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Aims: Obstructive sleep apnea (OSA) is a risk factor for steroid-resistant (SR) asthma.
However, the underlying mechanism is not well defined. This study aimed to investigate
how chronic intermittent hypoxia (CIH), the main pathophysiology of OSA, influenced
the effects of glucocorticoids (GCs) on asthma.

Main Methods: The effects of dexamethasone (Dex) were determined using the
ovalbumin (OVA)-challenged mouse model of asthma and transforming growth factor
(TGF)-β treated airway smooth muscle cells (ASMCs), with or without CIH. The p38
MAPK signaling pathway activity was then detected in the mouse (n = 6) and ASMCs
models (n = 6), which were both treated with the p38 MAPK inhibitor SB239063.

Key Findings: Under CIH, mouse pulmonary resistance value, inflammatory cells
in bronchoalveolar lavage fluid (BALF), and inflammation scores increased in OVA-
challenged combined with CIH exposure mice compared with OVA-challenged mice
(p < 0.05). These indicators were similarly raised in the OVA + CIH + Dex group
compared with the OVA + Dex group (P < 0.05). CIH exposure enhanced the activation
of the p38 MAPK pathway, oxidative stress injury, and the expression of NF-κB both in
lung tissue and ASMCs, which were reversed by treatment with Dex and SB239063.
In the in vitro study, treatment with Dex and SB239063 decreased ASMCs proliferation
induced by TGF-β combined with CIH and suppressed activation of the p38 MAPK
pathway, oxidative stress injury, and NF-κB nuclear transcription (p < 0.05).

Significance: These results indicated that CIH decreased GC sensitivity by activating
the p38 MAPK signaling pathway.
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INTRODUCTION

Asthma is a heterogeneous disease characterized by chronic
airway inflammation (Boonpiyathad et al., 2019; Lambrecht
et al., 2019; McGregor et al., 2019). Hormone insensitive or
steroid-resistant (SR) asthma, which accounts for more than
20% of all asthma patients, cannot achieve the expected effect
even after receiving large doses of hormone therapy (McManus,
2003; Ramamoorthy and Cidlowski, 2013), which makes the
treatment of asthma challenging. Obstructive sleep apnea (OSA)
is characterized by chronic intermittent hypoxia (CIH) and sleep
fragmentation (Somers et al., 1995), resulting in injury to multiple
systems and affecting the quality of life and survival of patients
(Tsai, 2017). Asthma combined with OSA is considered a type
of overlap syndrome, with a prevalence of 38–70% (Guo et al.,
2017). It is noteworthy that the coexistence of asthma and OSA is
not a simple superposition of symptoms, but a synergistic effect
(Julien et al., 2009; Broytman et al., 2015; Qiao and Xiao, 2015).
ten Brinke et al. (2005) confirmed that OSA (adjusted odds ratio
[OR] of 3.4) was significantly associated with frequent asthma
exacerbations. The previous studies demonstrated that CIH
led to bronchial hyperreactivity, increased airway and systemic
inflammation, and thus promoted the risk of refractory asthma
(Broytman et al., 2015). It has been found that patients with
asthma and OSA are more likely to develop SR asthma which is
difficult to treat (Prasad et al., 2020).

To date, the mechanism of OSA in SR or refractory asthma
is unclear. We previously found that p38 MAPK pathway
activation following ozone exposure induced glucocorticoid
(GC)-resistance in ovalbumin (OVA)-challenged mice (Liang
et al., 2013). Other studies have shown that CIH exposure
led to the activation of the p38 MAPK pathway in the
nervous system and vascular endothelium (Lee et al., 2016;
Liu et al., 2017). It was hypothesized that CIH may induce
steroid resistance by activating the p38 MAPK signaling
pathway. Thus, we examined the effect of CIH on the
sensitivity of GCs on airway inflammation and the possible
mechanism of the p38 MAPK pathway using an in vivo and
in vitro model.

MATERIALS AND METHODS

Animal Study
In the study, C57/BL6 male mice (20 ± 2 g) were obtained
from SLAC Laboratory Animal Co. Ltd. (Shanghai, China)
and housed under specific pathogen-free conditions. This study
was carried out in strict accordance with the Guide for the
Care and Use of Laboratory Animals (Eighth Edition, 2011,
published by The National Academies Press, 2101 Constitution
Ave. NW, Washington, DC, United States). The protocol was
reviewed and approved by the Shanghai Ninth People’s Hospital
Institutional Review Board (Permit Number: HKDL2017265),
and all animal experiments were conducted in Shanghai
Ninth People’s Hospital. All surgeries were performed under
sodium pentobarbital anesthesia, and all efforts were made to
minimize suffering.

The mice were randomly assigned to six groups, six mice in
each group: (1) control; (2) OVA; (3) OVA + dexamethasone
(Dex); (4) OVA + CIH; (5) OVA + CIH + Dex; and (6) OVA
+ CIH + DEX + SB239063; mice in the control group were
challenged with aerosolized saline and exposed to room air. In the
asthma model, the mice were sensitized intraperitoneally (i.p.)
with 20 µg OVA (Sigma-Aldrich, St. Louis, MO, United States)
complexed with 2 mg of alum (Shanghai No. 4 Reagent & H.V.
Chemical Industries, Ltd., Shanghai, China) in a total volume of
0.1 ml saline on day 0 and day 14. The mice were challenged
via aerosol nebulization with 5% OVA (w/v) for 30 min every 2
days from day 21 to day 43 (the control mice received saline). On
day 21, CIH exposure was initiated. The oxygen content in the
CIH exposure chamber was measured throughout several cycles
with an oxygen sensor placed on the bottom of the chamber.
The animals were exposed to 14–15% O2 for 5 s during each 60
s cycle. Each CIH exposure lasted 8 h during the daytime and
was repeated on days 21, 28, 35, 42, and 43. The mice were fed
with an OVA-free diet. The mice in the OVA-challenged or OVA-
challenged combined with the CIH exposure model also received
the p38 inhibitor SB239063 and/or Dex. The Dex (2 mg/kg)
(Sigma-Aldrich) or Dex + SB239063 (5 mg/kg) (Sigma-Aldrich)
was injected i.p. 1 h before CIH exposure (control mice received
dimethyl sulfoxide (DMSO) alone). The dose of SB239063 and
Dex was adopted based on our previous study (Liang et al., 2013).
The protocol is shown in Figure 1.

Evaluation of Airway Hyperreactivity and
Lung Histology
Pulmonary resistance was used to evaluate airway hyperreactivity
(AHR) and was detected using an invasive pulmonary device
for small animals (FlexiVent, SCIREQ, Montreal, QB, Canada)
as reported previously (Aravamudan et al., 2012). The mice
were exposed to an aerosol of phosphate-buffered saline (PBS)
(baseline readings) followed by cumulatively increased doses of
aerosolized methacholine (5, 10, 25, and 50 mg/ml). The aerosol
was generated by a portable ultrasonic nebulizer and drawn
through the chamber for 3 min with the Bias Flow Supply.
The signals were recorded for the subsequent 5 min and the
interval between each dose was 1 min. For histology assay,
the left pulmonary portion was fixed in a 10% neutral-buffered
formalin solution and embedded in paraffin. Lung sections (5
µM) were subjected to hematoxylin and eosin (H&E) staining.
The infiltration of inflammatory cells in the peribronchial and
perivascular regions was evaluated according to a 0–3 scoring
system as described previously (Bao et al., 2013).

Enzyme-Linked Immunosorbent Assay of
Bronchoalveolar Lavage Fluid
In the current study, 24 h after the last CIH exposure, the mice
were sacrificed by an overdose of pentobarbital (100 mg/kg i.p.),
and the trachea was isolated by blunt dissection. Three successive
volumes of 0.3 ml PBS were instilled via the endotracheal
tube and aspirated gently. The Bronchoalveolar Lavage Fluid
(BALF) was pooled from each aspirate. Each BALF sample
was centrifuged at 1,000 × g for 10 min at 4◦C, and the
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FIGURE 1 | Diagram of animal treatment.

supernatants were stored at −80◦C until used. The cell pellets
were diluted with 0.5 ml PBS. The total cell counts were
determined using a hemocytometer by adding 100 µl of the cell
suspension to 100 µl 0.4% trypan blue. The differential cell counts
were performed using cytocentrifuge preparations (Cytospin 2;
Shandon Instruments, Runcorn, United Kingdom) stained with
the Wright-Giemsa stain method.

The levels of interleukin (IL)-4, IL-5, and IL-13 in the BALF
were determined using an Enzyme-Linked Immunosorbent
Assay (ELISA) Kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China), according to the standard protocols.

Biochemical Analysis of Lung Tissue
A sample of lung tissue was fixed in formalin and the
remainder was snap-frozen in liquid nitrogen and stored
at − 80◦C. The levels of malondialdehyde (MDA) and
glutathione peroxidase (GSH-Px) in lung tissues and airway
smooth muscle cells (ASMCs) were measured using commercial
kits in accordance with the protocols from the manufacturer
(Nanjing Jiancheng Bioengineering Institute).

Preparation and Activation of Primary
Cultured Mouse ASMCs
In the present study, 24 h after the last aerosol exposure, the
normal mice were sacrificed by an overdose of pentobarbital
(100 mg/kg i.p.). ASMCs were isolated and identified as described
previously (Yin et al., 2014). Briefly, the trachea was placed into
a sterile, ice-cold PBS solution. After cutting into small pieces,
the segments were digested for 30 min at 37◦C in a PBS solution
containing 2.0 mg/ml collagenase IV, and then subsequently
centrifuged at 200 × g for 5 min, and the pellet was resuspended
and cultured in DMEM supplemented with 10% FBS. The ASMCs
were identified by light microscopy and immunofluorescence.
More than 95% of the cells in the primary culture expressed
the contractile protein, smooth muscle α-actin. The experiments
were performed with cells at passages 3–8. At 90% confluency,
the cells were stimulated with transforming growth factor (TGF-
β) (10 ng/ml; Proteintech), cultured in the presence or absence
of Dex (1 nmol/L; Sigma-Aldrich) or SB239063 (20 µM; Sigma-
Aldrich), or both for 48 h. For CIH exposure, the cells were
exposed to 14–15% O2 for 5 s during each 60 s cycle for 24 h.
Each cell experiment was repeated in triplicate.

Detection of ASMC Proliferation via an
MTT Assay
The ASMCs were seeded into 96-well plates at a density of
1 × 104 cells/well and treated with different stimulants for the
indicatedperiods. Then, 20 µl of 5 mg/ml MTT solution was
added to each well to form purple formazan. Subsequently, 150 µl
formazans dissolving liquid was added to dissolve the formazan
crystals. The optical density (OD) value of each well was detected
at a wavelength of 490 nm using a spectrophotometer, and the
50% effective concentration (EC50) value was obtained from the
MTT viability growth curve. The ASMC proliferation rate was
calculated using the following formula: (OD of treated wells/OD
of control wells)× 100%.

Statistical Analysis
The SPSS 21.0 software (SPSS Inc., Chicago, IL, United States)
was used to carry out a one-way ANOVA on the results from
the various groups with LSD post hoc tests, and the measurement
data were expressed as means± SD. Differences were considered
statistically significant at p < 0.05.

More detailed materials and methods are included in the
Supplementary Methods.

RESULTS

Chronic intermittent hypoxia exposure reduced the effects of Dex
in the mouse model, which were ameliorated by the p38 MAPK
inhibitor, SB239063.

An OVA-induced asthma mouse model was reported to
be used to explore the mechanism of hormone resistance
asthma (He et al., 2019). We first established an OVA-
induced mouse model of asthma with or without CIH
exposure. The effects of CIH exposure and SB239063 of
OVA-induced AHR were assessed by pulmonary resistance in
response to different concentrations of methacholine. Figure 2A
shows that pulmonary resistance values were enhanced by
methacholine inhalation in the OVA-challenged group and Dex
treatment decreased these values. In addition, as compared
to control mice, OVA sensitization and challenge provoked a
significant increase in the number of macrophages, eosinophils,
neutrophils, and lymphocytes in BALF, and these increases
were reversed after Dex administration (Figures 2B–E). Based
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on the results of HE analysis, the OVA challenge caused a
significant increase in inflammation scores with peribronchial
and perivascular inflammatory cell infiltrates in lung sections
compared to control mice. All these changes were attuned
to Dex treatment. To investigate the inflammatory effects in
the lung, the secretion of IL-4, IL-5, and IL-13 were also
detected (Figures 2F,G). The ELISA showed that the levels of
IL-4, IL-5, and IL-13 were increased in BALF of the OVA-
challenged mice as compared with the controls, and Dex
treatment significantly reversed the increases observed in the
levels of IL-4, IL-5, and IL-13 (Figures 2H–J). Furthermore,
Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
results demonstrated that the level of CCL11 mRNA expression
was also affected, which indicated that hormone sensitivity was
decreased. Dex and SB239063 pretreatment significantly reversed
these trends (Figure 2K).

As shown in Figure 2A, CIH exposure further significantly
aggravated asthma induced by the OVA challenge. An obvious
decrease in the pulmonary resistance value was observed in mice
treated with Dex plus SB239063. Furthermore, CIH led to a
rise in total cell counts, such as macrophages and neutrophils
in BALF: macrophages (p < 0.001), neutrophils (p < 0.001),
and lymphocytes (p < 0.001), and enhanced concentrations of
IL-5 (p = 0.0009), IL-13 (p = 0.0128), and IL-4 (p < 0.001)
(Figures 2B–E). Compared with the OVA+Dex group, the OVA
+ CIH+Dex group showed higher pulmonary resistance values,
more macrophages, lymphocytes, eosinophils, and neutrophils
in BALF, and more severe inflammatory scores. These results
showed that CIH further aggravated steroid resistance and
decreased the efficacy of Dex. However, pretreatment with
Dex and SB239063 significantly increased the cell counts:
macrophages (p < 0.001), eosinophils (p < 0.001), neutrophils
(p < 0.001), and lymphocytes (p < 0.001), and enhanced the
levels of IL-5 (p< 0.001), IL-13 (p= 0.049), and IL-4 (p< 0.001).
H&E staining revealed that the OVA challenge plus CIH exposure
mice exhibited more severe inflammatory scores compared to
mice in the control group. However, pretreatment with Dex
significantly reduced the inflammation scores in OVA-induced
asthma and CIH-treated mice (Figures 2F,G). Furthermore,
treatment with the p38 MAPK inhibitor (SB239063) substantially
decreased the inflammation scores. The ELISA indicated that
there was a steep increase in the production of IL-4, IL-5, and
IL-13 in the BALF of the OVA challenged plus CIH mice vs.
the OVA challenged mice (Figures 2H–J). The RT-PCR results
confirmed that the mRNA level of CCL11 was also enhanced
in the CIH+OVA group compared with OVA-challenged mice.
Dex and SB239063 pretreatment significantly reversed these
trends (Figure 2K).

Extensive research has shown that p65 and HO-1 modulated
by p38 MAPK were involved in the progression of steroid
resistance (Zhang et al., 2013; Panda et al., 2017; Cho et al., 2018;
Lin et al., 2019). To investigate the p38 MAPK signaling pathway
in our mouse model of asthma, immunofluorescence and western
blots were carried out to analyze the expression of p-p38, HO-
1, and p65 in lung sections. The immunofluorescence staining
results showed that OVA increased the level of phosphorylated
p38 MAPK in the cytoplasm and inflammation response marker

p65 in the nucleus while inhibiting the expression of oxidative
stress marker HO-1 (Figures 3A–F). In addition, western
blot results showed that OVA-induced asthma increased the
expression level of p-p38 in the cytoplasm and p65 in the nucleus
and decreased the levels of MKP-1 and HO-1 in the cytoplasm
(Figure 3G). Furthermore, the indicators of an oxidative stress
injury in lung tissue were also detected using commercial kits.
Compared to the control group, the OVA challenge provoked
a significant increase in MDA and a decrease in GSH-Px
(Figures 3H,I).

The immunofluorescence staining results revealed that OVA
challenge plus CIH exposure caused a further significant increase
in the levels of p38 MAPK in the cytoplasm and p65 in the
nucleus and suppressed the level of HO-1 in the cytoplasm,
which was not significantly reversed when treated with Dex.
However, Dex combined with SB239063 inhibited the levels
of phosphorylated p38 MAPK in the cytoplasm and p65 in
the nucleus and promoted the expression of HO-1 in the
cytoplasm (Figures 3A–F). In addition, western blot results
showed that OVA and CIH-induced asthma increased the
expression level of p-p38 in the cytoplasm and p65 in the
nucleus, and decreased the levels of MKP-1 and HO-1 in the
cytoplasm. These findings indicated that CIH affected asthma
hormone sensitivity by activating the p38 signaling pathway. Dex
and SB239063 pretreatment significantly reduced p-p38 in the
cytoplasm and p65 in the nucleus, and the levels of MKP-1 and
HO-1 were increased in the cytoplasm (Figure 3G). CIH-induced
asthma further significantly enhanced MDA concentration
and suppressed GSH-Px in pulmonary tissue, while Dex and
SB239063 treatment significantly reduced MDA and increased
GSH-Px (Figures 3H,I).

Chronic Intermittent Hypoxia Exposure
Reduced the Effects of Dex in ASMCs,
Which Was Reversed by the p38 MAPK
Inhibitor
As shown in Figure 4A, primary ASMCs demonstrated a
typical characteristic of smooth muscle cells in culture, such as
spindle morphology and a hill-and-valley-like pattern. Further,
immunofluorescence staining detected that the cells at confluence
expressed smooth muscle-specific actin as well as SM α-actin.
We treated primary ASMCs with TGF-β, Dex or SB239063,
and cultured them under normal or CIH conditions. To
detect ASMC proliferation, an MTT assay was performed for
each group. As shown in Figure 4B, the level of ASMC
proliferation was increased in the TGF-β group, and treatment
with Dex suppressed this proliferation. In addition, the MDA
concentration and GSH-Px activity were detected in each group
(Figures 4C,D). It was found that the Dex group exhibited a lower
MDA concentration and higher GSH-Px activity than the TGF-
β group. To investigate the inflammatory effects at the cellular
level, the level of CCL11 mRNA was analyzed in ASMCs. As
shown in Figure 4E, the level of CCL11 was significantly higher
in the TGF-β group as compared with the control group. It can be
seen in Figure 4F, that p-p38 is upregulated in the TGF-β-treated
ASMCs compared with the control group. After Dex treatment,
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FIGURE 2 | Effects of dexamethasone (Dex) and the p38 MAPK inhibitor, SB239063, on the allergic asthma model with (chronic intermittent hypoxia) CIH exposure.
(A) Airway hyperreactivity (AHR) was measured using an invasive pulmonary device for mice. (B) Macrophage cell count, (C) eosinophil cell count, (D) neutrophil cell
count, and (E) lymphocyte cell count in bronchoalveolar lavage fluid (BALF). (F,G) Typical hematoxylin and eosin (H&E) staining images of the lung with quantification.
(H) IL-4, (I) IL-5, and (J) IL-13 levels in BALF were detected by enzyme-linked immunosorbent assay (ELISA). (K) The level of CCL11 mRNA expression in the lungs
as determined by Real-Time Quantitative Reverse Transcription-PCR (qRT-PCR). Data are shown as the mean ± SEM (n = 6; *p < 0.05; **p < 0.01; ***p < 0.001).

the level of p-p38 phosphorylation was significantly decreased in
the TGF-β group. Compared with the control group, HO-1 and
MKP-1 expressions were decreased in the TGF-β group.

We, then, investigated the effects of CIH exposure on ASMCs.
The MTT assay revealed that proliferation was significantly
increased in the CIH group compared with the TGF-β group.
However, treatment with Dex alone did not show marked changes
vs. the TGF-β group, and the combination of Dex and SB239063
suppressed this proliferative effect (Figure 4B). The combined
application of Dex and SB239063 also reduced the level of MDA
and increased the level of GSH-Px, which was aggravated by CIH
exposure (Figures 4C,D). As shown in Figure 4E, CIH exposure
caused further significant increases in these levels. However, in
the groups that received combined treatment with SB239063 and
Dex, the levels of CCL11 were significantly decreased, which were
similar to the TGF-β group treated with Dex alone. Western
blotting was performed to further assess whether CIH affected
steroid sensitivity by activating the p38 MAPK signaling pathway
in vitro. Dex alone did not attenuate p38 phosphorylation in the
TGF-β/CIH group. However, Dex in combination with SB239063
significantly decreased the level of p-p38 protein expression in the
TGF-β/CIH group (Figure 4F).

DISCUSSION

Most patients with asthma respond well to therapy with GCs.
However, some patients have reduced sensitivity to GCs, which

means that long-term or high-dose GCs are needed. It has
been reported that OSA was a risk factor for refractory asthma,
attributed to the effect of CIH on GC insensitivity (Prasad
et al., 2020). In this study, we found that CIH exposure
significantly increased airway responsiveness in mice. It is
noteworthy that treatment with continuous positive airway
pressure (CPAP) could not ameliorate FEV1 and AHR in asthma
patients with OSA in a recent systematic review (Davies et al.,
2018). In contrast, our results demonstrated that combining Dex
with SB239063 promoted the depression of airway resistance.
The airway structure of clinically treated OSAHS patients is
already altered and short-term CPAP is unable to change the
airway smooth muscle structure and may require longer CPAP
treatment. In this article, Dex and SB239063 interventions have
been initiated at the same time as CIH exposure and had
a preventive effect. The OVA challenge combined with CIH
exposure further led to the production of cytokines. The results
suggested that CIH led to a decrease in Dex sensitivity. These
results supported previous research by Martin et al. (Leonard
et al., 2005), who suggested that hypoxia resulted in attenuation
of enhanced GC sensitivity. For many years, asthma was thought
to be primarily mediated by an adaptive immune response. The
main cells involved in T helper type 2 (TH2) cells-high asthma
are eosinophils and basophils, mast cells, TH2, ILC2s, and IgE-
producing B cells. TH2-low asthma does not involve eosinophils
and has a poor response to GCs and type II immunosuppressive
agents (Fahy, 2015). As shown in Figure 2C, there was no
significant change in eosinophils. We speculate that asthma
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FIGURE 3 | The p38 MAPK pathway regulated allergic asthma in mice with CIH exposure. (A,B) Representative images of phosphor-p38 (green) and DAPI (blue)
immunofluorescence-stained lung sections and phosphor-p38 intensity. (C,D) Representative images of HO-1 (red) and DAPI (blue) immunofluorescence-stained
lung sections and HO-1 intensity. (E,F) Representative images of p65 (green) and DAPI (blue) immunofluorescence-stained lung sections and p65 intensity.
(G) Levels of phosphor-p38, MKP-1, HO-1, and nuclear p65 in the lung were detected by western blot. (H) Lung MDA concentration. (I) Lung GSH-Px activity. Data
are shown as the means ± SEM (n = 6; *p < 0.05; **p < 0.01; ***p < 0.001).

combined with CIH exposure may be associated with TH2-low
asthma and steroid resistance.

Inflammation is the key factor in asthma (Keane-Myers
et al., 1998; Jember et al., 2001; Al-Shami et al., 2005; Lee
et al., 2011; Lin et al., 2016). The reports have shown that
intermittent hypoxia can induce airway inflammation in rats
(Broytman et al., 2015). In addition, inhibition of p38 has
an anti-inflammatory effect and is effective in asthma models
by reversing insensitivity to GCs (Liang et al., 2013). In this
study, the data confirmed that SB239063, a p38 MAPK inhibitor,
inhibited the SR inflammation response both in vitro and in vivo.
Previous research found that p38 MAPK activity was selectively
increased in the peripheral blood mononuclear cells of patients
with SR asthma, and activation of the p38 MAPK pathway in
blood could be used as a selective biomarker in patients with
SR asthma (Li et al., 2015). Furthermore, in vitro experiments
showed that the combined use of p38 MAPK inhibitors and GCs
could significantly inhibit the levels of cytokines in patients with
asthma, while p38 inhibitors could improve and reverse hormone
insensitivity, as well as increase the anti-inflammatory effects of
hormones (Bhavsar et al., 2010; Lea et al., 2015). Furthermore,
p38 MAPK inhibitors also significantly inhibited the mRNA

of monocyte-macrophage inflammatory genes in patients with
chronic obstructive pulmonary disease (Kent et al., 2009). Thus,
it was hypothesized that the p38 MAPK signaling pathway may
be involved in CIH-induced SR asthma. We found that CIH
exposure increased the activity of p38 MAPK in lung tissue
and ASMCs, which was effectively inhibited by SB239063, a
p38 MAPK inhibitor. In addition, SB239063 suppressed ASMCs
proliferation, oxidative stress activation, and inflammatory cell
recruitment both in vitro and in vivo. These findings are
consistent with previous observations by several research groups
that p38 MAPK inhibition in severe asthma may enhance cellular
responsiveness to GCs, and we first found that p38 MAPK
inhibition ameliorated CIH-induced SR asthma both in vitro
and in vivo.

The activation of p38 MAPK regulates various inflammatory
signaling pathways (O’Dea et al., 2011). Our results showed
that MKP-1 was found to have significant interactions with
anti-inflammatory proteins mediated by p38 MAPK in the
development of asthma (Prabhala et al., 2015). MKP-1 plays a
crucial negative feedback role in MAPK signaling and regulates
the pro-inflammatory response and cytokine secretion from
ASMCs caused by MAPK pathway stimulation (Bao et al.,
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FIGURE 4 | Effects of Dex or the p38 MAPK inhibitor, SB239063, on airway smooth muscle cells (ASMCs). (A) ASMCs displayed the characteristic “hill and valley”
appearance. Immunofluorescence staining indicated the expression of the contractile protein SM α-actin (Green). (B) Proliferation of ASMCs at 48 h was analyzed in
the different groups. Cell proliferation following TGF-β (10 ng/ml) stimulation was determined by the MMT test. (C) The malondialdehyde (MDA) concentration in
ASMCs was measured. (D) Activity of GSH-Px in ASMCs was measured. (E) The level of CCL11 mRNA expression in ASMCs was determined by qRT-PCR. (F) The
levels of phosphor-p38, MKP-1, HO-1, and nuclear p65 protein in ASMCs were determined by western blotting. Data are shown as the mean ± SEM (n = 3;
*p < 0.05; **p < 0.01; ***p < 0.001).

2014). In addition, several studies found that MKP-1 may
inhibit the inflammatory response by inhibiting p65 nuclear
transcription (Chen et al., 2015; Kovacs et al., 2019), and
the level of p38 MAPK activity in severe asthma patients
increases in alveolar macrophages, and the level of MKP-
1 mRNA expression in hormone-induced cells is reduced
(Bhavsar et al., 2008). CIH leads to the inhibition of MKP-
1 function and an aggravated inflammatory response, which
can cause impaired GC receptor function and hormone
resistance. SB239063 can increase the expression level of MKP-
1, prevent the translocation of p65 into the nucleus, and
restore hormone sensitivity. Our results confirmed the above
theory. It was also demonstrated in the present study that
SB239063 inhibited the level of phosphorylated p38 MAPK
and promoted the expression of HO-1 both in vivo and
in vitro. HO-1 and its by-products, biliverdin are considered
to have cytoprotective properties, such as anti-oxidant, anti-
inflammatory, and anti-apoptotic activities in the context of lung
disease (Ahmed et al., 2019), and are regulated by p38 MAPK
(Cho et al., 2018; Nakashima et al., 2018). CIH can induce
oxidative stress in asthma, stimulate the p38 pathway, cause
GR dysfunction, and reduce the expression levels of histone
deacetylase (HDAC2) (Park et al., 2007; Klusonova et al., 2009;
Du et al., 2015). Therefore, targeted overexpression of HO-1

may be helpful in the treatment of CIH-induced lung oxidative
stress disorders.

Steroid-resistant asthma is a complicated pathophysiological
process in which various types of asthma cells display
increased p38 MAPK signaling, inflammatory response, and
oxidative stress activation. We found that p38 MAPK activation
participated in OVA- and hypoxia-induced asthma in mice.
This led to a decline in GC sensitivity, inducing the release of
inflammatory mediators and airway remodeling, thus leading to
uncontrolled and more severe asthma. It can be concluded that
p38 MAPK inhibitors improved the sensitivity of GCs in mice
with CIH and asthma by inhibiting p38 MAPK expression.

We speculate that p38 inhibitor combined with CPAP
treatment will enable patients with asthma and OSA to achieve
a better level of control, probably because it increases hormone
sensitivity by improving CIH in these patients.

CONCLUSION

Chronic intermittent hypoxia exposure aggravated asthma and
reduced GC sensitivity by stimulating the p38 MAPK signaling
pathway. Our data revealed that the p38 MAPK pathway may be
a promising potential target for SR asthma combined with OSA.
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CLINICAL PERSPECTIVES

(1) Obstructive sleep apnea is a risk factor for refractory
asthma. Patients with asthma and OSA are more likely
to develop steroid resistance. Activation of the p38
MAPK pathway has been reported to participate in SR
asthma. Our study aimed to examine how the p38 MAPK
pathway affected CIH exposure combined with OVA-
induced asthma in a mouse model.

(2) The results showed that the p38 MAPK inhibitor
SB239063 ameliorated CIH combined with OVA-induced
asthma by increasing GC sensitivity and reducing
oxidative stress injury.

(3) These findings provided a novel insight into SR asthma
combined with OSA.
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