessels located near fovea. With the incorporation of
the blood vessel-enhancement technique, we observed
an average of 23% increase in the vessel map compared
to the original map. The algorithm demonstrates
97.06% accuracy in identifying blood vessels as vein
or artery. Sensitivity and specificity of artery identifi-
cation are 97.58% and 95.89%, respectively. Sensitivity
and specificity of vein identification are 97.81% and
96.68%, respectively. The algorithm misclassified only
2.94% vessels compared to 8%, 9.92%, and 11.72%
observed in literature.47–49 We can also observe the
ROC curves in Figure 6 for veins and arteries with
AUC of 97.14% and 95.62%, respectively.

Comparative A-V Analysis of NPDR Patients

As a direct application of A-V classifications, two
quantitative features, A-V caliber and tortuosity
ratios, were measured and analyzed. Out of 35 NPDR
patients, 24 had hypertension. Figure 7A and 7B
illustrates the mean A-V caliber and tortuosity ratios
respectively. It was observed that the averaged A-V
caliber ratio for subjects without hypertension was
0.74 compared to 0.5 for subjects with hypertension.
Thus, there was a significant 48% decrease in patients
with hypertension (P , 0.001 and Cohen’s d¼ 4.35).
In case of A-V tortuosity ratio, the average for
patients without hypertension is 0.52 compared to
0.45 for patients with hypertension. There was a
moderately significant decrease of 15.5% (P , 0.05,

Table. Performance of A-V Classification

Performance Measure Arteries Veins All Vessels

Sensitivity, % 97.58 97.81 97.69
Specificity, % 95.89 96.68 96.28
Classification accuracy, % 97.55 96.57 97.06
AUC, % 95.62 97.14 96.38
Classification error rate, % 2.45 3.43 2.94
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Cohen’s d¼ 2.33). The average caliber and tortuosity
of the whole blood vessel map (Figs. 7C, 7D) were
also measured without separating vein and artery. It
was observed that the sensitivity of these parameters
were quite low compared to the result obtained with
the vein and artery separated. For patients with
hypertension, the average caliber and tortuosity
decreased by only 12% and 0.64%, respectively,
compared to 48% and 15.5% decrease in A-V caliber
and tortuosity ratios.

Discussion

This study proposes a fully automated technique to
classify retinal blood vessels into A-V categories using
a combination ODR-BVT algorithm. We implement-
ed the algorithm on 50 color fundus images from 35
NPDR patients and compared the results with ground
truths created by two independent observers. Sensi-
tivity, specificity, and accuracy metrics were used to
validate the classification results. The algorithm
identified artery and veins with 97.02% accuracy.
Upon classification of arteries and veins, two
quantitative features were measured to analyze the
effect of hypertension in NPDR patients. About 68%
of the population was diagnosed with hypertension.
We observed that patients with hypertension had 48%
arterial narrowing and about 15.5% increase in
venous tortuosity. These microvascular changes were

significant and validated with Student’s t-test and
calculation of Cohen’s d.

The proposed technique for A-V classification has
two major steps. In the first step, the algorithm deals
with finding source nodes of blood vessels coming out
of the optic disk and classifying them into A-V
categories. The algorithm takes advantage of the
significant morphologic contrast observed in the optic
disk area, so we can avoid the challenge of
illumination change across the retinal fundus images,
especially near the foveal area.

The algorithm automatically locates the optic disc
using intensity-based information and finds the blood
vessels in its outer periphery using a gradient-based
measurement. As mentioned in Narasimha-Iyer et
al.,23 the ODRs in dual-wavelength red and green
channels are significantly different because arteries
contain oxygenated blood and thus are lighter in
intensity. But this feature is less effective near the
foveal area where the blood vessels become narrower
and their center reflex becomes negligible. However,
the ODR is quite useful near the optic disk as the
vessels are wider and have distinguishable center
reflexes. The algorithm uses ODR as a functional
feature to classify the source nodes of blood vessels as
arteries and veins. In the first phase, parallel to the
classification of source nodes, the algorithm also
employs a matched filtering based an edge-enhancing
technique that extracts and segments the blood vessel
map with intricate details. We observed an average of
23% increase in the vasculature map in fundus images
compared to the original one. This ensures the
classification of thinner arterioles and venules along
with the regular veins and arteries. With the
comprehensive blood vessel map and classified source
nodes, the algorithm moves on to its second phase.
This phase involves the BVT algorithm that maps the
artery or vein from the identified source nodes to the
endpoints. The algorithm involves vessel curvature
and angle information to track the whole vessel in a
systematic manner. First, it tracks the main branch
while locating the intersections. Then it repeats the
tracking for all the branches coming out of the vessels
except for those with four-way intersections. The
four-way intersections are challenging as they could
be crossovers from other blood vessels (arteries or
veins). The algorithm makes a decision based on
morphologic feature extraction and by comparing the
features of the candidate branches. The details of the
BVT algorithm are discussed in earlier sections and
illustrated in Figure 4 and Figure 5. The classification
algorithm shows reasonable AUC for veins and

Figure 6. The comparison of mean ROC curves for A-V
classification. The dashed line represents the trade-off resulting
from random chance.
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arteries (96.38% in average for veins and arteries).
The accuracy was an improved 97.06% in average
compared to recent A-V classification algorithms47–49

(92%, 90.08%, and 88.28%, respectively). It also
showed improved performance over a recent study
that employed a similar approach50 to our algorithm
using a minimal path approach and vessel tracing and
had about 88% accuracy. Employing a vessel-enhanc-
ing technique improved the overall blood vessel map
and enabled classification of smaller vascular struc-
ture near the fovea compared to the most commonly
classified larger veins and arteries in literature.

The widespread interest in A-V classification is
linked directly to its potential application in clinical

assessments. With accurate and robust identification
of arteries and veins, subtle microvascular changes in
retina could be analyzed for different systemic and
retinal diseases. To show such an application, we
considered two quantitative features, A-V caliber and
tortuosity ratios, in order to observe microvascular
changes in patient retinas. Our database consists of 35
NPDR patients, among whom 24 have prediagnosed
hypertension. As we know, arterial narrowing and
increased vein tortuosity have been correlated with
hypertension by many studies. This is the reason we
chose these two quantitative features. We observed
significant decrease in A-V caliber ratio and moder-
ately significant decrease in A-V tortuosity ratio in

Figure 7. Quantitative comparison between patients without hypertension and with hypertension. (A) A-V caliber ratio. (B) A-V
tortuosity ratio. (C) Average caliber of the whole vessel map. (D) Average tortuosity of the whole vessel map. Error bars are standard
deviations; the significance of Student’s t-test is marked as *P , 0.05; **P , 0.01; ***P , 0.001.
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hypertension patients. To compare the sensitivity of
A-V ratios of caliber and tortuosity we also measured
average caliber and tortuosity of whole blood vessel
map. We observed only 12% and 0.64% decrease in
caliber and tortuosity in patients with hypertension
compared to 48% and 15.5% decrease in A-V ratios.
This further confirms that A-V classification provides
improved sensitivity for quantitative analysis of
fundus images. We anticipate that the A-V classifica-
tion can benefit improved sensitivity of quantitative
image analysis of other eye diseases.

Conclusion

A fully automated A-V classification method has
been demonstrated based on a combined ODR-BVT
algorithm. Fifty density-ratio fundus images were
used to verify the performance of the ODR-BVT
algorithm. Two quantitative features, A-V blood
vessel caliber and tortuosity ratios, were measured
to differentiate fundus images from NPDR patients
with or without hypertension. NPDR patients with
hypertension show significant decreases in A-V
caliber and tortuosity ratios.
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