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Gold nanoparticles offer a great promise in clinical research. Despite various applications of the metal
nanoparticles it is challenging to implement in vivo in clinical applications. This aspect is deprived of
understanding the biological mechanisms that occurs in the cells. In this report we have evaluated appli-
cation of AuNP on the safety profile at different doses (100, 200, and 500 lg/kg Bwt/day) on intravenous
administration in rats regularly for 28 days. The study was performed based on the OECD test guideline
407. No clinical signs and mortalities were observed in any groups of rat treated with AuNP. No evidence
of toxicity was observed in any of the diverse studies performed which is noteworthy. The study includes
survival, behavior, animal weight, organ morphology, blood biochemistry and tissue histology. The
results indicate that tissue accumulation pattern of gold nanoparticles depends on the surface, size
and doses of the nanoparticle. The accumulation of the particles does not produce subacute physiological
damage.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Noble metal based nanoparticles are being produced using dif-
ferent physical and chemical methods, their applications in health-
care and medicine is increasing continuously. Human safety
trepidations are gaining attention, which makes it necessary to
understand the toxicity of these noble metals nanoparticles. The
life care scientists has stressed upon the making of gold nanopar-
ticles on bio-based modus as a need for immediate use in medicine,
healthcare, in biolabelling, targeted drug-delivery, hyperthermia,
and biosensors etc (El-Sayed et al., 2005; Chah et al., 2005; Huff
et al., 2007; Brown et al., 2010; Giljohann et al., 2010;
AnaMourato et al., 2011). However, for in vivo application study
of all the parameters to ensure safety is mandatory for their inter-
nal application. The toxicity of gold nanoparticles have been exten-
sively studied and reported. The over-all toxicity of gold
nanoparticles depends on their intrinsic properties which in turn
depend vitally on particle size, shapes and surface chemistry (such
as coating) (Murphy et al., 2008; Chen et al., 2009a, 2009b).
Nanoparticles in medicine have fascinated little attention due to
basic chemical constituents of NPs which cause uneven biodistri-
bution and toxic profiles (Yang et al., 2017). The biosafety of metal-
lic gold is well understood and has been used in vivo since the
1950s. Functionalized gold nanoparticles show obvious toxicity
in vivo. There is a need of in vivo toxicity analysis before introduc-
ing nanoparticles in medical field including drug delivery and
treatment of various organ disorders (Aravinthan et al., 2016).
Elaborate studies have been done to understand the cytotoxicity
of gold nanoparticles which were nontoxic compared to ionic gold
showing obvious cytotoxicity (Goodman et al., 2004). Similar
results were also reported with functionalized gold nanoparticles
in vitro (Pan et al., 2007). The gold nanoparticles administered
through different routes. The nanoparticles with oral route offered
highest toxicity and those used in tail vein injection show least
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toxicity (Zhang et al., 2010). Toxicological reports of gold nanopar-
ticles in animal models were used as a novel agent to characterize
the toxicity of gold nanoparticles (Goel et al., 2009; Samberg et al.,
2010; Lasagna-Reeves et al., 2010). The in vitro models cannot imi-
tate the intricacy of an in vivo system to provide significant phar-
macological statistics about the response of a physiological
system. However, there is inadequate amount of in vivo experi-
ment which can support the in vitro mechanistic studies. GNP can-
not be transformed into the clinic unless we know the
experimental limitations like biological response, physical action
and their inadequate mechanistic knowledge (Rosa et al., 2017).

In recent times, the increased toxicity of nanoparticles due to
their tiny physical dimensions has been widely recognized. Carbon
black is nontoxic but nanoforms of carbon and fullerene are highly
toxic (Fiorito et al., 2006). Similarly, higher toxicity of titanium
oxide nanoparticles has been reported (Chen et al., 2009a,
2009b). Many inorganic metals proved safe in bulk forms which
were toxic on nanoscale (Jaclyn et al., 2011; Schrand et al., 2010).
This undesired effect might be because of enhanced surface area
and surface to volume ratio. The organ distributions of gold
nanoparticles have demonstrated that it is size dependent. The
smallest particles shows the most widespread organ distribution
including blood, heart, lungs, liver, spleen, kidney, thymus, brain,
and reproductive organs. The study showed smaller AuNP had
wider organ distribution than the larger particles (Khan et al.,
2012). It was found that AuNP with prolong blood circulation time
can accumulate in the liver and spleen effecting the gene expres-
sion (Wim et al., 2008). The 20 nm poly ethylene glycol (PEG)
coated gold nanoparticle was more stable and less toxic than PEG
gold nanoparticles of higher size (Balasubramanian et al., 2010).
Advances in biomolecular functionalization of AuNP have led to a
vibrant expansion in their potential biomedical applications
(Zhang et al., 2011). The therapeutic use of nanomaterial with Au
containing drugs has improved the actions by reducing toxicity.
The progress of biofunctionalized noble metal nanoparticles as
therapeutic agents has generated great interest in current research
due to higher biocompatibility and biosensitivity (Khlebtsov and
Dykman, 2011). Noble metal nanoparticles in pharmaceutical and
medicine have shown promising results in preclinical studies as
therapeutics carriers in drug delivery systems (Liu and Han
2005). The balance between therapeutic properties and develop-
ment of adverse effects were not well established (Carneiro et al.,
2016). The in vitro anti-proliferative effect of biofunctionalized
AuNP was evaluated (Raghunandan et al., 2011; Parveen and Rao
2014). However, in vivo toxicological investigations and biological
changes are necessary to prove the required safety of nanoparti-
cles. An attempt was made to understand the effect of biofunction-
alized AuNP synthesized using clove bud extract by repeated
dosing in rats. The in vivo toxicological evaluation of AuNP has
been performed in Sprague dawley rats after intravenous adminis-
tration for a period of 28 consecutive days. The study provides
information on biological effect, biodistribution and accumulation
in various organs of the animals.
2. Materials and methods

2.1. Preparation of biofunctionalized gold nanoparticles

The AuNP were synthesized using 100 mL of 0.01% chloroauric
acid (HAuCl4. 4H2O) solution and 5 mL of clove bud aqueous
extract. The pH value of the biologically functionalized gold
nanoparticle solution was adjusted to 7.4 using dilute NaOH buffer
solution, similar to the physiological environment of mice. The
AuNP solution was filtered through 1 lm filters to remove the pre-
cipitates, aggregates, fibrous matters and other unreacted water
soluble impurities and the filtrate was stored at 4 �C in order to
prevent aggregation. The gold nanoparticle suspension (1 mL)
was centrifuged at 10,000 rpm for 30 minutes and the supernatant
was removed. The size and shape of the gold nanoparticles were
analyzed by field emission scanning electron microscopy using a
FEI Nova nano 600, Netherlands and the images operated at 15
kV on a 0� tilt position. The optical absorption spectrum was mea-
sured in the wavelength range of 300–750 nm using a ECIL 5704SS
UV–vis spectrophotometer at 1 nm resolution.

2.2. Animals and husbandry

Sprague Dawley rats (Hsd:SD) conventionally bred (In-house
random bred) of 8 weeks old, males weighing 240–290 g and
females weighing 160–220 g were used for the experiment. Rats
were acclimatized for one week before initiation of the experi-
ment. Rats were housed in polypropylene cages (2 rats per cage)
each with stainless steel top grill which has facilities for holding
pelleted food (Hindustan Lever Ltd., Bombay) and filtered drinking
water in polycorbonated bottles. The rats were maintained under
controlled conditions of temperature (23 ± 2 �C), humidity (55 ± 5
%), and a 12:12 h light-dark cycle. Paddy husk was used as bedding
material.

2.3. Experimental design

This study was performed according to the OECD test guideline
407 (Adopted 3 October 2008) by repeated 28-day dose to find the
toxicity of AuNP in rodents. The concentration dependent toxico-
logical experiment comprising of one control group and three
experimental groups allocated to different doses of biofunctional-
ized AuNP. For this experiment, 40 male and 40 female rats (con-
sisting of 10 rats/sex/group) were used. One day before the start
of the treatment, rats were assigned to groups stratified by weight
randomization method so that they were evenly distributed with
respect to the mean body weight. Three dose levels of 100 (low),
200 (mid) and 500 (high) mg/kg Bwt/day were selected based on
the preliminary study conducted in our laboratory. The test mate-
rial was soluble in distilled water. Hence, the same was selected as
the vehicle. The test solution was prepared in distilled water for
complete dissolution and was administered by intravenous route
to the rats. The control animals administered an equivalent
amount of distilled water through intravenous route. The test item
formulations or the vehicle was administered daily once at the
same time each day (varied by ±2 h) for 28 days to rats of the speci-
fic treatment or vehicle control groups. The dose volume adminis-
tered was 5 mL/kg and the dose volume for the individual rat was
calculated based on the body weight recorded during different
intervals of the treatment period. The stability of the test solution
at ambient condition has been confirmed for up to six months
before the experiment.

2.4. Parameters evaluated

2.4.1. Clinical observation
All animals were observed twice daily for signs of toxicity (mor-

bidity & mortality). Detailed clinical examination was performed
once a week. During the detailed clinical examination, animals
were removed from their cages and examined for skin, fur, eyes,
salivation, piloerection, tremors, convulsions, gait and posture,
handling etc.

2.4.2. Ophthalmic examination
Eyes were examined prior to treatment and during the week

prior to sacrifice using an ophthalmoscope after inducing of the
Mydriatic agent, 1% Tropicamide. During the examination the cor-



Fig. 1. FESEM images of biofunctionalized AuNP.
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nea, lense, iris, retina, vitreous, humor and optic disc nerve were
examined.

2.4.3. Body weight and food consumption
The body weights of all animals were measured before treat-

ment and on days 8, 15, 22 and 28. Fasting body weight was
recorded prior to sacrifice on Day 29. Food consumption was mea-
sured once in a week and the mean daily food consumption per
animal for each weighing period was calculated.

2.4.4. Hematology and blood chemistry
Animals were fasted overnight on treatment day 28, and blood

samples were collected by retro-orbital puncture on 29th day from
all rats. The blood samples were collected in dipotassium EDTA
tubes as an anticoagulant for hematology and with no anticoagu-
lant tubes for clinical chemistry.

Hematological parameters such as red blood cell count (RBC),
white blood cell count (WBC), haemoglobin concentration (Hb),
hematocrit value (HCT), platelet count (PLT), mean corpuscular
volume (MCV), mean corpuscular hemoglobin (MCH), mean cor-
puscular hemoglobin concentration (MCHC), mean platelet volume
(MPV), differential leucocyte count were measured using fully
automated hematology analyser ARTOS Vesatis biochemical
analyser.

Clinical chemistry parameters such as sodium (Na), calcium
(Ca), chloride (Cl), potassium (K), creatinine, glucose, (Glu), total
protein (TP), total cholesterol (TC), triglycerides (TG), albumin,
blood urea nitrogen (BUN), creatinine (CRE), creatine kinase, aspar-
tate amino transferase (AST), alanine amino transferase (ALT), c-
glutamyl transpeptidase (c-GT), alkaline phosphatase (ALP) were
measured using ARTOS Vesatis biochemical analyser.

2.4.5. Urinalysis
On day 28, urine samples were collected from rats by placing in

individual metabolic cages following overnight fasting. The param-
eters such as pH, glucose, bilirubin, ketone, protein, urobilinogen,
nitrite, specific gravity, erythrocytes and leukocytes were analyzed.

2.4.6. Necropsy and gross examination
On day 29, after the blood collection necropsy was performed in

all the rats and subjected to detailed macroscopic examination. All
the rats were sacrificed by anaesthetising with isoflurane, weighed,
exsanguinated and subjected to detailed necropsy.

2.4.7. Organ weights
Absolute and relative organ weights were recorded based on

terminal body weights. Organs such as liver, kidney, spleen, thy-
mus, thyroid, adrenal glands, brain, heart, testes, seminal vesicles,
epididymides, ovaries, oviducts and uterus were weighed and rel-
ative organ weights were calculated.

2.4.8. Histopathology
The following organs and tissues were collected for histopatho-

logical examinations; liver, kidney, adrenal gland, cecum, colon,
duodenum, esophagus, ileum, jejunum, lymph node (mandibular
& mesenteric), stomach, rectum, trachea, epididymis, eyes with
optic nerve, pituitary, salivary glands, prostate, pancreas, seminal
vesicle, spleen, thyroid, testes, thymus ovary, oviduct, brain
(medulla/pons, cerebrum, cerebellum), peripheral nerve (sciatic),
urinary bladder, vagina. The tissues were fixed in 10% neutral buf-
fered formalin except testes, epididymides and eyes with optic
nerve were fixed in Davidson’s fixative. Microscopic examination
was performed for the slides of all control (0 mg/kg Bwt/day) and
high dose (500 mg/kg Bwt/day) group animals. In brief, 4–5 mm
microtome sections were stained with hematoxylin and eosin (H
& E) following a standard staining protocol for histopathological
investigations.
3. Statistical analysis

The data was statistically analyzed using GraphPad prism 5.0
and recorded as mean ± SD. The data for mean body weight, food
consumption, hematology, clinical chemistry and organ weight
were analyzed using Bartlett’s test for homogeneity of variance.
One-way analysis of variance (ANOVA) was performed on homoge-
nous data. Dunnett’s test was used for multiple comparisons.
4. Results

The objective of the study was to determine the effect of bio-
functionalized gold nanoparticles by intravenous administration
on various organs in rats.
4.1. Biofunctionalized gold nanoparticles

The microwave assisted extracellular AuNP was synthesized
using aqueous clove buds (S. aromaticum) solution by treating with
aqueous HAuCl4 solution. The AuNP colloidal solution was charac-
terized using different advanced spectroscopic and microscopic
techniques. AuNP were highly irregular in shape and dispersed in
the range of 5–100 nm as reported (Raghunandan et al., 2010).
The clear morphology was reconfirmed with TEM and AFM images
(Fig. 1). The method yielded amoebic unpredictable shaped parti-
cles with an average diameter of about 5–100 nm. The actual value
of the mean size might vary to some extent from each preparation
compared to published procedures. We evaluated the effects of
AuNP in different doses (100, 200, and 500 lg/kg/day) upon the
intravenous administration in mice regularly for 28 days. All the
data are statistically and graphically presented.
4.2. Mortality and clinical observation

No clinical signs of toxicity or mortalities were observed at any
of the doses tested. Alopecia was observed in one male rat in the
vehicle treated group and in one female rat at 200 mg/kg Bwt/day
treated group. There was no apparent reason for the alopecia and
was common in rats and hence considered incidental finding and
not related to treatment.



Fig. 3. Mean (±SD) body weights (g) of female rats treated with AuNP for 28-days.

Fig. 4. Average (±SD) food consumption (g/rat/day) of male rats treated with AuNP
for 28-days.
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4.3. Ophthalmic examination

Examination of eyes did not reveal any toxic effect.

4.4. Body weight and food consumption

Weekly evaluation showed increase in body weight of the ani-
mals of both sexes (Figs. 2 and 3). No biologically significant vari-
ations were observed in the food consumption between control
and treated group of male and female animals (Figs. 4 and 5).

4.5. Hematology and blood chemistry

No significant changes were observed for the hematology val-
ues (Table 1) and blood biochemical measurements (Table 2).
The statistically significant decrease in the PLT and MCH values
at 200 mg/kg Bwt in males were considered incidental as the
changes were minimal and lack of dose relation.

4.6. Organ weight and organ to body weight ratios

There was an insignificant usual variation in the weight of all
the organs tested in both male and female rats. The analysis has
not affected their biological functions (Table 3 and 4).

5. Discussion

Surface chemistry is important to know the biocompatibility
and stability of gold nanoparticle before implementing into the
clinical trials. Surface coating had more impact on toxicity rather
than on biodistribution of the AuNP (Fraga et al., 2014). Our results
suggest that the surface coating of nanoparticles helps in improv-
ing the drug design, biodistribution and nontoxicity. Biofunctional-
ized AuNP have the potential biomedical application as compared
to the chemically designed surface coated nanoparticles. The
biosynthesized AuNP coated with biological moieties from clove
revealed no toxicity in the rats at selected doses. Hence rats
remained healthy during the experimental analysis. The potential-
ity of gold nanoparticles in biological application has not yet fully
determined due to its toxicity in vitro and in vivo (Mi-Rae et al.,
2015). There are multiple techniques to apply AuNP in the diagnos-
tics, treatments including uptake and distribution throughout the
cell (Botchway and Coulter, 2015). Successful biodistribution of
gold nanoparticles (AuNPs) with surface coatings like citrate, 11-
MUA and 3 pentapeptides, CALNN, CALND and CALNS were evalu-
ated in rats. Liver showed the maximum Au level, followed by
spleen and blood after 24 h. Liver slices showed AuNP in Kupffer
cells and hepatocyte by TEM analysis (Morais et al., 2012). The gold
Fig. 2. Mean (±SD) body weights (g) of male rats treated with AuNP for 28-days.

Fig. 5. Average (±SD) food consumption (g/rat/day) of female rats treated with
AuNP for 28-days.
nanoparticles were time dependent in intravenous dose and have
distributed in various organs within short period (Cho et al.,
2009). The irradiation of 11.2 nm nanoparticles has increased the
survival of mice by 50% and appropriate dose of Au nanoparticles
could be less toxic which improves the lifespan (Hainfeld et al.,
2013). The accumulation and spreading of AuNP in mesenteric
lymph nodes was analyzed with respect to size and duration. The
15 and 50 nm gold nanoparticles were detected in the cluster form
in the cytoplasm of macrophages and lymphocyte (Zlobina et al.,
2013). No toxicity was observed in liver and kidney and concluded
its potentiality in obesity related diseases (Chen et al., 2013). The
biokinetic changes was observed between pregnant and non-



Table 1
Hematological values of male and female rats after 28-day intravenous administration of AuNP (mean ± SD).

Parameters Unit Doses (mg/kg Bwt/day)

0 (control) 100 (low dose) 200 (mid dose) 500 (high dose)

Male
RBC T/L 9.17 ± 0.48 9.48 ± 0.93 8.98 ± 0.66 9.10 ± 0.84
WBC G/L 7.01 ± 0.92 7.00 ± 0.58 7.84 ± 1.10 7.26 ± 0.73
Hb g/L 159.43 ± 3.21 164.22 ± 3.06 157.60 ± 4.81 160.04 ± 3.94
HCT L/L 0.48 ± 0.04 0.47 ± 0.75 0.44 ± 0.07 0.44 ± 0.61
PLT G/L 968.30 ± 103.21 966.84 ± 274.82 944.86 ± 186.09* 1016.49 ± 210.75
MCV fL 48.21 ± 1.10 49.30 ± 1.48 51.37 ± 1.77 48.38 ± 0.99
MCH Pg 18.14 ± 0.98 18.29 ± 0.85 16.64 ± 0.85* 17.93 ± 1.26
MCHC G/L 364.22 ± 4.13 359.22 ± 3.21 361.66 ± 3.47 352.06 ± 3.79
MPV fL 9.63 ± 0.84 9.26 ± 0.75 10.21 ± 0.58 9.86 ± 0.83
Differential leucocyte counting
Neut % 22.33 ± 0.64 21.97 ± 1.22 24.37 ± 0.84 24.90 ± 0.24
Ly % 71.31 ± 6.73 77.53 ± 5.82 73.64 ± 5.11 79.63 ± 4.63
Mono % 2.78 ± 0.41 2.25 ± 0.75 2.37 ± 0.92 1.86 ± 0.67
Eo % 1.31 ± 0.6 1.36 ± 0.56 1.54 ± 0.36 1.37 ± 0.61
Ba % 0.28 ± 0.06 0.31 ± 0.04 0.26 ± 0.22 0.30 ± 0.07

Female
RBC T/L 7.21 ± 0.85 7.82 ± 0.74 8.05 ± 0.07 7.42 ± 0.17
WBC G/L 4.32 ± 1.03 3.95 ± 0.79 3.81 ± 0.42 4.00 ± 0.63
Hb g/L 147.23 ± 2.93 151.74 ± 3.22 142.00 ± 2.47 150.01 ± 3.59
HCT L/L 0.37 ± 0.14 0.33 ± 0.06 0.31 ± 0.13 0.40 ± 0.09
PLT G/L 1206.0 ± 210.07 1241.71 ± 195.28 1184.62 ± 261.33 1230.22 ± 301.64
MCV fL 56.97 ± 2.31 58.96 ± 1.64 58.25 ± 1.74 57.33 ± 1.38
MCH Pg 18.44 ± 0.67 18.69 ± 0.81 18.55 ± 0.37 19.0 ± 0.09
MCHC G/L 337.95 ± 6.93 321.06 ± 4.10 328.19 ± 3.42 331.05 ± 3.95
MPV fL 9.06 ± 0.48 10.53 ± 0.83 9.32 ± 0.46 9.59 ± 0.84
Differential leucocyte counting
Neut % 21.64 ± 0.37 22.8 ± 0.92 21.48 ± 0.39 23.34 ± 0.68
Ly % 74.26 ± 3.68 72.5 ± 5.38 72.29 ± 4.19 73.22 ± 4.52
Mono % 2.32 ± 0.36 2.44 ± 0.09 2.78 ± 0.72 2.69 ± 0.39
Eo % 1.84 ± 0.71 2.01 ± 0.45 1.97 ± 0.41 1.81 ± 0.37
Ba % 0.26 ± 0.12 0.21 ± 0.31 0.28 ± 0.05 0.3 ± 0.74
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pregnant rats and found that AuNP translocate from maternal
blood or placental tissues to the fetus but not from the amniotic
fluids. It was also concluded the translocation of AuNP was size
dependent involving transcellular mechanisms (Semmler-Behnke
et al., 2014). The short (30 min) and long-term (28 days) biodistri-
bution and toxicity of 20 nm acitrate- and pentapeptide CALNN-
coated AuNPs was evaluated after a single intravenous injection
in rats. It was found that AuNPs were quickly removed from the
bloodstream and accumulated in the liver. However Spleenatrophy
and hematological findings showed mild anemia (Fraga et al.,
2014). AuNPs prominently deposited in the liver whereas AgNPs
was accumulated in more organs including heart, kidney, lung
etc. AgNPs have induced greater alterations in gene expression
causing ion transport, oxidative stress and apoptosis. The impor-
tance of chemical composition of NPs played a critical role in their
in vivo biodistribution and toxicity (Yang et al., 2017).

The toxicity of biometal nanoparticles were reported in rats.
The increasing levels of GNP have injured the hepatocytes and
caused metabolic and structural disturbances (Abdelhalim and
Jarrar, 2011). The highest toxicity was caused by smaller GNP
and time exposure which accumulated in organs like liver, lung fol-
lowed by kidney and heart (Abdelhalim, 2012). AuNP has prolifer-
ated 8-hydroxydeoxyguanosine, caspase-3 and heat shock
protein70 which has damaged the DNA leading cell death
(Siddiqi et al., 2012). AuNPs and AgNPs were directly translocated
to secondary organs like central nervous system (CNS) when
administrated systemic or subcutaneous, or through the olfactory
system. AuNP and AgNP have increased the numbers of proliferat-
ing and apoptotic HNPCs affecting the growth profile (Soderstjerna
et al., 2013). GNPs of different shape (spherical and hexagonal) and
size 10, 20 nm and 50 nm were used to study the in vivo accumu-
lation in rats. The fluorescence peak of particle size, shape, surface
area and exposure time plays an important role in toxicity and
accumulation in different rat organs (Abdelhalim, 2013). 21 nm
spherical AuNPs was found accumulated and decreased the mass
of abdominal fat tissue without effecting the daily energy and body
weight of rats. GNPs has injured renal tubules by accumulating and
resulted in metabolic and structural disturbances (Doudi and
Setorki, 2014). The toxicity of chemically synthesized nanoparti-
cles in various organs of rats was reported. The effect of 12- and
22-nm chitosan-capped gold nanoparticles on rats suggested that
larger size NP has damaged the brain and liver without signifi-
cantly affecting the body weights of the rat. The agglomeration
of nanoparticles was observed in cytoplasmic cellular regions caus-
ing damage (Stefan et al., 2013). The components of the Au core
and citrate surface coating showed altered biodistribution in the
organs and tissues hence could be utilized as drug delivery vehicles
(Rambanapasi et al., 2015). AuNP have caused oxidative stress and
a reduction of antioxidant enzyme like glutathione peroxidase
activity in rat brain. The 5 mg kg�1 AuNP have caused hypo-
glycemic effect and increases HDL cholesterol in normal rats. The
increased concentration of AuNP has damaged the lungs causing
inflammation which suggested the lung as major target organ
(Aravinthan et al., 2016). The intravenous and oral doses study
shows the bioavailability of 1, 2 and 5 kDa PEG-coated 5 nm gold
nanoparticles (AuNPs) in male rats. The oral dose revealed the
highest concentrations of NP in kidneys and similar concentrations
in different organs on intravenous doses (Alalaiwe et al., 2017). Our
study revealed AuNP intravenous administration has no toxicity in
the organs of rats, which supports the practice of biofunctionalized
AuNP with further detail molecular study for the treatment and
drug delivery in diseases. The surface and size of nanoparticles
plays very important role in toxicity. A particular dose contains dif-
ferent size of nanoparticles, when this dose administered in rats



Table 2
Clinical chemistry values of male and female rats after 28-day intravenous administration of AuNP (mean ± SD).

Parameters Unit Doses (mg/kg Bwt/day)

0 (control) 100 (low dose) 200 (mid dose) 500 (high dose)

Male
Na mmol/L 144.16 ± 1.3 144.67 ± 1.78 143.67 ± 0.98 143.48 ± 1.63
Ca mmol/L 2.41 ± 0.11 2.52 ± 0.06 2.40 ± 0.09 2.44 ± 0.05
Cl mmol/L 107.8 ± 0.78 107.75 ± 0.59 108.72 ± 1.24 107.63 ± 0.68
K mmol/L 4.02 ± 0.4 3.93 ± 0.24 4.00 ± 0.61 3.88 ± 0.25
Glu mmol/L 6.84 ± 0.26 6.39 ± 0.13 6.5 ± 0.42 6.61 ± 0.41
TP g/L 59.81 ± 1.97 60.82 ± 2.42 59.72 ± 2.61 61.52 ± 1.85
TC mmol/L 2.11 ± 0.41 1.98 ± 0.13 2.01 ± 0.42 2.00 ± 0.20
TG mmol/L 0.71 ± 0.17 0.74 ± 0.44 0.82 ± 0.28 0.78 ± 0.45
ALB g/L 39.83 ± 1.6 38.27 ± 1.72 41.62 ± 1.25 40.59 ± 1.04
BUN mmol/L 5.67 ± 1.04 5.59 ± 0.64 6.02 ± 0.83 6.02 ± 1.11
CRE mmol/L 32.33 ± 4.21 34.05 ± 3.65 32.05 ± 3.16 31.62 ± 2.84
CK IU/L 244.52 ± 98.07 251.01 ± 84.28 260.61 ± 107.5 257.50 ± 97.22
AST IU/L 127.05 ± 42.6 121.94 ± 27.90 117.43 ± 33.77 124.39 ± 31.7
ALT IU/L 34.27 ± 6.39 33.54 ± 5.33 36.46 ± 6.01 34.7 ± 4.88
c-GT IU/L 0.54 ± 0.7 0.51 ± 0.52 0.61 ± 0.08 0.57 ± 0.45
ALP IU/L 81.26 ± 10.6 78.8 ± 7.92 85.75 ± 12.84 80.6 ± 8.99

Female
Na mmol/L 142.68 ± 1.44 143.72 ± 2.06 142.4 ± 2.12 144.68 ± 1.27
Ca mmol/L 2.63 ± 0.05 2.6 ± 0.17 2.56 ± 0.08 2.71 ± 0.21
Cl mmol/L 106.41 ± 1.2 107.53 ± 0.69 107.28 ± 1.02 106.97 ± 0.74
K mmol/L 4.06 ± 0.42 4.14 ± 0.56 4.02 ± 0.44 4.28 ± 0.24
Glu mmol/L 6.28 ± 0.48 6.71 ± 0.25 6.39 ± 0.64 7.05 ± 0.63
TP g/L 62.7 ± 2.53 60.86 ± 1.94 62.66 ± 2.21 64.76 ± 81
TC mmol/L 1.89 ± 0.56 1.92 ± 0.61 1.88 ± 0.87 1.90 ± 0.64
TG mmol/L 0.53 ± 0.43 0.56 ± 0.27 0.61 ± 0.53 0.56 ± 0.36
ALB g/L 42.84 ± 2.1 40.82 ± 1.64 40.26 ± 1.38 39.88 ± 1.62
BUN mmol/L 6.24 ± 1.22 6.17 ± 0.97 6.0 ± 1.31 6.86 ± 1.48
CRE mmol/L 31.75 ± 2.58 33.25 ± 4.52 33.7 ± 3.28 30.6 ± 3.46
CK IU/L 186.43 ± 123.6 197.6 ± 87.63 182.52 ± 105.7 193.94 ± 75.83
AST IU/L 121.85 ± 52.31 124.26 ± 44.4 119.41 ± 38.61 127.4 ± 46.17
ALT IU/L 27.49 ± 4.36 29.42 ± 3.94 30.26 ± 4.74 27.8 ± 5.37
c-GT IU/L 0.64 ± 0.43 0.81 ± 0.72 0.61 ± 0.39 0.64 ± 0.25
ALP IU/L 44.26 ± 6.57 47.7 ± 8.62 50.52 ± 7.71 46.11 ± 4.64

Table 3
Organ weights and organ to body weight ratios (% of body weight) of male rats after 28-day intravenous administration of AuNP (mean ± SD).

Organs Unit Doses (mg/kg Bwt/day)

0 (control) 100 (low dose) 200 (mid dose) 500 (high dose)

Number of rats 10 10 10 10
Terminal body weight
Liver g 8.28 ± 0.78 8.64 ± 1.22 8.20 ± 1.11 7.44 ± 1.41

% 3.64 ± 1.31 3.29 ± 0.39 3.75 ± 0.94 2.96 ± 1.05
Kidney g 1.94 ± 0.63 2.01 ± 0.96 1.96 ± 0.63 1.823 ± 0.85

% 0.650 ± 0.53 0.67 ± 0.74 0.64 ± 0.48 0.62 ± 0.09
Spleen g 0.811 ± 0.121 0.785 ± 0.064 0.772 ± 0.174 0.8 ± 0.053

% 0.24 ± 0.024 0.283 ± 0.063 0.251 ± 0.035 0.224 ± 0.056
Thymus g 0.651 ± 0.362 0.740 ± 0.274 0.622 ± 0.34 0.704 ± 0.274

% 0.239 ± 0.024 0.281 ± 0.055 0.264 ± 0.062 0.274 ± 0.026
Adrenals g 0.051 ± 0.005 0.053 ± 0.003 0.050 ± 0.003 0.063 ± 0.006

% 0.015 ± 0.002 0.012 ± 0.001 0.014 ± 0.001 0.012 ± 0.002
Brain g 2.01 ± 0.14 1.98 ± 0.056 1.86 ± 0.143 2.0 ± 0.13

% 0.58 ± 0.054 0.52 ± 0.13 0.60 ± 0.16 0.56 ± 0.073
Heart g 0.064 0.96 ± 0.068 0.095 ± 0.137 0.99 ± 0.082

% 0.424 ± 0.052 0.376 ± 0.011 0.401 ± 0.083 0.4 ± 0.026
Testes g 2.96 ± 0.185 3.0 ± 0.12 2.84 ± 0.201 2.93 ± 0.163

% 0.97 ± 0.085 1.11 ± 0.073 1.05 ± 0.14 0.961 ± 0.095
Seminal vesicles g 1.218 ± 0.318 1.164 ± 0.194 1.064 ± 0.179 1.217 ± 0.133

% 0.362 ± 0.071 0.384 ± 0.083 0.411 ± 0.068 0.375 ± 0.086
Epididymides g 0.901 ± 0.064 0.922 ± 0.072 1.053 ± 0.088 0.961 ± 0.764

% 0.273 ± 0.023 0.269 ± 0.031 0.248 ± 0.017 0.262 ± 0.042
Pituitary gland g 0.014 ± 0.002 0.013 ± 0.001 0.014 ± 0.001 0.012 ± 0.002

% 0.002 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.002 ± 0.00
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starts translocating with the blood in the body and gets accumu-
lated in different organs. Size dependent AuNP (15, 50, 100 and
200 nm) have distributed in tissue or organ in mice. Sonavane
et al., 2008 reported smaller size NP has major distribution in tis-
sues than the larger nanoparticles which accumulated in different
organs. They also found that 15 and 50 nm gold NP have passed
blood–brain barrier in brain. The study shows traces of AuNP in
the brain could be used in central nervous system (CNS) drug



Table 4
Organ weights and organ to body weight ratios (% of body weight) of female rats after 28-day intravenous administration of AuNP (mean ± SD).

Organs Unit Doses (mg/kg Bwt/day)

0 (control) 100 (low dose) 200 (mid dose) 500 (high dose)

Number of rats 10 10 10 10
Terminal body weight
Liver g 7.39 ± 1.27 7.26 ± 0.96 6.93 ± 1.13 7.18 ± 0.86

% 3.84 ± 0.19 3.27 ± 0.61 3.39 ± 0.38 3.24 ± 0.40
Kidneys g 1.178 ± 0.053 1.201 ± 0.022 1.46 ± 0.063 1.285 ± 0.063

% 0.724 ± 0.063 0.707 ± 0.028 0.638 ± 0.058 0.679 ± 0.048
Spleen g 0.521 ± 0.083 0.562 ± 0.047 0.632 ± 0.041 0.548 ± 0.073

% 0.326 ± 0.017 0.349 ± 0.026 0.310 ± 0.021 0.372 ± 0.032
Thymus g 0.461 ± 0.057 0.439 ± 0.039 0.457 ± 0.042 0.427 ± 0.056

% 0.261 ± 0.029 0.248 ± 0.037 0.283 ± 0.062 0.270 ± 0.042
Thyroid g 0.031 ± 0.12 0.037 ± 0.09 0.029 ± 0.11 0.034 ± 0.081

% 0.013 ± 0.001 0.010 ± 0.001 0.014 ± 0.001 0.013 ± 0.001
Adrenals g 0.048 ± 0.004 0.051 ± 0.004 0.043 ± 0.006 0.042 ± 0.003

% 0.021 ± 0.002 0.026 ± 0.004 0.030 ± 0.002 0.029 ± 0.004
Brain g 1.92 ± 0.06 1.93 ± 0.05 1.97 ± 0.08 1.95 ± 0.06

% 0.64 ± 0.063 0.62 ± 0.038 0.67 ± 0.048 0.62 ± 0.073
Heart g 0.867 ± 0.071 0.921 ± 0.069 0.907 ± 0.053 0.882 ± 0.084

% 0.393 ± 0.037 0.407 ± 0.048 0.384 ± 0.031 0.402 ± 0.042
Ovaries g 0.081 ± 0.011 0.084 ± 0.006 0.081 ± 0.017 0.089 ± 0.014

% 0.036 ± 0.005 0.031 ± 0.008 0.037 ± 0.013 0.034 ± 0.006
Uterus g 0.402 ± 0.061 0.384 ± 0.073 0.392 ± 0.049 0.401 ± 0.057

% 0.021 ± 0.042 0.026 ± 0.031 0.020 ± 0.061 0.027 ± 0.038
Pituitary gland g 0.028 ± 0.002 0.024 ± 0.001 0.025 ± 0.002 0.027 ± 0.001

% 0.006 ± 0.001 0.005 ± 0.001 0.006 ± 0.001 0.005 ± 0.001
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development. The research efforts have shown that 98% of the
potential CNS drugs have failed to cross the blood brain barrier
which protects central nervous system from neurotoxins
(Nkansah, 2013). The concentration of 2.5 mg/L of GNP showed
therapeutic benefits without effecting the liver and brain (Muller
et al., 2017).
6. Conclusion

The increasing nanomaterial practice in research and clinical
setting is very essential to find out the safety and toxicity profile
in a fast and efficient manner. The intention to find out the effect
of biofunctionalized AuNP synthesized from clove bud extract by
intravenous administration in the rats. We carried out all the
experiments in details with respect to each organ. The AuNP
administration shows no toxicity in daily activity of male and
female rats. The nontoxicity of AuNP might have produced immu-
nity in the rats hence remained healthy even after getting daily
doses of AuNP. The study shows no harmful effect on the organs
tested. The biofunctionalized nanoparticles have diagnostic and
therapeutic applications. The biodistribution and accumulation of
nanoparticles could be used in drug delivery to the different organs
including brain. The research in development of drug delivery sys-
tem to control the sensory nerves of the brain is needed. However
the biomedical applications of inorganic metal nanoparticles
in vivo are yet unresolved and needs extensive molecular study.
The future study extends to find out the concentration, size based
biodistribution and accumulation of nanoparticles in the various
organs of the rats.
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